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Abstract—Cellular-based Unmanned Aerial Vehicle (UAV) sys-
tems are a promising paradigm to provide reliable and fast
Beyond Visual Line of Sight (BVLoS) communication services
for UAV operations. However, such systems are facing a serious
GPS spoofing threat for UAV’s position. To enable safe and secure
UAV navigation BVLoS, this paper proposes a cellular network
assisted UAV position monitoring and anti-GPS spoofing system,
where deep learning approach is used to live detect spoofed GPS
positions. Specifically, the proposed system introduces a Multi-
Layer Perceptron (MLP) model which is trained on the statistical
properties of path loss measurements collected from nearby
base stations to decide the authenticity of the GPS position.
Experiment results indicate the accuracy rate of detecting GPS
spoofing under our proposed approach is more than 93% with
three base stations and it can also reach 80% with only one base
station.

Index Terms—UAV, GPS spoofing, Deep Learning, MLP, Path
Loss.

I. INTRODUCTION

Unmanned Aerial Vehicle (UAV) has received considerable

scholarly attention in recent years, thanks to its high mobility,

low cost, and flexible deployment in various civil and military

fields, such as package delivery, precision agriculture, and aid

communication [1]. Traditional UAVs have typically focused

on the unlicensed spectrum (e.g., ISM 2.4 GHz) for commu-

nication and control in order to be free of charge and for

ease of use. However, the unlicensed spectrum does not have

a strong security mechanism and large-scale coverage ability,

which restricts the UAV piloting Beyond Visual Line of Sight

(BVLoS) [2].

More recently, cellular-enabled UAVs have been success-

fully armed and controlled remotely over 5G advanced facil-

ities, which introduces a new formula to overcome the afore-

mentioned shortcomings [3]. Nevertheless, the safe and secure

navigation of UAVs is crucial for those remote operations.

To that end, the Global Positioning System (GPS) is used by

UAVs as a major navigation system to obtain their positions.

However, the civil GPS uses unencrypted navigation signals

and is vulnerable to spoofing attacks. Indeed, an attacker can

use universal software radio peripheral (GPRS) to generate

fake GPS satellite signals and fool the UAVs by obtaining a

false position [4].

Several methods currently exist for the measurement of anti-

GPS spoofing that are mainly focusing on GPS navigation

signals analysis [5]–[8], GPS navigation message authentica-

tion [9]–[12], Inertial Navigation System (INS) based spoofing

detection [13]–[15], and Mobile Positioning System (MPS)

based spoofing detection [16]–[18]. The GPS navigation sig-

nals analysis detects the spoofed signal by estimating and

comparing the Direction of Arrival (DoA) of the GPS signal.

The author in [5] introduced a multi-antennas to estimate the

DOA of GPS signals in order to verify the authenticity of the

GPS. The work in [6] proposed a spatial signal processing

approach for GPS spoofing detection and mitigation. The

methods in [7] and [8] rely on the cross-correlation between

encrypted/military GPS signals and civil GPS signals at the

same position, where the encrypted GPS signals from the

military are recognized as the trust temple for indicating the

presence of a spoofing attack. Nevertheless, the adoption of

those GPS signals analysis approaches either require multi-

antennas for estimating the DOA of GPS signal or needs a se-

cure GPS receiver to perform the cross-correlation and incurs

more computational load on the GPS receiver. Compared with

GPS signal analysis, GPS navigation message authentication

does not need more antennas or additional receivers. The

GPS Navigation Message Authentication (NMA) approach

protects the civil GPS signal from attacking by embedding

the cryptographic signature into the navigation messages.

Wu et al. presented a BeiDou-II NMA scheme based on

digital signatures generated by Elliptic Curve Digital Signature

Algorithm (ECDSA) in [9] and leveraged SM cryptographic

algorithms to authenticate the BeiDou-II navigation messages

in [10]. Wesson et al. [11] prevented counterfeit navigation

messages by combining signature-based security methods with

hypothesis tests. In [12], a trusted execution environment was

used to generate cryptographically signed GPS messages in

order to prevent their forgery. Nonetheless, even though NMA

techniques are considered a practical and effective defense

against GPS spoofing attacks, those techniques induce signifi-

cant computational cost and latency due to signature verifica-

tion. Inertial Navigation System (INS) techniques detect GPS

spoofing by using the position information estimated from the

Inertial Measurement Unit (IMU) that consisted of various

onboard sensors including accelerometers, gyroscopes, mag-

netometers, and camera views, to cross-validate the veracity of

the reported GPS position. Lee et al. [13] used accelerometer

outputs and the acceleration computed from the GPS outputs

to detect GPS spoofing. The authors in [14] used the UAV

on-board gyroscopes’ measurements to determine whether the

GPS has been hijacked or not. In [15], the authors used

the probability density function to analyze the accelerometer
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readings in order to identify spoofing GPS signals. Notwith-

standing, the error accumulation of the IMU measurements

is the main issue for INS, which can reduce the detection

accuracy. Recently, Mobile Positioning System (MPS) based

spoofing detection has emerged as a new class of anti-GPS

spoofing approaches that leverages the localization ability of

mobile cellular networks to relocate the UAV and discriminate

the spoofed GPS positions in the base stations’ coverage area.

The work in [16] exploited the Receive Signals Strength (RSS)

from 2G base stations to estimate the vehicle position and

cross-check the vehicle’s GPS position. In [17], the authors

used the data relative to the neighboring cells to verify the

GPS position. The authors in [18] considered the use of 5G

network to infer the trust area where the GPS position should

be located and recognize spoofed UAV’s GPS positions. The

MPS-based spoofing detection methods use the triangulation

location technique, which requires at least three base stations

at the same time for a desirable spoofing detection accuracy

and is also sensitive to the environmental changes. Note that

the GPS spoofing detection methods discussed above either

depend on expensive hardware or can be negatively affected

by environment changes. Therefore, these detection methods

are difficult to be used in UAV systems due to the inherent

characteristics of UAV, such as fast movement, limited storing

and computing capacity.

To date, there have been very few empirically published

accounts of an effective GPS spoofing detection approach that

accommodates resource, cost, and environmental constraints.

For this purpose, we propose a new solution to devise an

effective cellular-enabled UAV GPS spoofing detection system,

where a deep learning algorithm, specifically MLP, is used to

analyze the statistical features of path losses between UAV and

base stations (BSs). The proposed approach can conduct on the

edge server without any additional hardware or computation

load at the UAV. In addition, its effectiveness is less prone

to changes in environmental conditions, thanks to the stability

introduced by the statistical features. By using the path losses

that can be obtained from the BSs broadly and speedily [19],

and by taking advantage of the capability of ML to deliver

faster decisions, the proposed approach will empower live

detection of spoofed GPS positions. The main contributions

of this paper are summarized as follows:

• Firstly, we propose an UAV position monitoring and

anti-GPS spoofing system, wherein the hypothesis testing

compares the path loss measurements collected from the

BSs and the associated theoretical path losses correspond-

ing to the reported position to empower live detection of

spoofed GPS positions.

• Secondly, in order to make the detection approach insen-

sitive to changes in environmental conditions, the pro-

posed MLP models use three statistical properties of path

losses as inputs, including moments (e.g., Mean Variance

Skewness Kurtosis (MVSK)), quartile (e.g., BOX), and

probability distributions difference (e.g., Wasserstein Dis-

tance (WD)).

Fig. 1. Network model

• Thirdly, We then develop three MLP models, namely

MVSK-MLP, BOX-MLP and WD-MLP, trained on the

statistical properties to decide whether the reported GPS

positions are fake or legitimate.

• Finally, the results of the simulation study demonstrates

the effectiveness of the proposed MLP models in detect-

ing the GPS spoofing attacks under different base stations

scenarios.

The rest of this paper is organized as follows. The system

model is described in Section II. Section III introduces three

MLP models to detect GPS spoofing based on statistical

properties of path losses. The performance of the MLP models

are evaluated in Section IV. Section V concludes this paper.

II. SYSTEM MODEL

This section describes the network and communication

models considered in this study and defines the hypothesis

testing method used to formulate the GPS spoofing detection

problem.

1) Network Model: As illustrated in Fig. 1, we consider a

network scenario consisting of a victim UAV Uv , an active

malicious UAV Ua, GPS satellites, and N BSs. The active

malicious UAV can send fake GPS signals to the victim UAV.

Let (xBSi , yBSi , hBSi) denote the location of the ith BS. In

absence of spoofing, Uv should be located at time t at waypoint

WPt = (xt, yt, ht) of the planned trajectory consisting of

waypoints WPi and WPi+1. Meanwhile, if we assume that

the GPS spoofing starts when Uv is at WPj = (xj , yj , hj),
its position at time t will be at WP

′
t of the spoofed path.

2) Communication Model: According to the 3GPP defini-

tion in [20], we use both Line-of-Sight (LoS) links and Non-

Line-of-Sight (NLoS) links to model the channel from UAV

to BS. The theoretical path loss PLBSiUv
between BSi and

Uv is defined in 3GPP document in [20].

3) Hypothesis Testing: Based on the wireless signal atten-

uation theory, the path losses values between the base station

and the UAV become bigger as the distance increases. For

different positions, we can observe the difference path loss

values generally. In this paper, the actual path loss, PLBSiUv
,

is provided by BSs, and the theoretical path loss, PLBSiUv ,
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is determined by the UAV reported position according to the

communication channel model (See Subsection II-2). Thus,

we have

ΔLBSiUv
=

∣∣PLBSiUv
− PLBSiUv

∣∣ , (1)

where ΔLBSiUv is the absolute difference between the actual

path loss and the theoretical one. It is a widely held view that

an actual GPS position of UAV corresponds to a theoretical

path loss that is nearly the same as the actual one. On the

contrary, a spoofed GPS position refers to a theoretical path

loss deviating from the actual one. In other words, a bigger

ΔLBSiUv indicates that the GPS position of the UAV is

spoofed with a higher probability. Hence, the GPS spoofing

detection problem is formulated as a hypothesis testing given

by {
H0 : ΔLBSiUv

> T,
H1 : ΔLBSiUv ≤ T,

(2)

where T is a threshold of the hypothesis testing. The null

hypothesis H0 represents that the GPS position is spoofed.

H0 is accepted if ΔLBSiUv
is above the threshold T . On the

other hand, a true alternative hypothesis H1 is proposed for a

higher probability of no GPS spoofing.

It is possible that the threshold of path losses difference

in hypothesis testing does not represent the real distance

deviation between UAV and BS, because the path loss value

is not only decided by the distance between UAV and BS

but also impacted by other environmental factors (e.g., cloud,

temperate and vapor). Therefore, the threshold based hypoth-

esis testing for GPS spoofing detection faces the following

significant challenges. Firstly, the environment impact on the

path loss value is more likely to result in increasing the error

of spoofing detection. Secondly, an inappropriate threshold

value can yield false alarms or may result in missed detection.

In fact, a smaller threshold value increases the probability of

false alarms, while a bigger threshold value leads to a higher

probability of missed detection. Thus, deciding the apposite

threshold value is a vital yet difficult task. In addition, the

hypothesis testing results issued by different BSs should be

assigned different weights to make the final decision. The

motivation behind using different weights is that a larger

distance between a BS and a UAV could lead to a higher

error on the hypothesis testing result.

To overcome those challenges, we leverage the potential of

both statistical methods and deep learning algorithms to devise

an effective GPS spoofing detection approach for cellular-

enabled UAVs. To remove the effects of the changing envi-

ronmental conditions, three statistical methods are introduced

to extract the statistical properties of path losses data in a given

time slot. Furthermore, the Multi-layer Perceptron (MLP)

algorithm is used to deal with the threshold and weight setting

issues. In fact, the MLP algorithm brings the advantage of

intelligently finding the best threshold and assigning weights

for discriminating fraudulent GPS locations.

Fig. 2. The structure of the MLP.

III. MLP-BASED GPS SPOOFING DETECTION MODEL

In this section, we first introduce the MLP model for GPS

spoofing detection. Then, we build three models based on

MLP algorithm using different statistical information extracted

from the path losses data. As illustrated in Fig. 2, MLP

is a deep learning neural network including an input layer,

several hidden layers and an output layer, and each layer

has an arbitrary number of neurons that propagate an output

to the next layer through a nonlinear activation function.

Mathematically, this can be formulated as

y = f(

n∑
j=1

ωjxj + θ) (3)

where x and y denote the input vector and the output vector,

respectively. ω is the weight vector and θ is the bias. f(·) is

the nonlinear activation function.

The statistical properties are used as inputs to the devised

MLP models. The input ΔLxm

BSnUv
(t) denotes the mth dif-

ference of path losses reported by BSn under each of the

statistical methods (i.e., MVSK [21], BOX [22], WD [23]).

xm ∈ {M,V, S,K} for MVSK-based MLP (MVSK-MLP)

model, xm ∈ {Q0, Q1, Q2, Q3, Q4} for BOX-based MLP

(BOX-MLP) model and xm = W for WD-based MLP (WD-

MLP) model. The models’ output, Prediction(t), is the final

prediction decision, i.e., the reported GPS position is spoofed

or not. The three MLP models are then trained using a training

dataset D̃ and evaluated with an unseen test dataset D̂ using

the Mean Squared Error (MSE) as performance indicator. The

MSE is expressed as

MSE =
1

M

M∑
i=1

(Yi − Ŷi)
2 (4)

where M represents the number of observations, Yi is the ith
predicted observation value, and Ŷi is the ith real observation

value.

By leveraging the stability introduced by the statistical

methods and the proven ability of MLP to learn any non-

linear and complex relationships between inputs and outputs,

the proposed models are able to deliver accurate decisions.
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However, the models’ efficiency in detecting GPS spoofing

attack will depend greatly on the statistical metrics captured

by the statistical methods. In fact, MVSK-MLP model requires

a large amount of path loss data to ensure the accuracy

of prediction. By removing outliers, the BOX-MLP model

could mitigate the environment impacts on the path losses.

Meanwhile, it will also lead to increased error in GPS spoof-

ing detection since the outliers caused by attackers are also

removed. The WD-MLP is used to describe the difference

between actual and theoretical path losses, and thus generates

only one feature value on the difference for each base station,

which could result in unfitting problem.

IV. PERFORMANCE EVALUATION

In this section, we assess the effectiveness of the proposed

MLP-based GPS spoofing detection approach by comparing

the performance of the three MLP models considering different

number of BSs.

A. Simulation Settings

To assess the performances of the proposed MLP models,

we develop a simulator using Python 3.6 and Tensorflow

2.1. Python is used to set up the simulation platform and

Tensorflow is applied to build the ML models. We consider

three BSs, BS1,BS2 and BS3, distributed at the fixed loca-

tions (0, 0, 35),(150, 150, 35) and (300, 150, 35) in a 3D space,

respectively. Here, the BSs are 35 meters high. The evaluation

is conducted under three network scenarios, namely the UAV is

under the coverage of three, two or one BSs, respectively. The

first scenario includes the three BSs and the second scenario

includes BS1 and BS3. The second scenario can show the

worst detection situation in our tests, as the distances between

these BSs and the UAV start points/end points are relatively

far. In addition, the third scenario including one BS BS1

focuses on the average behavior of MLP-based GPS spoofing

detector.

Fig. 3. Base stations and trajectory.

The UAV starts its mission from position (150, 150, 150)
and flies to a destination 100 meters away from the starting

location. To simulate the GPS spoofing attack, we consider 16
potential destinations evenly distributed over a 3D space as

shown in Fig.3. One destination represents the real one while

the others are spoofed. The communication links between the

BSs and UAV obey the 3GPP definition in [20] and the channel

frequency is set to 2.0 GHz. The value of N used to extract

the statistical metrics of path losses is set to 100. This allows

to improve the detection accuracy while reducing the spoofing

detection latency.

It is well known that the performance of MLP is sen-

sitive to hyperparameter settings [24]. Thus, to find the

best configuration of the different MLP models of our

study, we carry out hyperparameter tuning by varying the

learning rate (LR), the number of hidden layers, and the

number of neurons per hidden layer. LR is drawn from

{0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}, the number of hid-

den layers is varied from 1 to 6 layers, and the number of neu-

rons of each hidden layer is taken from {8, 16, 32, 64, 96, 128}.
The hidden layers have the same number of neurons and use

Rectified Linear Unit (ReLU) as activation function. The MLP

models are built using backpropagation method on a training

dataset D̃ containing 2259 samples and their prediction accu-

racy is evaluated on the unseen test dataset D̂ comprising 969
samples. The training is performed for at most 500 epochs and

an early stopping patience of 15 on MSE is applied to prevent

overfitting. The model’s MSE (see Eq.4) is calculated for every

epoch on a held out validation set. Table.I summarizes the

hyperparameters values of the best models produced for each

MLP algorithm under each network scenario.

TABLE I
HYPERPARAMETERS SETTINGS OF THE BEST MLP MODELS.

Scenario Setting MLP Algorithm
MVSK BOX WD

Three

BSs

LR 0.005 0.001 0.0005
Inputs (12, 0) (15, 0) (3, 0)

Hidden layers 4 5 3
Neurons 96 96 16

Two

BSs

LR 0.001 0.001 0.001
Inputs (8, 0) (10, 0) (2, 0)

Hidden layers 2 5 2
Neurons 32 96 64

One

BSs

LR 0.0001 0.001 0.0001
Inputs (4, 0) (5, 0) (1, 0)

Hidden layers 2 5 2
Neurons 96 96 64

From Table I, it is noticed that different configurations are

required for MLP models to reach their best performance

under each of the three considered scenarios. The following

key observations can be made: (i) the number of inputs to

each MLP algorithm depends on the number of BSs involved

in each scenario and the statistical method considered; (ii) the

BOX-MLP algorithm needs more hidden layers and neurons

compared to MVSK-MLP and WD-MLP algorithms. This can

be explained by the fact that the number of hidden layers and

neurons usually depends on the size of the input vector. In
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Fig. 4. Accuracy in different BSs scenarios
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Fig. 5. MSE in different BSs scenarios

our case, BOX-MLP has the largest number of inputs; (iii)

The WD-MLP algorithm uses at most 3 hidden layers and

64 neurons per hidden layer to achieve the best performance;

(iv) Unlike MVSK-MLP and WD-MLP algorithms, WD-MLP

algorithm requires the same MLP structure and LR to get the

best performance for the three scenarios.

B. Performance Results

1) Performance metrics: To assess the performance of the

proposed MLP models for GPS spoofing detection, we use

two performance metrics, namely MSE defined in Eq. (4),

and Accuracy defined as

Accuracy =
TP + TN

TP + FP + FN + TN
, (5)

where the Accuracy refers to the percentage of the reported

GPS positions that are correctly classified. TP (True Positive)

is the correctly detected spoofed positions, FN (False Nega-

tive) is the spoofed positions considered as normal positions,

FP (False Positive) is the normal positions identified as

spoofed, and TN (True Negative) is the normal positions that

are correctly classified as normal.

2) MLP Models Comparison Under Different Scenarios: To

investigate the performance of MVSK-MLP, BOX-MLP and

WD-MLP models during their training, we record the accuracy

and MSE after each training epoch. Fig. 4 and Fig. 5 show the

results of the best models produced for each MLP algorithm

under each network scenario.

As shown in Fig. 4, the accuracy quickly increases after the

first few epochs, after which the gain in accuracy is minimal

before reaching a stable state. In Fig. 4(b), the accuracy trends

of MVSK-MLP and BOX-MLP have a second steep around

55th epoch and 25th epoch, respectively, which indicates that

the used stochastic gradient-based optimization method (i.e.,

Adam) is trapped in a local optimum between the two steeps.

In Fig.4(c), the WD-MLP graph shows very minimal variations

in accuracy over the epochs. This trend stems from the fact

that only one WD value is used which allows the stochastic

optimization method to easily find the best weights for WD-

MLP to reach the highest accuracy. From Fig. 4, we also

observe that the number of BSs has a direct impact on the

accuracy. The results show that the model accuracy is above

93% using three base stations and can reach 80% with only

one base station. In fact, increasing the number of BSs will

increase the amount of path losses data collected, which leads

to improved detection accuracy. Furthermore, Fig. 4 shows that

WD-MLP achieves the best detection accuracy for the three

scenarios, which demonstrates that the statistical properties

extracted by WD method adequately capture the changes

in path losses. The results in Fig. 5 show that MSE has

an opposite trend to accuracy. In fact, the MSE exhibits a

downward trend over the training epochs for all scenarios and
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MLP models. It is clear that the improve in accuracy over the

training epochs results in decrease in the prediction error.

V. CONCLUSION

This paper proposed a cellular-enabled UAV position moni-

toring and anti-GPS spoofing system, wherein the path loss

measurements collected from the base stations are used to

cross-validate the UAV’s GPS position. In the proposed sys-

tem, we leveraged the potential of both statistical methods and

deep learning to develop a novel MLP based GPS spoofing

approach. The performance results demonstrated the effective-

ness of the proposed approach in delivering accurate decisions,

thanks to the stability introduced by the statistical metrics in

enhancing the prediction accuracy. Indeed, the developed MLP

approach could achieve an Accuracy rate that is above 93%
with three base stations and can reach 80% with only one base

station.

In the future, we will explore the potential of ensemble

learning methods to further improve the spoofing detection ac-

curacy by combining different MLP predictions. Furthermore,

real data collected from UAV flying in real environment will

be used to validate the envisioned MLP ensemble models.
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