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Traffic Steering for Service Function Chaining

Hajar Hantouti

Abstract—Dynamic service function chaining (SFC) is
a technique that facilitates the enforcement of advanced services
and differentiated traffic forwarding policies. It dynamically
steers the traffic through an ordered list of service func-
tions. Enabling SFC capabilities in the context of a software
defined networking (SDN) architecture is promising, as it takes
advantage of the SDN flexibility and automation abilities to struc-
ture service chains and improve the delivery time. However, the
delivery time depends also on the traffic steering techniques used
by an SFC solution. This paper provides a closer look at the
current SDN architectures for SFC and provides an analysis of
traffic steering techniques used by the current SDN-based SFC
approaches. This study presents a comprehensive analysis of these
approaches using efficiency criteria. It concludes that the stud-
ied solutions are not efficient enough to be deployed in real-life
networks, principally due to scalability and flexibility limitations.
Accordingly, this paper identifies relevant research challenges.

Index Terms—Service function chaining, network services,
traffic steering, NFV and SDN.

I. INTRODUCTION

HE LARGE-SCALE networking infrastructures, pro-
Tvisioned by network operators and service providers,
are typically designed to support a broad range of com-
plex services and middle-boxes (MBox). MBoxes serve for
performance and security enhancement as well as for the con-
formity of diverse policies. As stated by Sherry et al. [1],
the number of MBoxes approximates the number of switches.
With such a high number, the manual configuration and
management of middle-boxes is tedious and error-prone. It
becomes highly more complex in the case of large-scale
networks.

Service Function Chaining (SFC) is a set of operations to
direct traffic through an ordered list of MBoxes (or Service
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Fig. 1. Static service function chaining, placing service functions, one next
to the other, to form a service function chain.
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Fig. 2. Dynamic service chaining; an example of service function chains
in an SFC-enabled domain. The SFs do not have to be located next to each
other. Traffic is dynamically steered to the desired SFs.

Functions — SF). SFC assists service providers and network
operators in optimizing resource usage as a function of the
number and nature of services to be delivered [2]. The service
functions that compose a SFC are mainly located in an MBox
(e.g., Firewall, Deep Packet Inspection - DPI, and Network
Address Translator - NAT).

Current SFC techniques often rely on static configura-
tion tasks, such as configuring VLANs to steer the traffic
through the desired set of SFs (as depicted in Fig. 1). Thus,
the manual configuration and management of SFCs introduce
a considerable complexity to the network operators.

With the emergence of  Software Defined
Networking ~ (SDN) [3] and  Network  Function
Virtualization (NFV) [4], the ability to dynamically structure
SFCs and accordingly derive traffic forwarding policies
becomes a reality (see Fig. 2).

On the one hand, SDN is a networking solution, char-
acterized by the separation of the control plane from the
data plane. Such separation facilitates the network programma-
bility using an SDN computation logic that is centralized
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and fed by various input data, such as network-originated
notifications [5]-[7]. Programmable networking devices, such
as SDN-enabled switches, allow programming SFC rules by
an intelligent SFC engine that runs in the control plane [8].

On the other hand, NFV is a technique that aims to virtual-
ize networking services to run on commodity hardware. NFV
promotes running virtual appliances of SFs and creating vir-
tual links between SFs which enhances SFC deployment. SFC
is further simplified by using an NFV orchestrator to allocate
resources, place SFs, and create virtual links [9]. Thus, NFV
and SDN techniques can be used to facilitate the SFC design
and operations.

SFC is a hot topic and tackles several problems [10]
including: SFC path selection [11]-[13], service chain
decomposition [14]-[17], SFC routing logic [18]-[20],
optimization of SF placement in an SFC-enabled
domain [12], [21]-[29], service allocation and provision-
ing [24]-[30], policy enforcement [31], troubleshooting [32],
and security [33]-[38]. In spite of that, there are very few
surveys about SFC. Recently, Bhamar et al. [39] presented
a survey on SFC, discussing optimization approaches and out-
lining SFC challenges and open research issues. Although they
mentioned the dynamic traffic steering, no thorough discussion
about this topic was provided. Lately, Xie et al. [40] presented
a survey about resource allocation algorithms for SFC. They
reviewed a number of approaches: however, the survey
focuses on resource allocation. Medhat er al. [41] presented
a state of the art analysis on SFC from a performance and
architecture viewpoint. This paper specifically focuses on
traffic steering for SFC. Given the fact that the performance
and efficiency of any SFC solution rely on the effectiveness
of the underlying traffic steering techniques, and given the
lack of consideration for the subject, it is clear that traffic
steering issues merit further investigation.

The contributions of this paper can be summarized as
follows:

o Description of the traffic steering operations and classi-
fication of different traffic steering methods into three
categories: (i) based on packet headers, (ii) based on
packet tags, and (iii) based on personalized SDN switch-
ing functionalities.

o Comprehensive analysis of a list of SDN-based SFC
approaches, focusing on the traffic steering method used
and presenting the advantages and the limits of each one.
The approaches are classified based on the aforemen-
tioned traffic steering types.

e Qualitative evaluation of SDN-based SFC approaches,
investigating the efficiency of the studied approaches.
The evaluation is based on four criteria: deployment cost,
flexibility, scalability, and overhead. Each criterion is
composed of a set of metrics.

e An analysis of the evaluation setup used by the studied
SFC approaches.

¢ An outline of ongoing research challenges and a proposal
for future research directions.

To the best knowledge of the authors, this survey is the

first to focus on SFC from the viewpoint of traffic steering. In
particular, it analyzes the impact of traffic steering mechanisms

TABLE I

LIST OF ABBREVIATIONS

Acronym Description

CAPEX Capital Expenditures

CL Classifier

DPI Deep Packet Inspection

DS Differentiated Services
European Telecommunication

ETSI Standards Institute
Generic  Protocol Extension for

GPE VxLAN

GRE Generic Routing Encapsulation

IETF Internet Engineering Task Force

P Internet Protocol

LISP Locator/ID Separation Protocol

LSP Label Switched Path

MAC Media Access Control

MBox Middle Box

MEC Multi-access Edge Computing

MPLS Multiprotocol Label Switching

NAT Network Address Translation

NETCONF Network Configuration Protocol

NEV Network Function Virtualization

NEVI Network  Function Virtualization
Infrastructure

NFV-MANO NFV Management and Orchestration

NGSON Next-generation  Service Overlay
Network

NSH Network Service Header

OPEX Operational Expenses

PCE Path Computational Element

SC Service Chain

SCH Service Chain Header

SC-ID Service Chain Identifier

SD-MBox Software Defined Middle Box

SDN Software Defined Networking

SF Service Function

SFC Service Function Chaining

SFCEH Service Function Chaining Extension
Header

SFF Service Function Forwarder

SFP Service Function Path

SPRING Source ) Packet Routing in
Networking

SR Source Routing

SRE Source Routing Encapsulation

SRH Segment Routing Header

TCAM Ternary Content-addressable
Memory

TOS Type Of Service

TS Traffic Steering

VLAN Virtual Local Area Network

VNF Virtual Network Function

VXLAN Virtual Extensible Local Area
Network

on the efficiency of service chaining. The list of abbreviations
used throughout this paper is presented in Table I.

The rest of this paper is organized as follows. Section II
presents an overview of the concept of SFC, the related tech-
nologies and the motivation of research in SFC. Section III
outlines the traffic steering types and methods used in SFC
approaches. Section IV describes different SFC approaches
in the context of SDN as well as the traffic steering meth-
ods used. Section V presents a qualitative assessment of the
current SDN-based SFC approaches, using performance and
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efficiency metrics, and discusses the validation techniques used
by the studied SFC approaches. In Section VI, we discuss the
results and present insights on the ongoing research challenges.
Finally, the paper concludes in Section VIIL

II. SERVICE FUNCTION CHAINING AND
RELATED TECHNOLOGIES

A. Service Function Chaining Concept

SFC is a networking concept that refers to the traversal of
network traffic through a set of network services (i.e., any
network service from the OSI layer 2 to 7) or service func-
tions. Mainly for security reasons, a network operator may
deploy firewalls and proxies, stitched together in the edges of
the network, to prevent attacks. This process is known as the
static SFC whereby networking services are placed one next to
the other to provide a sophisticated service (see Fig. 1). Today,
large-scale data-centers and Internet Service Providers (ISP),
among others, express the need for a dynamic operation to
achieve SFC, to reduce configuration and management com-
plexities (see Fig. 2). Dynamic SFC is a research area that is
developed with the emergence of new networking technologies
such as cloud computing, SDN, and NFV.

B. SFC Architecture

RFC 7665 [2] defines SFC as a three layers architecture;
a data plane, an SFC overlay, and a control plane. The first
is the network layer composed of networking devices and
the corresponding interconnections. The second is the layer
consisting of SFC elements that are involved in the SFC
operations, such as traffic classifiers (CL), service function for-
warders (SFF), and SFs. The third contains the policy decision
points managing the SFC overlay and data plane.

The purpose of SFC overlay is to guarantee an indepen-
dence from the underlying physical network, thus, avoiding
static configurations to achieve the dynamic service function
chaining. Such independence permits network elasticity and
management flexibility.

The SFC operation is initiated by the policy decision points
that prepare the Service Function Paths (SFP) and profiles
for a traffic classier. The latter filters the traffic and identifies
the flows and the corresponding service chains. The identified
flows are forwarded to an SFF that routes traffic flows to the
corresponding next SFs (see Fig. 3). Usually, the connection
between SFC elements is built based on network tunneling
techniques such as VXLAN, GRE, and SFC encapsulation
protocols (e.g., Network Service Header - NSH [42]).

C. Software Defined Networking

SDN relies on the separation of control and data planes. This
separation enables network programmability, which allows to
dynamically allocate resources and enforce policies based on
the nature of required services [3]. The separation allows intel-
ligence to be moved from devices to a control plane that
manages the overall devices. The communication between
the control plane and the forwarding plane is ensured by
a southbound communication protocol, such as the OpenFlow
protocol (OF) [43] and the Network Configuration proto-
col (NetConf) [44].
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Fig. 3. Service Function chaining architecture as in RFC 7665 [2].

The commonality of SDN and SFC is that both are based
on policy constructs. There is an upper layer above the control
plane, which is composed of business applications, referred to
as the management layer. The management layer sends appli-
cations requests to the control plane. The latter translates the
policy requirements into classification rules (see Fig. 4). For
example, some services require Internet-originated traffic to
be inspected by a DPI instance. Thus, a service chain can be
dynamically structured by the computation logic of SDN to
include a DPI SF that will be invoked for each packet of such
traffic. Deploying the service chaining above an SDN archi-
tecture permits to create and control a service chain, using
software, in abstraction from the underlying topology.

D. Network Function Virtualization

NFV is a framework standardized by the NFV Industry
Specification Group [45], chartered recently by the European
Telecommunication Standards Institute (ETSI) [46]. NFV aims
at reducing the cost of large-scale networking infrastructures,
by virtualizing SFs that are usually supported by technology-
specific devices. Virtualization is also supposed to facilitate
a more agile deployment of resources. The contribution of
NFV to the cost reduction needs more assessment [4]. The
NFV framework consists of three core components: Virtual
Network Functions (VNF), Network Function Virtualization
Infrastructure (NFVI), and management and orchestration
architectural framework (NFV-MANO). VNFs are software
appliances of network functions, to be deployed in an
NFVI. The NFVI consists of the environment that VNFs
are built in, including hardware and software systems. This
environment is managed and orchestrated by the NFV-
MANO [4], [47].
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Fig. 4. Dynamic service function chaining in the context of SDN.

In modern networks, SDN and NFV support the deployment
of SFC [48], [49]. The flexibility of SDN for SFC is enhanced
with NFV through the possibility of dynamically instanti-
ating and managing the virtualized service functions [50].
Furthermore, deploying SFC in an NFV environment permits
to reduce the deployment cost by reducing the hardware invest-
ment. NFV also permits enhancing the system flexibility by
managing service functions and resources in an on-demand
manner [51].

III. TRAFFIC STEERING FOR SFC

The traffic steering for SFC refers to the operations involved
in directing the traffic to reach the intermediate service func-
tions that are involved in a specific service function chain. It
can be defined as the forwarding and routing logic of traf-
fic among SFs. Traffic steering inherits several functionalities
from traffic engineering protocols and can be enhanced with
SDN. The traffic steering functionalities for SFC are usually
located in SFFs, and/or located in CLs.

As there are several traffic steering techniques, this section
reviews a list of traffic steering methods of interest for SFC.
A comprehensive list of traffic steering methods is categorized
into three types: the first is based on packet headers for traffic

steering, the second is based on specific tags or re-interpreting
some packet fields, and the third is based on personalized
switching functionalities and daemons (see Fig. 5). Later, the
described types will be used to classify the SDN-based SFC
approaches described in Section IV.

A. The Traffic Steering Operation

The process of forwarding or steering traffic for SFC
includes the following operations: classification, identification,
routing, and sometimes encapsulation.

The classification process permits filtering different traffic
types according to policy profiles. To avoid re-classification at
every SFC element, an identification process takes place for
the next SFC element to process packets based on the result
of the classification process. Usually, chain/path identifiers are
inserted in packets or installed in SFFs [2].

The routing logic for SFC is a complex operation where two
levels of routing take place: (i) an overlay routing between
SFC elements connected through tunnels (i.e., when encap-
sulation mechanisms are used) and (ii) an underlay routing
to ensure network reachability (e.g., L3 IP routing, Label
Switching Path routing). The SFC routing operation is based
on flow identifiers of traffic types or by matching rules in SFFs.
The routing operations result in selecting the next SFC element
in the SFP. In case a path identifier and/or metadata are added
to the packets, an encapsulation process takes place to ensure
connection and delivery between SFC elements [2].

We distinguish between two types of encapsulation: trans-
port encapsulation and SFC encapsulation. The network encap-
sulation creates tunnels between different SFC elements and
it can be any network transport protocol, such as IPinIP [52],
VXLAN[53], VXLAN-GPE [54] or GRE [55], while SFC
encapsulation refers to the information added to a packet to
identify the SFP, such as NSH [42]. Encapsulation is used
to achieve SFC while inserting path information within the
packets. The use of transport and/or SFC encapsulation is
approach dependent, as there are approaches that do not use
encapsulation.

B. Header-Based Methods

SFC aims to achieve customized forwarding based on differ-
ent policies. The policies are translated as chains of required
SFs. Information about the forwarding path can be shared
via additional packet headers. SFC headers are used between
SEC entities such as CLs, SFFs and SFs to exchange SFC
information and determine how to forward the different traffic
types.

The early contributions for SFC and traffic steering
started within the IETF Service Function Chaining [56]
and ETSI [46] working groups. Several propositions are
based on network headers such as NSH [42], Service
Chain Header (SCH) [57], IPv6 extension header for
SFC (SFCEH) [58], Segmented Routing Header (SRH) [49],
or by defining a new IP option field.

1) Network Service Header: NSH [42] is an SFC forward-
ing protocol. The main functionality of NSH is to ensure traffic
traversal to the required SFs. NSH protocol refers to a network
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Fig. 5. Classification of traffic steering types.

header that is inserted into the traffic packets to ensure SFC
elements traversal and SFC traffic steering. A CL classifies
traffic and adds NSH headers that are used by SFFs and SFs
to identify the traffic paths and share metadata. It should be
noted that for legacy nodes, such as routers and switches,
which may not be NSH aware, the use of network encapsu-
lation or tunneling protocols becomes a necessity. NSH can
be encapsulated in different tunnels, such as VXLAN and
GPE. NSH was used as the traffic steering protocol in var-
ious SFC solutions, such as the work of Li et al. [36] and
Mehmeri et al. [59]. Differently, Kulkarni et al. present in [60]
a modification on the header to reduce the complexity and the
cost of this protocol. By replacing the Service Path Identifier
field in the NSH header with a Service Chain Identifier, they
present a scalability enhancement using the modified header.

2) Service Chain Header: Similarly, SCH [57] is another
header-based scheme relying on the concept of packet headers
used in service chaining between different SFC elements. SCH
is an alternative to NSH, yet adopting a different approach.
SCH contains two types of fields, a mandatory and an optional
field. As for the mandatory fields, it encodes the flow identi-
fiers that permit for SFFs and SFs to steer traffic. The optional
fields are useful to encode differentiated metadata.

3) IPv6 Extension Header for SFC: Another proposition to
use packet headers for SFC traffic steering is an IPv6 extension
header [58] that enables SFC in IPv6 enabled networks. It is
based on a similar concept to NSH, and SCH in encoding path
information (i.e., SFP Identifier, SFC identifier, and SF iden-
tifier), and optional information for metadata shared among
the SFC elements. The extension header proposition requires
a network encapsulation mechanism to make abstraction of
the underlying network, and achieve connectivity between
SFC elements to form the SFC overlay. Such encapsulation
mechanisms include IPv6-IPv6 or IPv4-IPv6 tunnels [61].

4) Segment Routing Header: SRH [62] is employed by
Abdelsalam et al. [63] as an SFC protocol. The IPv6 exten-
sion header for segment routing [62] is a routing protocol that
can be used to achieve SFC. The authors proposed to encode

the SFP in SRH. The IPv6 addresses of the involved SFC
elements are written in the header. Thus, the CL inserts the
corresponding header, and the SFFs steer the traffic based on
the IP addresses encoded in the header [63].

5) IP Option Field: A new IP option field is proposed by
Li et al. [64], to encode a list of SF and path identifiers corre-
sponding to a specific traffic class. When packets reach an SFF,
it checks the identifier and the connected SFs. This operation
is repeated until the traffic reaches the final destination.

6) Advantages and Disadvantages of Header-Based
Methods:

Advantages: Sharing SFC information in a dedicated header
permits to safely exchange forwarding information. Usually,
only SFC entities support the header and can process and
update it.

Disadvantages: The major shortcoming of defining new
headers is the need for SFs to support the header. Using prox-
ies with each SF is inflexible and can increase deployment
complexity and communication overhead. Increased packet
size and encapsulation schemes in such methods can induce
communication overhead as well.

7) Comparison Between SFC Headers: We notice that the
headers NSH [42] and SCH [57] have a similar format. The
IPv6EH [58] for SFC differs by encoding the SC identifier
instead of the SFP identifier. These three headers include
optional fields to encode further metadata. The SR header for
SFC [62], [63] encodes the list of IPv6 addresses of the VNFs
in the header and operates in a different way than the previous
three headers (see Section IV-A). The size of the added packet
header depends mainly on the optional metadata added, yet
the SRH can have more size compared to the other headers
if it encodes multiple IPv6 addresses. All the described head-
ers require support from SFFs and SF or the use of proxies
between SFs and SFFs.

C. Tag-Based Methods

Another method to determine an SFC path is to use existing
packet fields. Packet fields can be re-interpreted to carry SFC
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forwarding information. The information carried in these fields
is called a tag. In this category of traffic steering methods,
available packet fields in different layers are used to contain
SFC information, such as MAC addresses, VLAN IDs, and
MPLS Ilabels.

1) MAC Address-Based Approaches: Metadata, containing
SFC information on how to reach the next service function
or to identify the service chain, can be encoded using MAC
addresses. The approaches presented in [65], in addition to the
approach defined in [66], are based on MAC addresses.

2) VLAN Based Methods: Several SFC approaches are
based on VLAN IDs to encode tags [67]-[71], whether as
local identifiers that the SFF uses locally to identify flows
inbound and outbound of the SFs or SFFs, or as a user
identifier [72]. The use of the tag is specific to the traffic
steering designed by the SFC solution.

3) MPLS Based Method: Another way to encode SFC
information is using MPLS Labels. It is either carried out
by the use of MPLS in traffic engineering through Labeled
Switched Paths (LSP), or using MPLS coupled with other
tags to increase the SFC header capacity to encode more SFC
related information [71].

Traffic engineering techniques can be customized for SFC
purposes, such as the source routing technique discussed in the
SPRING working group [73]. An SFC proposal in SPRING
networks based on MPLS is described in [74] for SFC traffic
steering. This technique relies on the source routing applied
to MPLS. It proposes a LSP that encodes the list of SFs and
SFFs of an SFP as a stack of MPLS labels. The traffic steering
operation is initiated by a CL that encodes the SFP as a list
of segment identifiers corresponding to the necessary SFs and
SFFs to steer a packet through a service chain. It is worth
noting that each SFF strips its identifier. The last SFF in the
path is used to strip the last label in the LSP and forwards
the packet to the final end-point. This protocol also relies on
network encapsulation to forward LSP packets that can be
encapsulated in MPLS-in-IP or MPLS-in-GRE tunnels. Thus,
the underlying network can be an MPLS as it can be an IP
network.

4) Advantages and Disadvantages of Tag-Based Methods:

Advantages: Tag-based identification of service chains
enables the use of available packet fields for SFC purposes.
Thus, it prevents the complexity of defining and supporting
new headers.

Disadvantages: The ability to re-interpret available packet
fields comes with a shortcoming; such fields can be used for
other policy purposes. For example, using TOS field for SFC
purposes might interfere with QoS policies deployed in the
network. Thus, values defined for QoS can be interpreted as
SEC values and vice versa, which can lead to misleading poli-
cies. Moreover, tagged packet fields might not be supported by
all SFs, e.g., Some SFs might not support MPLS. Moreover,
some SFs modify packet fields, which leads to loss of SFC
information and the traffic will be steered differently.

D. Programmable Switch-Based Methods

The third type of traffic steering methods relies on
programmable switches, mainly with multiple flow tables.

Programmable switches play the role of SFC CLs and SFFs.
Traffic forwarding is usually based on re-classifying traffic
based on programmed flow rules, such as access lists. Network
isolation can be used as well. For example, the work in [75]
proposed the use of a switch and a controller per user to sim-
plify user traffic identification. The identification of SFs can
be based on port numbers or interfaces or based on the re-
classification of packets (e.g., 5 tuple). Traffic steering can be
based on coupling the previous methods, relying on tags or
packet headers, with programmable switches.

Advantages: Determining the SFC path based on pro-
grammable switches can only be safe in a way that no
manipulation of packets is performed. Switches are respon-
sible for determining the direction of traffic. This method
prevents switches from modifying each traversed packet. Thus,
the cost of queuing and processing, resulting from packet
modifications, is saved.

Disadvantages: Reclassifying flows traversing every switch
is costly. It requires installing an important number of flow
rules in different switches to match packets traversing each
switch and determine the service chain and/or the SFC
path. The increased number of rules influences the switches
memory, processing, and overall switches performance [76],
thus increasing the packet delivery time.

E. Summary and Insights

In this section, various traffic steering types were described.
They were classified in three categories: the header-based
traffic steering, the tag-based traffic steering, and the pro-
grammable switches-based traffic steering. This classification
is to simplify the discussion, though the traffic steering can be
hybrid. For example, an approach can rely on re-interpreting
packet-field and a programmable switch, to rewrite the fields
and further identify traffic destination based on switch ports,
and an SDN controller to generate the SFC information [65].
Furthermore, two SFC headers can be implemented and used
for different reasons, as in [63] where the SRH is used for
sharing the forwarding path along with the NSH for sharing
the context information. Moreover, multiple tags or fields can
be combined in a traffic steering method to encode the SFC
information [71]. Table II presents a summary of the different
traffic steering types, with the relevant works, limitations, and
strong points. The choice of the traffic steering method should
be based on the infrastructure policy and context, as the limits
of a traffic steering method can be accepted in a given context
and not in another one, and the benefits of a method can be
relevant for an infrastructure and not for another.

IV. SDN-BASED SFC APPROACHES

Several proposals to dynamically chain services have been
proposed in the last few years by the open source community,
industry, and academia. In this paper, we mainly focus on aca-
demic research propositions to realize SFC. In this section, we
present a comprehensive list of SDN-based SFC approaches
and discuss the traffic steering methods used. The approaches
are classified according to the traffic steering types described
in Section III. Table III summarizes this classification.
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TABLE 1T
SUMMARY OF TRAFFIC STEERING TYPES

Traffic steering Definition Relevant works

type

Noticed limitations Strong points

New headers Defining new headers to
share the SFC
information between

SFC-enabled devices.

[42][57][62][63][58][64]

-Devices need to | - Avoiding reclassification.
support the headers. -Sharing Metadata and
-Double context information.
encapsulation.

-Increased packet size.

Tags or packet | Re-interpreting a field in | [65][66][67][68][69][70][71] | - Interference between | -Avoiding reclassification.
fields the packet header or | [72] policies using the tags | -Avoiding network

adding tags to encode the for different reasons. encapsulation.

SFC forwarding -Some tags may not be

information. supported by SFs.
Programmable Forwarding is based on | [75][82] -Reclassification. -Avoiding network
switches specific  configurations -Potential number of | encapsulation.

sent to the switches by an forwarding rules.

SDN controller.

TABLE III

SDN-BASED APPROACHES AND RELATED TRAFFIC
STEERING METHODS

SDN based SFC Type of Traffic SFC Metadata type
approach steering
technique
Pawar et al. [70] VLAN ID
Martini et al. [69] VLAN ID
Abujodactal. [71] E:;fgtson tageed MG NTD
Trajkovska et al. VLAN ID

[72]
Qazi et al. [67]

Vlan ID/MPLS label/PV4

TOS
Fayazbakhsh et al. IPv4 TOS/VLAN ID/IPv6
[68] Flow Label

Blendin et al. [65]
Dinget al. [66]

Mac address
Mac address

G. Li et al. [36] NSH
Mehmeri et al. | Based on packet | NSH
[59] headers
Abdelsalam et al. Segment Routing Header
[63]
Cerrato et al. [75] Based on SDN | Xdpd Switch
Switch

Zhang et al. [82] OpenFlowl1.1 Metadata

A. Header-Based SFC Approaches

e The Software-Programmed Networking Operating
System (SPNOS) [59] developed by Mehmeri et al. is
an NFV/SDN SFC solution over packet/optical networks.
SPNOS implements Object-Oriented Virtualization [77] for
offering service management flexibility to individual tenants.
This solution treats services as dedicated virtual network
objects that are controlled by an Arbiter. The architecture of
SPNOS is composed of a service plane and a network plane.
The service plane is implemented based on TOSCA NFV
template [78] and is managed by the OpenDaylight controller.
The network plane is composed of packet/optical devices.

Traffic steering: this solution is based on a person-
alized version of the OpenDaylight SDN Controller that
implements NSH protocol for SFC configuration and traffic
steering.

Advantages: the main advantage of this approach is the
focus on optical networks and deployment in multi datacenters.

Limits: the approach relies on NSH and inherits the advan-
tages and limits of header-based traffic steering. NSH requires
other tunneling protocols to encapsulate NSH packets, thus
encapsulation/decapsulation actions. Moreover, NSH and the
support of tunneling protocols add complexity to the approach
deployment and can introduce communication delay and over-
head.

e Another SFC solution is proposed in [36] by Li et al.
in the context of mobile edge. This solution aims to pro-
vide security SFs for mobile users. A cloud infrastructure
implements security SFs and SFC service plane. The architec-
ture is implemented in a cloud and SDN environment, using
OpenStack [79] and Pox SDN controller [80], to dynamically
instantiate and manage virtual services and program data-
plane devices. The authors also present an algorithm for SFC
composition based on a fuzzy inference system.

Traffic steering: this solution implements NSH protocol [42]
and deploys the SFC architecture [2] (RFC 7665). Thus, the
packets are encapsulated with NSH header for service and
path identification. A CL that first filters traffic and adds NSH
header to packets delimits the SFC domain. The CL is pro-
vided with the topology and SFC information by the SDN
controller that manages the high-level SFC operation. The for-
warders decode packets with NSH header and deliver traffic to
the accurate security SFs. In case the SFs are not NSH header
aware, a proxy is implemented to translate an NSH packet
to an IP packet for the SF and inserts back the header after
leaving the SF.

Advantages: the specificity of these approaches is their
deployment context; focusing on security service function
chaining for mobile computing and moving security SFs to
the cloud in order to make the services close to the user side.

Limits: like the previous SFC approach, it relies upon NSH
protocols and takes its advantages and limits.

e In the same way, an implementation of VNF chaining
through segment routing in a Linux-based NFV Infrastructure
is proposed by Abdelsalam et al. [63]. It is an Open source
SFC solution based on IPv6 Segment Routing header. The
architecture of SR-SFC builds on the design of [62]. This
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solution is deployed in an NFV/SDN infrastructure. This
approach proposes a Linux NFV host that supports multiple
VNFs, implementing a Linux kernel module for inner and
outer host traffic steering.

Traffic steering: At the ingress edge router, a SRH aware
CL classifies traffic flows and inserts SR headers. SRH is
composed of a list of [PV6 addresses which is relative to the
intermediate VNFs corresponding to the accurate service chain
for the flow. Intermediate IPv6 or IPv6/SR routers forward
the packets to the proper NFV nodes hosting the VNFs. The
Linux based NFV node supports a SR/NF connector, which
steers the packets through the VNFs. The connector plays the
role of an inner-host SRH forwarder and proxy. As the packets
are steered based on the information stored in the SR header,
the VNFs are expected to decode the new header. If a VNF is
not SRH aware, an SFC proxy is implemented to encode and
decode the SR header.

Advantages: as an open source solution implemented
in Linux, it encourages its usage and improvement by
other researchers and engineers. The inner NFV host traf-
fic steering permits to further take advantage of virtual-
ization to reduce communication delay compared to the
regular physical links. The authors accentuate an efficiency
in CPU usage. Also, this solution can coexist with an NSH
scenario.

Limits: in this work, only the CPU usage is considered, how-
ever, other important efficiency metrics are neglected, namely
the communication overhead, latency, and delay. Moreover,
the encapsulation, decapsulation and reclassification of traffic
after visiting an un-aware SR VNF can introduce delay and
deployment complexity.

B. Tag-Based SFC Approaches

e The Segmented Proactive Flow Rule Injection (SPYRI)
scheme proposed in [70] is an SDN-based solution for
SFC. The architecture consists of an SDN controller that han-
dles policy elements, the flow rule injector functionality and
the SPFRI engine, and many OpenFlow switches. This solu-
tion implements the concept of segmented service function
chains, which decomposes the service path of a given chain
into segments. These segments are portions of the service path
between the switch connected to a given middle box MBox
and the switch to which the next MBox is connected. The rea-
son for the segmentation concept is to make it easier to find
the next MBox within an SFP.

Traffic steering: in this solution, the controller assigns an
SFC ID for different types of flows — all packets are tagged
with the corresponding SC-ID. A double tagging system is
implemented as an inner tag for the SC-ID and an outer tag
that identifies the next SF node to be crossed by the flow.
VLAN IDs are used for marking packets.

Advantages: SPFRI uses a tagging scheme based on VLAN
and MPLS. The tags do not add much bits to the packets com-
pared to the SFC headers (described in Section III). Moreover,
this approach does not require modifications of MBoxes and
maintains consistency after traversing MBoxes that might alter
packets.

Limits: MBoxes are required to configure a VLAN interface
for each SC. This can limit the scalability and flexibility
of the approach. Thus, MBoxes might not support an incre-
mental number of service function chains. Moreover, the use
of multiple fields (i.e., VLAN, MPLS, QOS, and PCP) can
interfere with other networking configurations.

e Also, Simpson proposed in [52] an SDN controller for
the context-aware data delivery of dynamic service chain-
ing in the context of Next Generation Service Overlay
Networks (NGSON). This approach assumes that SDN and
NFV can be used to design and operate SFCs based on the
application requirements. The SDN controller uses a dedicated
interface to retrieve application requirements. It consists of
a customized Floodlight control plane and a service plane.
The latter is a request manager that is directly attached to
the application entities. A network server connects the service
plane with the SDN controller.

Traffic steering: for this solution, SFC traffic steering is
performed based on VLAN IDs. Mainly, a unique VLAN
ID identifies each MBox instance. Forwarding decisions are
made using VLAN ID tags with flow header fields, which are
the ingress port, the source IP address, and the destination IP
address.

Advantages: above the SDN and NFV technologies,
this approach considers the deployment in NGSON con-

text. This enables context-aware and adaptive service
functions composition based on network performance
metrics.

Limits: this approach does not consider the opaque MBoxes
that alter packets. Thus, context information can be lost.
Moreover, an incremental number of traffic classes results in
increasing the number of flow rules in a switch. Actually, the
number of flow rules is conditioned by the TCAM capac-
ity in switches and presents a common challenge among the
wide range of SFC approaches and programmable switches in
general.

e Conjointly, the SDN-based Source Routing approach
proposed by Abujoda er al. [71] is a solution designing
and operating SFC in datacenter environments. This solu-
tion aims to encode the list of SFs of a service chain in
a header to get over the need to store the forwarding state
in switches. The proposed architecture relies on an SDN con-
troller, and two types of OpenFlow switches: The Source
Routing Encapsulation switch (SRE) and the Source Routing
switch (SR).

Traffic steering: The controller constructs SFPs by switching
output ports, and then encodes the SFP into the packet header’s
destination MAC address, the VLAN ID, and the MPLS label.
SFC metadata is inserted in packets by the SRE switch, and
the SR switches forward packets according to the SFC path
information.

Advantages: The purpose of this approach is to avoid storing
the forwarding state in switches by encoding the SFC path in
the packets.

Limits: Encoding the path using multiple tags (.e.,
via VLAN, MAC and MPLS) increases the packet size; it can
exceed the maximum segment size. This results in fragmenta-
tion issues. Moreover, the solution is suitable for datacenters
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with a small number of hops in the paths. It is not designed
for ISP or Enterprise networks with a high number of hops.

e Furthermore, Qazi et al. present SIMPLE [67] for
SIMPLE-fying Middlebox Policy Enforcement using SDN. It
is another architecture for achieving policy-based and dynamic
MBox composition and resource management. The approach
is based on extended programmable switches to support ser-
vice chaining and controller modules. The latter permits to
balance the load across MBoxes to ensure their mapping, and
to generate forwarding rules.

Traffic steering: As for the forwarding logic, it is based on
tags, encoded as VLAN IDs or TOS fields, and inter-switch
tunnels, to reduce the number of forwarding entries by using
compact forwarding tables.

Advantages: SIMPLE considers balancing the load between
MBoxes based on the actual traffic load to prevent overload.
This solution considers also reducing the forwarding state by
employing tunnels between switches and using compact for-
warding tables. Although this approach relies on packet tags
that could be lost with MBox modifications, a scheme to track
changes is implemented to avoid losing context information.

Limits: a high accuracy matching is needed for tracking
packet changes after visiting an MBox. Also, packets are
sent to the controller before and after being processed by
an MBox; this may introduce additional computational and
communication overhead.

e Inspired by SIMPLE [67], another architecture is
proposed by Fayazbakhsh ez al. [68]. This architecture is based
on controller modules to configure programmable switches and
MBoxes. The main characteristic of this approach is its ability
to enhance MBoxes to be part of the traffic steering operations,
by enabling them to generate and/or consume tags.

Traffic steering: the forwarding decision is based on packet
tags that can be encoded in different packet fields, such as the
Differentiated Service field (DS), as part of the TOS IPv4 field,
or using a VLAN ID. The proposed prototype embedded tags
in TOS. These tags can be either generated by an MBox or
by the controller. The latter installs rules in the switches; the
forwarding is based on the generated tags.

Advantages: this approach involves MBoxes in the forward-
ing operation. MBoxes insert tags into the packets to com-
municate context information that can be used by switches.
Involving MBoxes enable the network diagnosis and checking.

Limits: in order to enable MBoxes to tag packets, a modifi-
cation of MBoxes is required. It is not flexible for a network
operator to extend all network MBoxes. Moreover, the modi-
fication of packets in each MBox introduces overhead.

o Li et al. [64] present another different SFC solution,
integrating the technologies of SDN, NFV, and the Path
Computational Element (PCE), dubbed PCE-SFC. The archi-
tecture of PCE-SFC is based on a PCE architecture [81] and
is composed of a control plane and a forwarding plane. The
controller, which is the main component of the control plane,
consists of two modules: a module for service function reg-
istration and inquiry, and a path computation module. The
forwarding plane consists of gateway routers that function as
a CL and thus encapsulate the SFC path information to the
packet’s headers. The controller provides the CL with SFC
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paths and mapping information about the topology. Another
two types of routers are deployed: the first service-providing
router which the service functions are connected to, and the
data-delivery router that is responsible for the traffic steering.

Traffic steering: the CL filters and encapsulates the packet
headers with SFC path information and the data-delivery
routers that decode the header, and then forwards the packets
to the next destination in the chain. This approach introduces
an IPv4 option to convey the SFC header, composed of a list
of services and path identifiers.

Advantages: this approach is based on a PCE architecture; it
considers network parameters for path computation. An algo-
rithm for service chains composition is proposed based on
link delay and packet loss. Considering such parameters in
SC composition improves the network performance.

Limits: the SFC path is encoded in the packet header (new
IPv4 option) as a set of identifiers. Yet, the size of the header
may increase as per the number of traversed nodes and SFs.
Thus, longer chains and higher numbers of hops can introduce
overhead.

e Ding et al. [66] proposed another SDN-based solution that
facilitates the SFC design and operation. In this architecture, to
customize SFC features, the management plane benefits from
the abstraction of the infrastructure provided by the two other
planes, namely the control plane and the data plane. To enable
the automatic configuration of the data plane devices, the con-
trol plane contains different controllers, namely, the policy
controller, the SDN controller, and the NFV controller. The
OpenSCaaS orchestrator, located in the management plane,
defines the policy context, and the controller translates it into
a set of rules that are sent to the data plane elements. Finally,
the data plane consists of the networking devices and Software
Defined - MBox (SD-MBox) that includes the SFC CL and
the involved switches.

Traffic steering: OpenFlow switches forward traffic based on
the source MAC address. The MAC address is used as an SFC
identifier (SC-ID) processed by switches to make forwarding
decisions.

Advantages: the approach reduces the forwarding state,
using an SC identifier (i.e., source Mac address); this permits
to aggregate micro flows of an SC into one macro flow. Also,
the authors consider the reactive rule provisioning for CLs.

Limits: the problem of packet modifications by MBoxes
that result in losing the context information applies to this
approach. The MAC address can be altered by an MBox
or by a router. Thus, it is not clear how the context infor-
mation can follow the journey of packets after traversing
routers.

e The work in [65] also introduces an SDN-based approach
for SFC. The proposed solution implies a three-layer architec-
ture: the application layer, the control layer, and the infras-
tructure layer. The application layer entails an SFC controller
module that is responsible for carrying out business applica-
tion requests. The control layer processes the network related
information and contains the SFC Router module. Finally, the
infrastructure layer is where the devices reside.

Traffic steering: Traffic steering for SFC is inspired by the
work in [82], as it relies on the MAC address and ports of
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edge routers, while IP addresses are used to identify users and
serve for traffic classification.

Advantages: the approach relies on L2-L3 for traffic identifi-
cation, which avoids an increase in packet size. Also, network
isolation is used to identify SCs even when MBoxes modify
packets headers.

Limits: the creation of dedicated SF instances for each
SC can raise resources and management challenges when the
network scales out.

e Finally, an SDN-based SFC mechanism is proposed
by Trajkovska et al. [72]. It is a NFVI-cloud eco-system
over an SDN solution for SFC, based on the following
open source implementations: T-nova [83], Opendaylight [84],
OpenStack [85], a customized version of Netfloc [86], and
other APIs. The SFC operation is initialized by the orches-
trator, creating VNFs and triggering the WAN infrastructure
connection manager API (WICM) with clients’ requests for an
ID space; an ID space using VLAN IDs for clients’ isolated
traffic management. WICM tags users’ traffic with VLAN IDs.
WICM API is also responsible for traffic direction to the accu-
rate NFV-PoP (SFC Pop). Mainly, Netfloc is responsible for
traffic steering and vTC [87] for traffic classification.

Traffic Steering: Traffic steering relies on L2-based
OpenFlow rules, processed by SDN switches that are config-
ured by OpenDayLight SDN controller. Netfloc API achieves
traffic steering through the VNFs based on rewriting MAC
addresses. The SFC ID and the VNF ID are encoded in the
destination MAC address. The VNF ID is decreased after each
VNF visit. The original MAC address is saved in Netfloc and
rewritten back in the final hop iteration before reaching the
packet destination.

Advantages: the main advantage of the described solution
is the use of open source tools and the development of open
source components that can be upgraded and improved by
a community. Also, this solution considers data-path redun-
dancies.

Limits: the described solution relies on VLAN IDs to iden-
tify users traffic, and MAC addresses for identifying VNFs.
Scalability issues arise when using VLAN IDs; first, it can
limit the number of users, and second, it requires configuring
virtual interfaces for these VLANS.

C. SDN Switch-Based SFC Approaches

e A different user-specific approach for service chaining is
presented in [75] in the form of an SDN enabled node that per-
mits the connected users to create network service graphs. The
proposed architecture is based on a global orchestrator, a node
orchestrator to instantiate network functions, virtual switches,
and a controller per each user. The global orchestrator lever-
ages the high-level information, such as user profiles, service
graphs and the description of network functions forwarding
graphs.

Traffic steering: the forwarding is based on the Extensible
Data Path daemon (xDPd). The specific Logical Switch
Instance is created for each user to ensure network function
isolation and the required forwarding rules are provided by
the per-user controller.

Advantages: SDN-enabled network node is a different
approach that is user specific. Users are connected to dedicated
virtual switches that permit service chaining in an isolated
network. Isolation permits traffic steering while omitting the
use of headers or tags, and it is not affected by MBoxes that
alter packets.

Limits: scalability and management issues can rise with an
incremental number of users, as the number of physical ports,
through which a user is connected to the node, is limited.

e Traffic steering for software inline services and forward-
ing (StEERING) [82] is one of the first solutions for dynamic
and programmable SFC. The traffic steering system stands on
the SDN controller and OpenFlow switches. The controller
contains two modules to install flow entries into the switches
and handles the service placement. As for the switches, they
are responsible for traffic classification and steering.

Traffic steering: the solution is based on Layer 2 and Layer 4
contents of packets and the direction of traffic is known
from the ingress port. The SFC metadata is encoded as an
OpenFlow 1.1 metadata field.

Advantages: the proposed approach allows for fine granular
subscriber and application policies. Using multiple forwarding
tables reduces the number of flow rules. Moreover, a ser-
vice selection algorithm is proposed to optimize network
performance.

Limits: the approach does not handle the case where
MBoxes modify packets, which can lead to misleading
policies.

D. Other Approaches

In this section, we present other SDN-based SFC approaches
that could not be classified, mainly because of the lack of
information about the traffic steering operation used.

e Csoma et al. proposed in [88] the Extensible Service
Chain Prototyping Environment (ESCAPE). This is another
approach based on tools such as Mininet, Click, NETCONF,
and Pox, as well as an orchestrator. NETCONF is responsible
for mapping Click VNFs, while the Pox controller handles
traffic steering. The architecture is decomposed into three
layers: the service layer, the orchestration layer, and the infras-
tructure layer. The service layer handles service requests,
while the orchestration layer maps VNFs to physical resources.
The virtual and physical resources represent the infrastructure
layer.

Traffic steering: As for the traffic steering logic, a ded-
icated module hosted in the Pox controller handles
ESCAPE. However, there are no specific information about
the traffic steering method implemented in ESCAPE.

Advantages: ESCAPE provides a ready environment for
researchers to develop and test their proposals. It provides the
basic SDN, NFV and emulation tools and components.

Limits: the update rate is slow and the documentation needs
to provide further details.

e A deployment of SFC in the industrial network is
presented in [35] by Fysarakis et al. This solution focuses on
a Wind park security use case, aiming to deploy security ser-
vices in a flexible and programmable way. Mainly. SDN/NFV
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technologies coupled with SFC enable the flexibility of
service deployment, especially for pricing and sophisticated
security SFs.

Traffic steering: for SFC management and traffic steering,
the proposed architecture deploys a CL to define the legit-
imacy of external traffic flows and adds packet headers for
achieving traffic steering. An SDN controller provisions the
CL with SFC information to encode packet headers and SDN
forwarding elements with flow rules to forward packets. This
solution uses the OpenDaylight controller to manage Service
functions based on the SFC-ODL project [89]. However, no
thorough information on the traffic steering operations is
mentioned.

Advantages: this approach is ready to deploy for industrial
networking infrastructures. It also considers the security of
SFC mechanisms which is important in a production environ-
ment. Moreover, it supports fine granularity policies, for per
application or tenant profiles.

Limits: The approach does not provide details on the SFC
mechanisms used; it is not possible to know the limits of
the proposal. Moreover, no performance evaluation is carried
out.

E. Summary and Insights

The smooth operation of SFC depends on the underlying
traffic steering method and on the properties of the context
for which that SFC is deployed. Specifically, the discussed
SDN-based SFC approaches have nearly the same architec-
ture, principally inspired from the SDN architecture. The
main difference is in the deployment context and the algo-
rithms and the high-level applications for SFC. The properties
of the SFC deployment context can define the appropri-
ate traffic steering method. The applications and algorithms
accordingly achieve different goals (e.g., shortest path calcu-
lation, optimal path based on context information, and chains
composition).

The various traffic steering methods used in SDN-based
SFC approaches reflect the infrastructure contexts and goals.
We believe that the header-based SFC solutions are suitable
for deployment in wide geographic infrastructures, across dat-
acenters, mobile and optical networks, while tag-based SFC
schemes can be deployed in datacenters. It is worth noting that
routers usually modify L2/L3 headers and thus the SFC for-
warding information can be lost across data-centers. The SFC
based on programmable switches is agnostic to the deployment
context (i.e., the infrastructure’s data plane) since the traffic is
classified each time it crosses an SFF.

The design or choice of the accurate traffic steering method
also depends on the operator’s vision, requirements, and pri-
orities. Some approaches accept that the header-based traffic
steering introduces support complexity within SFs and SFFs
at the cost of reliability and scalability, while the tag-based
traffic steering can achieve a ready to deploy and less compli-
cated SFC at the cost of manipulation of tags by opaque SFs
or other devices. Other operators can choose to not mangle
packet headers, rely on programmable switches, and accept
complicated flow matching or repeated classification.
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V. QUALITATIVE EVALUATION OF SDN-BASED SFC
APPROACHES

While several topics under the scope of SFC are actively
studied (e.g., service decomposition, service modeling, and
traffic steering), the efficiency of the traffic steering methods
used in each SFC approach is fundamental and influences its
overall performance. For this purpose, we choose to discuss
the different traffic steering methods and investigate the effi-
ciency of the aforementioned SDN-based SFC approaches. In
this section, we provide a qualitative efficiency evaluation of
the traffic steering method and discuss its impact on a com-
prehensive list of SDN-based SFC solutions. The evaluation
relies on the taxonomy, described in Section III, to determine
how the different traffic steering methods can impact the scal-
ability, the flexibility, the overhead, and the deployment cost
of an SFC solution. Moreover, we present a benchmarking of
the validated techniques and environments of the studied SFC
approaches.

A. Efficiency Evaluation Criteria and Metrics

In this paper, efficiency refers to the metrics that are nec-
essary for assessing the performance of an SFC architecture.
To do so, we set four efficiency criteria: scalability, flexibility,
expected deployment cost, and overhead.

1) Deployment Cost: To define whether the implementa-
tion of an approach is costly, we investigate the following
information:

e NFV deployment support.

o The use of resource optimization techniques.

o The non-generation of additional configurations.

o Ability to reuse the available SFs.

2) Flexibility: Flexible SFC solutions should also take into
account several metrics:

e The deployment of an SDN controller should ensure
network visibility, programmability, and thus, flexible service
chain composition.

e The NFV orchestrator should enable the dynamic instan-
tiation of VNF or virtual service functions. The VNF manage-
ment should improve flexibility.

e Support of fine-grained policies, e.g., per user and appli-
cation granularity.

e Avoidance of static MBox modification or configuration.

e Support of both proactive and reactive flow rule provi-
sioning.

e Support of multiple SDN protocols for communication
between the control plane and data plane, e.g., OpenFlow [43],
Netconf [44], and LISP [90].

3) Scalability: For the deployment in large-scale networks,
we check that the studied SFC solutions consider:

e Reducing the number of forwarding rules.

o Reducing flow rule entries in the switches.

e Encoding the SFC context information or metadata in
specific tags, reducing the need for storing complex
forwarding information in the memory of switches.

o Using compact SFC Metadata, thus a maximum of infor-
mation can be stored in minimum header or packet field.
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o Expansion of the number of service chains, regarding
the length of the service chain field; in other words,
the maximum number of chains that can be encoded in
the field.

4) Overhead: The Overhead generated by certain solutions
must be taken into consideration. We propose some metrics to
determine if an approach results in an acceptable overhead or
not:

e The order of control communication between the con-
troller and the switches.

e The packet fields reconstruction overhead.

e Network and SFC encapsulation overhead.

B. Deployment Cost

The first considered criterion is the expected cost of deploy-
ing a new technology. Thus, reducing the OPEX and CAPEX
must be taken into consideration. This analysis does not con-
sider the cost induced by the introduction of a new controller,
the software licensing modules, and the integration-relevant
cost.

SDN enables programmable and controllable configuration
of networking devices, which reduces the time to market
and the cost of configuring networking devices statically.
Furthermore, one of the objectives of SDN and NFV is the sep-
aration of the control and data forwarding planes in networking
devices and service functions, thus enabling the use of soft-
ware over generic hardware, which reduces investment in
hardware. Likewise, the claim for NFV is that it would help
to reduce the investment cost of acquiring new hardware.
Indeed, resource optimization plays a significant role in reduc-
ing the deployment cost and the investment cost, which avoids
over-provisioning.

According to the deployment cost, Ding et al. [66],
Martini et al. [69], and Csoma et al. [88] considered the VNFs
deployment. The deployment of Software Defined Mboxes
(SD-Mboxes) and virtual Mboxes reduces the investment cost
as much as the deployment of StEERING [82] and the propo-
sition of Ding et al. [66] do. Also, the configuration cost
must be also taken into consideration. However, SPFRI [70]
and the position paper [65] require an interface configuration
per MBox, which is costly and error-prone. Despite the solu-
tions described in [65] and [70], the other solutions permit the
reusability of SFs.

One of the objectives of service chaining is to re-use SF
instances, which enables the instance to be part of multiple ser-
vice chains. However, the approach described in [88] dedicates
SF instances per service chain and considers an SF instance
per each user [75]. This could enhance flexibility at the cost
of creating additional expenses.

Consequently, the deployment cost of the studied solutions
is optimal according to the evaluation metrics. However, the
header-based solutions that require SFs support or proxies
may induce additional investment, especially in large-scale
networks. Table IV provides a quick reference to the estimated
deployment cost of the studied SDN-based SFC solutions.

Recommendation: the deployment of an SFC solu-
tion based on SDN and NFV reduces the deployment

cost. Thus, implementing algorithms for optimizing
resources and employing virtual SFs or VNFs is highly
recommended [91]-[94]. Moreover, the runtime cost of SFs
has to be studied as a dynamic scaling based on the actual
experiened load which can save resources. Also, while
designing the routing logic for traffic steering, the load on
SFs should be considered to avoid allocating new resources
for SFs while other SFs can be used by rescheduling paths
based on the runtime load of SFs. This improves the quality
of service and avoids scaling out and allocating further
resources while using the existing resources.

C. Flexibility

The flexible management of SFC within an SDN architec-
ture is necessary, especially for large-scale networks where
tedious tasks of configuration take place. The control plane
in SDN enables a global view of the infrastructure, a control
of devices as well as their programmability so that SFC can
be created on-demand. Mainly, the SDN controller promotes
SFC flexibility by administrating traffic steering mechanisms
and programming the switch flow tables, usually used as
SFFs in the context of SFC [72]. The studied solutions inherit
a certain flexibility level from being deployed in an SDN
environment and administering the traffic steering based on
a controller. Effectively, SDN technologies enable the topol-
ogy independence by separating the software intelligence from
the hardware (e.g., traditional routers). Thus, they facilitate
a flexible deployment of solutions on generic hardware (e.g.,
running virtual switches), which decreases the cost of resource
provisioning and avoids the configuration complexities.

Furthermore, the deployment of SFC in an NFV envi-
ronment enhances the flexibility as well. Approaches such
as the ones proposed by Martini et al. [69] and by
Trajkovska et al. [72] deploy an orchestration layer for the
dynamic provisioning and management of virtualized SFs and
physical resources. Other schemes propose their extensible
network orchestrator such as Csoma et al. [88].

The support of SFC at the user or application granular-
ity enhances customized policies and flexibility at the cost of
raising scalability issues [69]. Some of the studied solutions
do not require any MBox modification and can coexist with
non-programmable or SDN-enabled switches. However, other
solutions need MBox support such as the scheme proposed
in [65] that requires minimal configuration on MBoxes, which
may incur negligible overhead. Nevertheless, it creates addi-
tional tedious tasks of configurations, and adding or removing
MBoxes can lead to an inconsistency within the infrastructure
and SFC operations. Fayazbakhsh er al. [68] assume modi-
fying the source code of MBoxes to make them part of the
SDN operation and to communicate with the controller, at the
cost of having to adjust the source code of each new service
function.

Similarly, the packet header-based techniques require mod-
ifications to the switches and the controller to support the
headers. Moreover, SFs need to support the headers or to be
attached to proxies that ensure header insertion and removal
from the SF. Consequently, the required support and proxies
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TABLE IV
TAXONOMY OF DEPLOYMENT COST ANALYSIS OF THE STUDIED SDN-BASED SFC SOLUTIONS

Steering SDN based SFC solutions The none modification The non-generation of NFV deployment Ability to reuse the
technique of MBox source code additional configurations support available SFs
Fayazbakhsh et al. [68] x x x v
Trajkovska et al. [72] v v v v
Ding et al. [66] v v v v
Packet Blendin et al. [65] v x x x
tags Martini et al. [69] v v v v
Qazi et al. [67] v v x v
Abujoda et al. [71] v v x v
Pawar et al. [70] v x x v
Packet Mehmeri et al. [59] x N/A v v
headers Abdelsalam et al. [63] x 4 v v
G. Li et al. [36] x v v v
T. Li etal. [64] v v v v
Programm- | Zhang et al. [82] 4 v x v
able switch | Cerrato et al. [75] v v v x
Others Fysarakis et al. [35] N/A N/A x v
Csoma et al. [88] v v v v

increase the deployment complexity of a given solution.
Furthermore, SPFRI [70] does not consider reactive flow rule
provisioning unlike in the work of Ding et al. [66] and
Qazi et al. [67]. Hence, proactive rule provisioning reduces
the flexibility to define real-time policies.

All the studied approaches use the OpenFlow protocol for
exchanging information with data plane elements. However, no
support for other protocols, such as NETCONF [44], has been
taken into consideration. From the flexibility perspectives, an
efficient SFC approach should not be limited to OpenFlow
environments. Table V provides a reference to the flexibility
of the studied SDN-based SFC solutions.

D. Scalability

SFC is a solution designed to address deployments in large-
scale networks, coping with hundreds of SCs, dynamic SF
instances selection and placement, and thousands of classifi-
cation rules. There is no benefit in enabling SFC techniques
in networks with few SFs or networks with constraints on
the dynamic instantiation of services. It is advantageous to
use compact metadata to encode SFC context information for
reducing processing and memory requirements in switches.
Indeed, storing context information on the limited memory of
switches is challenging. The challenge is to store the maximum
service chains in the minimum storage possible. Solutions,
such as the ones proposed by Simpson [52], Ding et al. [66],
Qazi et al. [67], and Pawar and Kataoka [70], used packet
tags such as VLAN IDs for encoding SC information, which
is a more favorable and compact field of 8 bits. However,
the packet header-based traffic steering that encodes multiple
fields such as NSH increases the header size and thus the
overall packet size, which may exceed the Maximum Transfer
Unit (MTU).

Network encapsulation protocols such as VXLAN insert
additional headers in the packets, resulting in additional packet
size. Additionally, SFC encapsulation for tunneling between
the SFC elements increases packet size as well, especially the
packet header based solutions that use new packet headers for
SFC encapsulation. As a result, with the increase of traffic

size, the SFC encapsulation and network encapsulation limits
the scalability of such approaches in large-scale networks.

Henceforth, another metric should be considered which con-
sists of the ability to expand the number of service chains
with the type of field or header used. In the case where the
VLAN ID is the SC identifier, the metadata field is compact.
However, there is a limitation when increasing the number
of service chains as per large-scale networks. As mentioned
in [95], a recommendation of SC field of 32 bits fulfills the
need to deploy service chains in very large-scale networks.
However, even though the packet header based methods permit
an expansion space to encode a high number of SCs, the scal-
ability issue arises due to the increased packet size as stated
earlier.

To address the scalability issue, some optimization tech-
niques have been investigated to reduce the number of rules
to be installed in switches as proposed in StEERING [82].
StEERING is based on multi-table SDN switches. Similarly,
Qazi et al. introduce in [67] compact flow tables and use
switch-tunnel tables to reduce the number of flow entries,
for the mapping between intermediate switches that are not
directly connected to MBoxes. Martini et al. also implemented
optimization techniques in [69] to reduce the number of flow
rules, using a class-based forwarding technique. Another pos-
sibility to reduce memory constraints is to obviate storing
the SFC forwarding state in switches. Most of the studied
approaches encode SFC information in the packet fields or
headers and thus significantly reduce the size of flow tables.

Other Optimization techniques are introduced in [68] by
Fayazbakhsh et al. to reduce the number of necessary header
bits, temporal reuse, special reuse and coarser tags. However,
when switches have to deal with thousands of VLANS, scal-
ability issues arise. Table VI compares among the studied
SDN-based SFC solutions in terms of scalability.

Recommendations: For scalability, we encourage encod-
ing the mandatory information such as the SC identifier and
avoid encoding information that could be derived from SFFs.
Additionally, the cost relevant to the memory and process-
ing power when encoding SFC information in packets should
be considered. In other words, encoding optional information
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TABLE V
TAXONOMY OF THE FLEXIBILITY ANALYSIS OF THE STUDIED SDN-BASED SFC SOLUTIONS
Steering SDN based SFC Deployment of a Deployment of a The none modification of Avoiding per instance
technique solutions SDN controller NFYV Orchestrator Middlebox source code modification or
configuration
Fayazbakhsh et al. [68] v x x x
Trajkovska et al. [72] v v v v
Ding et al. [66] v v v v
Blendin et al. [65] v x x x
I::gg‘et Martini ct al. [69] v v v v
Qazi et al. [67] v x x v
Abujoda et al. [71] v v x v
Pawar et al. [70] v v x x
Packet Mehmeri et al. [59] v v v v
headers Abdelsalam et al. [63] v v x v
G. Li et al. [36] v x x v
T. Li etal. [64] v x v v
Programm- | Zhang et al. [82] v x x v
able switch | Cerrato et al. [75] v v v v
Others Fysarakis et al. [35] v x N/A N/A
Csoma et al. [88] v v v v
TABLE VI
TAXONOMY OF THE SCALABILITY ANALYSIS OF THE STUDIED SDN-BASED SFC SOLUTIONS
Steering SDN-based SFC solutions | Compact metadata | Optimization to reduce forwarding state Service chain number expansion
technique
Fayazbakhsh et al. [68] v v P
Trajkovska et al. [72] v N/A N/A
Ding et al. [66] x v x
Packet Blendin et al. [65] x x v
tags Martini et al. [69] v v x
Qazi et al. [67] v v v
Abujoda et al. [71] x 4 x
Pawar et al. [70] v N/A x
Packet Mehmeri et al. [59] x x x
headers Abdelsalam et al. [63] x x v
G. Lietal. [36] x x x
T. Li etal. [64] x v x
Programm- | Zhang et al. [82] v v v
able switch | Cerrato et al. [75] N/A v P
Others Fysarakis et al. [35] N/A N/A N/A
Csoma et al. [88] N/A N/A N/A

in packets increases the packet size and limits the scalability.
Similarly, calculating the paths by the switches or storing the
SFC information in the switches can lead to scalability lim-
itations due to the incremental processing and memory costs
in the controller and devices. As recommended in [95], an SC
field of 32 bits fulfills the need of deploying service chains in
very large-scale deployments.

It is true that NFV enables the dynamic allocation of
resources for SFs, yet the dynamic adjustment of resources
for SFs, based on runtime requirements to scale in and out,
improves the performance of the network and permits to save
resources. By increasing resources based on the actual system
requirements (e.g., SFs load, user requirements, and differen-
tiated policies), the system can enhance the scalability and
elasticity of the network.

E. Overhead

In SDN architectures, the amount of signaling traffic to
be exchanged between the data plane and the controller can
raise performance and scalability issues, especially, when the

control communication overhead is incurred by the exchange
between controllers and switches.

Encoding SFC metadata in packet headers or tags reduces
communication overhead between switches and the controllers
by using tag-based rules. In other words, SFFs, usually SDN
enabled-switches, do not have to ask the controllers on how
to forward traffic flows. Indeed, the matching is based on the
data carried in packet headers or tags. In case of SFFs, this
reclassifies traffic to forward packets. This method decreases
the communication overhead but increases the processing over-
head in SFFs as well as the number of flow rules in the
forwarding tables, resulting in memory saturation. Most of the
aforementioned solutions are based on encoding some SFC
information in packets to enable traffic identification and for-
warding. Additionally, a processing overhead may occur in
the controllers and SFFs due to header’s reconstruction at
every MBox and SFF. This operation generates a consider-
able overhead as well. Moreover, a processing overhead and
additional delay may occur in case of traffic steering methods
that require packet reconstruction at SFFs and SFs. In spite of
the approaches that require packet rewriting, the proposition of



HANTOUTI et al.: TRAFFIC STEERING FOR SFC

Abujoda et al. [71] requires switches to decrement a counter
and forward packets to the next SF in the path. This infor-
mation is already retrieved by the controller and is written in
the header. Thus, the processing overhead is reduced, and no
header re-writing is required.

Most of the studied traffic steering methods, especially the
header-based methods, require network encapsulation oper-
ations. Consequently, this leads to an additional processing
overhead to encapsulate packets as well as increased packet
sizes that may result in considerable delays, especially in
large-scale networks. A proposition to reduce the overhead by
reducing the communication control overhead using two types
of switches is proposed by Blendin et al. [65]. A core switch
communicates with a controller and initiates the data paths
while other switches steer traffic based on the information in
the packet headers.

Recommendations: The traffic steering techniques based on
headers are more likely to generate overhead than other traffic
steering techniques. We recommend the use of existing tags to
encode the essential SFC information. The SC identifier and
the next SF are enough for an SFF to steer the traffic with
a reduced number of forwarding states. Furthermore, reduc-
ing the encapsulation overhead, controlling the communication
overhead, optimizing the matching processing time and reduc-
ing the forwarding state may significantly reduce the overall
traffic steering overhead. A tradeoff has to be thoroughly
studied to determine the impact of packet size, encapsula-
tion, processing time and resources, memory, and control
communication overhead. Table VII compares among the stud-
ied SDN-based SFC solutions in terms of some overhead
criteria.

F. Validation Techniques Used in SFC Approaches

An important part of studying SFC approaches is to perform
a benchmarking of SFC deployment environments to assess
the architectural differences and network types as they impact
the overall SFC process including traffic steering. In this sec-
tion, we present a benchmarking of the validation methods
used in the studied SDN-based SFC approaches in different
environments. Table VIII summarizes the validation meth-
ods used by various SFC approaches. It shows that almost
all studied prototypes are implemented in small testbeds
and small-scale topologies. This is due to the heteroge-
neous deployments, incompatible architectures, and prototype-
specific limitations [72]. In the current study, we use a variety
of metrics to ensure the validation of each approach based on
its objectives and effectiveness, although common and specific
metrics are hard to find for the different assessed approaches.

Hence, in addition to the deployment heterogeneity and the
lack of common metrics, SFC approaches are not compared
against each other nor tested in large-scale networks (except
for two proposals, namely [67] and [68]). The comparison is
not feasible because of the difficulty to find specific infor-
mation in the same environment (see Table VIII). Usually,
approaches are validated looking at a baseline system to show
the added value of deploying the approach. For example,
Martini et al. [69] compared a traffic that passes through all
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SFs (the baseline system in this case) with classes of a traffic
that passes through the required SFs.

VI. DISCUSSION AND RESEARCH CHALLENGES

In this section, we discuss the evaluation conducted in the
previous section and outline the ongoing challenges related to
traffic steering and SFC.

A. Discussion

Some of the significant advantages of the SDN-based SFC
approaches consist in reducing cost and overhead. Thus,
coupling SDN with virtualization techniques significantly
reduces the investment cost in hardware solutions. Avoiding
the re-construction of SFC headers significantly reduces the
switches’ processing overhead and delay. However, the deploy-
ment in large-scale networks requires tackling some of the
scalability and flexibility issues. Admittedly, the studied solu-
tions support a management layer for SFs and SFCs at
different levels of granularity (e.g., per subscriber or applica-
tion). This comes at the cost of increasing the number of rules
installed in switches or handled by the controllers. The latter
impacts the capacity of internal memory, especially with the
expensive TCAMs used in switches today. Also, the size of dif-
ferent headers for holding SFC metadata influences the overall
deployment of SFC in a large-scale network. Furthermore, the
compact metadata reduces the packet size and traffic delay
at the cost of limiting the expansion of the maximum num-
ber of SFCs. Indeed, a header or field of size [ permits
a maximum of (25 — 1) SFCs, where i denotes the number
of non-functional values [95]. Thus, when the size of meta-
data decreases, the threshold of expansion decreases as well
as the traffic delay and packet size.

Furthermore, real-time modifications of SFs or SFCs, such
as removing an SF, can lead to an inconsistency within the
infrastructure. It is worth mentioning that not all the studied
approaches support reactive rule provisioning. They promote
flexibility despite being error-prone and leading to inconsis-
tency. An investigation regarding communication overhead
between the controllers and the switches is an open research
issue. Similarly, the internal processing of the controllers and
the switches to calculate the destination of packets should be
studied.

B. Research Challenges

By reviewing the traffic steering techniques used in different
SFC implementations, we outline some research challenges of
particular relevance to traffic steering and service chaining.
Specifically, this section highlights the challenges related to
the quality of service, scalability, management, and security.

1) Quality of Service: One of the critical research areas in
service chaining is the quality of service deployment and deliv-
ery. The next generation networks require hyper connectivity
and the support of high QoS to cope with the ever-growing
demands for bandwidth from end-users and industrial critical
requirements. In relation with SFC, several research prob-
lems directly affect the QoS of the overall SFC services
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TABLE VII
TAXONOMY OF THE OVERHEAD ANALYSIS OF THE STUDIED SDN-BASED SFC SOLUTIONS
Steering SDN-based SFC Minimize control Minimize packet fields Encapsulation overhead: network
technique solutions communication overhead re-construction overhead encapsulation and/or additional packet
fields
Fayazbakhsh et al. [68] v v x
Trajkovska et al. [72] v v x
Ding et al. [66] x v x
Packet Blen(.iir.l et al. [65] x v x
tags Martini et al. [69] x x x
Fysarakis et al. [35] N/A N/A N/A
Qazi et al. [67] v x x
Abujoda et al. [71] x x x
Pawar et al. [70] x x x
Packet Mehmeri et al. [59] v x x
headers Abdelsalam et al. [63] v x x
G. Li et al. [36] v N/A x
T. Li etal. [64] x v x
Programm- | Zhang et al. [82] v v v
able switch | Cerrato et al. [75] x v v
Others Fysarakis et al. [35] N/A N/A N/A
Csoma et al. [88] N/A N/A x

including, SF placement [96], [97], resource allocation, con-
text aware path calculation and adaptation, encapsulation, and
optimization of networking resources such as processing and
memory.

The optimal service function placement profoundly affects
the delivery time of complex services [98]-[101]. The
constraints of placement must be customizable accord-
ing to subscribers’ preferences, infrastructure properties,
and service delivery time, while considering the gener-
ated cost [102]. A technology such as Multi-access Edge
Computing (MEC) [96], [97] can be deployed for SFC ben-
efit to enhance the QoS with lower cost. MEC consists
of bringing services to network edges to offer low latency
and high bandwidth. Using service placement algorithms and
MEC technology for SFC may be beneficial for the SFC
infrastructure and may satisfy subscribers’ needs.

While the service placement problem is critical for the QoS,
the resource allocation is not less important. Indeed, these
two problems impact each other. Flexible service placement
requires a dynamic resource allocation strategy. One of the
VNF challenges is the resources sharing in dynamic provi-
sioning, which permits for a VNF to dynamically acquire
the required resources. However, the VNFs compete for the
global resources. Thus, VNFs can have fewer resources than
required, which raises the VNF failure probability [103].
Moreover, the failure in an SF can cause a whole chain
failure.

The mapping of service chains to physical resources and the
composition of service chain combinations remain a challenge.
Several criteria make the composition problem demanding,
such as composing service chains based on service constraints,
actual networking state, and subscribers’ preferences. Also,
with the growing demand on networking services, increasing
load, and diversity of services and subscribers, the calculated
paths for a service chain need to be adapted to the actual
network state. Yet, once the paths are calculated for a given
SFC, it is an error-prone task to update the SFC path in
real time.

Encapsulation schemes are very often used for SDN-based
SFC approaches where some encapsulation protocols are not
supported by SFs. In this case, some SFC approaches require
traffic to go through proxies before and after each SF, which
can introduce considerable complexity, overhead and latency.
Moreover, due to multiple SFC encapsulations, the packet size
increases. This can have considerable effect on the end-to-end
delivery time and overall overhead.

Latency and communication overhead, can be also intro-
duced by longer chains (i.e., with more than 4-6 SFs).
Additionally, the amount of traffic exchanged between the
controllers and forwarding devices should be considered to
reduce communication overhead and processing requirements.
We noticed that some SFC approaches rely on the controllers
to store the forwarding information in order to reduce the
forwarding state, at the cost of increasing communication
overhead between the switches and the controllers. Also, the
consecutive modification of SFC packets headers and tags can
increase processing requirements and latency.

In order to support a fine granular SFC (e.g., per application,
user, device, or a mix of complex criteria), the forwarding state
gets multiplied, according to the granular traffic classifica-
tion. The growing forwarding state degrades the performance
of the switches; a packet’s processing time is mainly dom-
inated by flow table lookup [107]. A common challenge in
the SDN community is the improvement and optimization of
device capacities. The programmable switches, mainly hard-
ware switches, face TCAM memory limits, which may lead
to degradation of QoS (e.g., increased latency) or failure. The
software switches do not struggle with memory constraints,
as the resources depend on the hardware capacities on which
the switches are installed. Yet, the processing capacities are
better than the virtualized switches [108]. A tradeoff between
memory and processing capacities is challenging to retrieve.

2) Scalability: After reviewing the SFC approaches, we
found that the primary challenge of SFC is the scalability.
Even though it is widely discussed in the literature, there is
still a lack of consideration of scalability when designing SFC
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TABLE VIII

EVALUATION SETUP FOR STUDIED SDN-BASED SFC APPROACHES

rate, CPU utilization, packet
loss ration

Approach Evaluation Tools Scenario Metrics Comparison
Fayazbakhsh | -Testbed POX SDN  controller, | 1) Small testbed to | MBox overhead, Controller | - Baseline comparison
et al. [68] emulation Mininet, MBoxes, KVM access the internet scalability to handle MBox | -Differentiating

2) Large pop-level ISP | queries, Number of nodes | topologies
topology:  Topology | and switches, end-to-end
from rocketfuel [113] overhead
Ding et al. | -Testbed Iperf client & server, | Small typical Gi-LAN | Requests speed, requests | Packets generated by
[66] OpenvSwitch, Clickos testbed size corresponding received
packets
Blendin et | -Testbed Foodlight SDN controller, | N/A N/A N/A
al. [65] Emulation Mininet, NEC PF5240
(proof of | OpenvSwitch
concept)
Martini et al. | Testbed Service Oriented Controller | Small Enterprise | Path Setup Time (Request- | Class-Based With
[69] (Not  specified), OVS | network Response), Round Trip | Baseline
switch, Mboxes Time by packets, number of
Flow entries installed in
switches
Qazi et al. | - Emulation in | Pox SDN controller, | Operator Network | Time to install flow rules, | Differentiating
[67] Emulab OVSswitch, Click modules | topologies from | total communication | topologies
-Emulation in | as Mboxes, Iperf RocketFuel [113]: overhead, maximum load on
Mininet Internet 2,  Geant | MBoxes
-Trace-driven topology
simulation
Abujoda et | -Testbed in | Pox, click modular router, | 1) Fat-tree topology Flow arrival rate, Per flow | Customized  switches
al. [71] Emulab Netfpga based packet | 2) Input data for | setup time, communication | compared with rule-
-calculation: generator, Oprofile calculation: and  control  overhead, | based forwarding
flow table as A forwarding table of | Computational requirements | switches.
input 380k entries.
Pawar et al. | -Proposition: N/A N/A N/A N/A
[70] not
implemented
Zhang et al. | -Testbed: proof | Nox ~ SDN  controller, | 1) small testbed: Number of rules, number of | Implemented switch
[82] of concept customized SDN Switch | 2)emulation based on | subscribers with Pswitch
-Emulation witch ezchipnp4 network | unsampled packets | , CPU utilization, number of
processor, Iptables, Apache | collected from | SFs, latency
server, AAA server European  Municipal
Network
Cerrato et al. | Proposition Xdpd SDN switch, NFV | N/A N/A N/A
[75] orchestrator, Network
functions, DPDK
framework, Docker
container
Trajkovska Testbed Pica8 SDN switch, | Small testbed: operator | Throughput, -packet loss, | No comparison
etal [72] Opendaylight SDN | network latency, jitter
Controller, OpenStack,
Netfloc
T. Li et al. | Testbed OpenDayLight SDN | Small testbed: | Number of SFs, end-to-end | Comparison with
[64] controller, OVS switch, | broadband network | path delay, response time of | recommendations in
VirtualBox, Apache Server [114] the controller [95]
G. Li et al. | -Testbed OpenStack, Pox SDN | Small Testbed: | Processing delay, CPU | Comparing the proposed
[36] -Mathematical controller, OVS Mobile-edge network usage and execution time of | algorithm with Saw
calculation SFs algorithm
mathematically.

Fysarakis et | Testbed: no | OpenDaylight SDN | Small testbed: | N/A N/A
al. [35] evaluation Controller, SCADA 1IDS, | WindPark network

Pfsense, EWIS honeypot,

Xnmap..etc.
Mehmeri et | Testbed: Mininet, OVS switch, Line- | Small testbed: | SFC setup time, total setup | No comparison
al. [59] Emulation OE for emulating optical | Packet/optical network | time

nodes, OpenDayLight with

NSH support, Tosca

template .etc
Abdelsalam Testbed VirtualBox, Linux Netfilter, | Small testbed Number of flows, number of | Concept comparison
et al. [63] Srext, Vargant..etc VNFs, generated packet | with NSH [42]

solutions. Especially, encoding the SFC information in small
fields may work for small scenarios, but it cannot scale to
bigger scenarios. A suitable solution should take into account
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encoding enough information without increasing the number
of bits added to the packets. Usually, this issue rises with
SFC approaches relying on multiple encapsulation schemes.
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Therefore, a tradeoff between allocating enough size for SFC
information and reducing the overall packet size is needed.
Also, regarding the needs for fine granularity in flow classifi-
cation and customized user/application services, the scalability
issues raised by granularity should be considered. Since it
multiplies the flow state in networking devices, the effect of
fine granularity can be dramatic when an infrastructure scales
out. The switches might have exploding demand on process-
ing resources and forwarding state. Moreover, as seen in the
benchmarking presented in Section V-F, the majority of stud-
ied approaches are assessed in testbeds or using simulations
based on real traffic. Thus, a performance assessment of SFC
in realistic and large-scale scenarios is challenging. On the
one hand, the majority of the studied approaches are mainly
prototypes and not yet production ready. On the other hand,
the popular header-based approaches (e.g., NSH [42]) require
support and need time to be fully supported by networking
devices.

3) Management: Operational and management challenges
for service chaining are mainly related to high level SFC
applications and infrastructure management flexibility. Further
research is needed concerning the SFC management layer
including SFC management applications, algorithms for smart
mapping between SFs, visualization of SFs status and
maintenance tools. Managing SFC operations in large-scale
networks remains a hard task; a centralized SDN control
and NFV orchestration permits a wide view of the network.
Decomposing the SFC domain into smaller domains that can
be managed locally, while interacting with other domains,
simplifies the overall management of SFC. The hierarchical
SFC [109] is a new architectural concept of decomposing the
SFC domains, yet very few proposals [110] are published in
this topic.

While SDN and NFV play an important role in simplifying
SFC infrastructure management; yet the MBoxes deployment
issues directly affect the SFC. The management of hetero-
geneous SFs in the infrastructure is challenging, as there are
diverse service appliances, namely hardware appliances, virtu-
alized appliances, open source appliances, and vendor specific
appliances. The openness to the different service functions and
adaptation between traditional and SDN/ NFV networks are
admittedly problematic.

Some SFC solutions require specific configurations in the
SFs or need special protocol support (e.g., VLAN sup-
port and interfaces configuration), hence the per-instance
modification is a tedious task in large-scale infrastructures.
Moreover, the support of multiple modifications of networking
devices, controllers, VNFs and southbound protocols to
implement an SFC solution is a challenge for the SFC
deployment in production networks. Thus, further research
is needed to reduce deployment complexities due to these
modifications.

4) Security: Security is the concern of every network oper-
ator, from the enterprise network to carrier networks. The
infrastructure security can be threatened by some security
concerns caused by SFC approaches while the SFC opera-
tions can fail due to some security policies [6], [111], [112].
Usually, SFC traffic steering techniques rely on flow

identification information and metadata sharing. Thus, a risk of
confidentiality and integrity is highly present. The SFC infor-
mation might reveal infrastructure, network, or subscribers’
information. Network traffic can be intercepted, modified, or
manipulated. Moreover, some MBoxes are opaque: they mod-
ify packets headers. Such modifications can cause misleading
policies and lead to inconsistencies in the network. Some
SFC approaches are limited to transparent SFs, where in real-
ity an infrastructure is hybrid and contains transparent and
opaque SFs.

SFs can fail due to several reasons (e.g., overload, secu-
rity attack, misconfiguration, and resource unavailability). SFs
failure can cause unavailability of the service chain, because
the traffic intended to return from an SF is dropped for some
reason and does not reach the next SFs in the service chain.
Effectively, there are several SFC approaches proposed in the
literature. However, the process of deployment in production
environments is yet delayed. Most of the proposed approaches
are prototypes and are under discussion. In practice, security
MBoxes might block or drop packets carrying SFC headers
or tags in transit. Some verification processes might drop SFC
traffic, considering it as unauthorized or non-legitimate (e.g.,
verification of modified Mac addresses).

VII. CONCLUSION

SFC is an active research area and several schemes have
been proposed in the recent literature, motivated by the sup-
port of next generation technologies such as SDN, NFV, and
Cloud Computing. Different traffic steering methods are used
in various SFC approaches. The SDN-based SFC approaches,
analyzed in this article, were classified based on the traffic
steering methods used and that is due to their impact on the
performance and efficiency of SFC approaches. The studied
SFC approaches were also evaluated based on the deployment
cost, scalability, flexibility, and incurred overhead.

We can classify the studied traffic steering methods into
three categories. The first is based on programmable switches
and seems to be the most beneficial. Programmable switches-
based SFC schemes are based on flow matching in the
switches. Although they ensure flexibility and avoid using
encapsulation and complex modifications to SFs, they present
a major scalability limitation, due to the increased memory
requirements of the limited switches memory. The second cat-
egory of SFC approaches consists of coupling switches with
compact packet tags and is less beneficial. This is due to the
increase in overhead and the need for tag support at the SFC
elements. Finally, the third category groups SFC approaches
that are based on packet header, and represents the most
complex and the least scalable method.

To conclude, the innovation in SFC started with traffic engi-
neering and has its continuity thanks to the support of SDN,
NFV, and Cloud Computing. Furthermore, a vast research
area in SDN-NFV-Cloud-based traffic steering for service
chaining is open, especially in optimizing delivery time and
the overall quality of service, as well as the scalability of SFC
solutions.
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