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Abstract—Unmanned Aerial Vehicles (UAVs) can offer a
plethora of applications, provided that the appropriate ground
control and complementary computing and storage services are
available in close proximity. To accomplish this, edge cloud
platforms, deployed at or close to the base stations, are essential.
However, current UAV travel planning does not take into account
the resource constraints of such edge cloud platforms. This
paper introduces an aligned process for UAV flight planning and
networking resource allocation, minimizing the total traveled
distance. It proposes two solutions, namely (i) a Multi-access
Edge Computing (MEC)-Aware UAVs’ Path planning (MAUP)
based on integer linear programming and (ii) an Accelerated
MAUP (AMAUP), i.e., a heuristic and scalable approach that
adopts the shortest weighted path algorithm considering directed
graphs. The performance of the two solutions are evaluated using
computer-based simulations and the obtained results demon-
strate the effectiveness of the two solutions in achieving their
design goals.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), also known as drones,
are low-altitude flying aircrafts without a human pilot on
board. UAVs rely on autonomous navigation combined with
ground-based control [1]. Owing to their agility, low-cost,
convenience in reaching certain remote areas and rapid de-
livery, UAVs are gaining momentum, increasing their market
footprint beyond the initial military applications of surveil-
lance and reconnaissance. UAVs can be harnessed in a wide
range of public and civil applications, such as health care,
agriculture, safety, transportation management and cargo de-
livery. Such applications require a Beyond Visual Line-of-
sight (BVLOS) control and monitoring of UAVs. In this con-
text, the 5th Generation of mobile communications (5G) that
introduces service-aware cloud orchestration is well placed to
support ground control communications for UAVs during their
missions.

Besides conventional services provided by mobile operators
to User Equipment (UE) such as localization, authentication,
and ready-for-use service connectivity using a licensed spec-
trum, UAVs can benefit from the latest advances in edge
cloud technologies, such as Multi-Access Edge Computing
(MEC) [2], [3]. By leveraging the benefits of MEC at the
network edge (e.g., base stations, i.e. eNodeB or gNB),
a dramatic decrease in the communication latency can be
induced between the edge-hosted services and the connected
devices (e.g., UAVs), enabling new service capabilities and

applications. From the UAVs perspective, MEC can be used
to host UAVs control services as discussed in [4] or to offload
intensive computation (e.g., image processing) [5]. Indeed,
UAVs are expected to feed complex Artificial Intelligence
(AI) tasks, e.g. situation awareness for emergency services,
with critical time of response. Meanwhile their on-board
computation resources are very limited due to their size,
weight, and power (SWAP) limitations [6]. To overcome these
limitations, computation and storage services are offloaded
from UAVs to the nearest available MEC platform.

However, unlike centralized cloud data-centers, resources
at MEC nodes are limited and hence smart exploitation is
encouraged. This is mainly achieved through optimal resource
provisioning and service placement [7]. Whilst resource pro-
visioning aims at finding the optimal amount of computation
and storage resources to allocate at the edge nodes, service
placement aims at finding the optimal distribution of a given
service over a set of edge nodes in such a way that this
service can be available for the maximum number of users.
Consequently, UAVs cannot be served from a random MEC
node within their coverage vicinity since resources at that node
may be insufficient and/or the desired service may not be
available.

In order to ensure a safe operation of UAVs in the airspace
and ground, each UAV should use a regulated geo-fence,
following a predefined flight path issued by the UAVs Traffic
Management (UTM) system [8]. The flight planning process
takes into consideration the state of the air traffic and the
airspace restrictions, but cannot ensure the availability of edge
resources and/or services along the flight trajectory. Hence,
it is impossible to manage the MEC potential resource and
service allocation needed in UAVs’ applications, unless the
UTM process is aligned with networking operations.

To address such an issue, this paper proposes two solutions
to guarantee that a flying UAV will connect to base stations
that allow to use MEC nodes with sufficient resources, while
minimizing the total traveled distance. The first solution
named MEC-Aware UAVs’ Path planning (MAUP) uses in-
teger linear programming to find the optimal flight path that
satisfies the UAVs’ connectivity and computation resource
requirements. However, given its complexity, MAUP may take
long to find an optimal flight path, when the flight distance is
long and/or size of network is large, especially if the density



of UAVs is high. To resolve this matter, the second proposed
solution, referred to as Accelerated MAUP (AMAUP), uses a
shortest weighted path algorithm considering directed graphs,
and that is to determine the desired paths.

The reminder of this paper is organized as follows. Section
II presents the related works. Section III discusses our net-
work model and problem formulation. The MAUP solution is
detailed in Section IV, whereas Section V presents AMAUP
solution. Section VI presents the performance evaluation and
results analysis. Finally, Section VII concludes the paper.

II. RELATED WORK

The UAV flight path optimization problem is considered
in several a-priori works from different perspectives related
to the targeted application. Each work aims at optimizing
certain parameters such as the consumed energy, the flight
duration, the traveled distance and the efficiency of task
offloading. The design of UAV trajectory with MEC compu-
tation offloading scheduling, subject to the UAVs maximum
speed and MEC nodes’ computation capacity constraints, is
discussed in [6]. However, the proposed solution is simplistic
assuming a system with a single UAV per application that
can be served from any potential MEC node, considering
also the possibility of partitioning a task to smaller sub-tasks.
Cheng et al [9] introduce another approach with different
assumptions for the UAVs’ trajectory optimization in cellular-
aided UAVs networks. In the proposed solution, the UAV
travels between the edge of three adjacent cells to provide
data offloading services. The goal of the optimized trajectory
is to maximize the sum rate of UAV served users, subject to
the rate requirements for all users.

In [10], a UAV-enabled wireless-powered MEC system is
studied and a power minimization problem is formulated by
jointly optimizing the number of the offloading computation
bits and the UAV flight path. A similar UAV-based MEC
system is presented in [11], where the UAV trajectory was op-
timized under latency and UAVs energy budget constraints. In
[12], an ant colony optimization algorithm is explored for the
effective UAV path planning, considering obstacle-avoidance
constraints. Luo et al [13] discussed an optimal trajectory
planning strategy for a UAV-based inspection system of a
large-scale photovoltaic farm using the Bezier curve and a
particle swarm optimization algorithm.

An interference-aware path planning scheme for a net-
work of cellular-connected UAVs, wherein each UAV aims at
achieving a trade-off between maximizing energy efficiency
and minimizing both wireless latency and the interference
level, is proposed in [14]. A novel path planning algorithm
for performing energy-efficient inspection using UAVs un-
der stringent energy availability constraints is proposed in
[15]. The optimal trajectory planning for UAV-assisted data
collection in wireless sensor networks under the age of
data constrains is elaborated in [16]. Work in [17], aims at
optimizing the trajectory of a swarm of UAVs while avoiding
the physical collisions and minimizing the mission’s delay
and the consumed energy. In [18], the energy-efficiency in

UAV to Ground (U2G) communication is addressed via UAV’s
trajectory optimization.

Our proposal complements the current state of the art by
introducing a unified flight planning and network resource
optimization solution taking into account edge cloud resources
at MEC platforms. The objective is to allocate the optimal
UAV’s trajectory assuring the desired UAV service for the
entire flight path, while minimizing the total travel distance.

III. NETWORK MODEL AND PROBLEM FORMULATION

A. Definition

Definition 1. Given a weighted graph G = (V,E,W ), a
start node S ∈ V and a destination node D ∈ V , P is the
set of possible paths from S to D, with the weight of a path
p =< v0, v1, ....vk > for p ∈ P , where vi ∈ V is the sum of
the weights of its constituent edges:

ω(p) =

k∑
i=1

ωi−1,i.

Let W (P ) = {ω(p),∀p ∈ P} denote the set of weights of
paths in P . A shortest path from S to D is then defined as a
path p ∈ P with weight ω(p) =Minimum(W (p)).

B. Network model

We consider a cellular network of stationary MEC nodes
(i.e., co-located at base-stations) denoted as N . Let U be a
set of UAVs where each u ∈ U is associated to a single
pair (uS , uD) with (uS , uD) ∈ (N × N) and uS 6= uD. uS
denotes the MEC node in the source location of the UAV and
uD denotes the MEC node at the desired UAV destination.
Each MEC node i ∈ N is associated with a resource capacity
Ri, and each UAV u ∈ U introduce a resources demand ru.

Let G = (V,E,W ) be a weighted graph, where the set of
vertices V represents the MEC nodes, that is, V = N and the
set of the edges E denotes neighborhood relations between
MEC nodes (i.e., adjacency). W represents the edge weights,
where ωi,j ∈ W denotes the weight of the edge (i, j) ∈ E,
which is equal to the distance between their corresponding
MEC nodes.

Fig. 1: Network model.



C. Problem formulation

In this paper, we propose two strategies for the UAV path
planning to ensure the availability of MEC resources for
computation offloading and control along the trajectory path,
while minimizing the travel distance. We assume that the
resources in a MEC node i ∈ N , denoted Ri, are decreased
with ru once a UAV u ∈ U selects that MEC node on its
flight trajectory. The ru resources are reserved for the UAV
u ∈ U before starting the flight and are released once the flight
is completed. We assume that the UAVs initiate their flights
from a MEC node with sufficient resources. A summary of
the notations used in this paper is presented in Table I.

TABLE I: Summary of Notations.

Notation Description
N The set of MECs nodes.
U A set of UAVs in the network.
D(u) A function D : U −→ N that returns the destination of

a UAV u ∈ U .
S(u) A function S : U −→ N that returns the starting

location of a UAV u ∈ U .
η(a) Set of neighbors of a vertex a ∈ V . Formally, η(a)

consists of a set of vertices, whereby there is an edge
E between a and those vertices.

ru The amount of resources needed by UAV u ∈ U .
Ri The resource capacity of MEC i ∈ N .
M A big number (M≈ +∞).
λ((i, j)) A weighted function that returns the weight of an edge

(i, j) in a weighted directed graph.
G(V,E,W ) A weighted graph with V = N and E is a set of edges.

Formally, an edge (i, j) ∈ E only if i, j ∈ N are
physically neighbors. W denotes the weight of the graph
G, such that wi,j ∈ W denotes the distance between
two adjacent MEC nodes i, j ∈ N .

Xu
i,j A Boolean variable that shows if a UAV u ∈ U has

moved from a MEC i ∈ N to another MEC j ∈ N .
Formally, Xu

i,j = 1, if UAV u moves from the MEC i
to the MEC j. Otherwise, Xu

i,j = 0

IV. MEC-AWARE UAVS’ PATH PLANNING

Hereafter, we describe our optimal solution for MEC-
Aware UAVs Path planning (MAUP). MAUP models the
MEC-Aware path planning process as an integer linear
program, that aims to provide an optimal path in terms of
MEC resource availability and the length of the traveled
distance for the maximum number of UAVs. We define the
following variables:

∀u ∈ U ,∀i ∈ N ,∀j ∈ η(i) :

X ui,j =
{
1 If UAV u ∈ U passes from node i to node j
0 Otherwise

MAUP’s linear program model is presented as follows:

min
∑
u∈U

∑
i∈N

∑
j∈η(i)

X ui,j × ωi,j

s.t.
∀u ∈ U : ∑

j∈η(S(u))

X uS(u),j = 1 (1)

∀u ∈ U : ∑
j∈η(D(u))

X uj,D(u) = 1 (2)

∀u ∈ U : ∑
j∈η(D(u))

X uD(u),j = 0 (3)

∀u ∈ U ,∀i ∈ N , : ∑
j∈η(i)

X ui,j ≤ 1 (4)

∀u ∈ U ,∀i ∈ N \ (S(u) ∪ D(u)) :∑
j∈η(i)

X uj,i =
∑
j∈η(i)

X ui,j (5)

∀i ∈ N :

∑
u∈U

∑
j∈η(i)

X uj,i × ru ≤ Ri −
∑

u∈U∧S(u)=i

ru (6)

MAUP is modeled as a minimization problem, where the
aim is to minimize the total traveled distance by UAVs.
Constraint 1 ensures that each UAV in the network will move
from its starting location to exactly one MEC node, while
Constraint 2 ensures that each UAV will reach its destination
coming from exactly one MEC node. Constraint 3 ensures
that a UAV will stop when reaching its destination. Constraint
4 ensures that each UAV will move from a MEC node to
exactly one other MEC node, while Constraint 5 assures that
an allocated path to a UAV is not interrupted. Furthermore,
the combination of Constraints 1, 2, 4 and 5 ensures that
the selected flight path does not contain a cycle loop. Finally,
Constraint 6 ensures that each MEC node satisfies the resource
requirements of the set of transversing UAVs.

V. ACCELERATED MEC-AWARE UAV PATH PLANNING

Given its complexity, the proposed optimized solution
elaborated in the previous section may introduce scalability
concerns, especially when the flight distance is long and hence
a high number of path possibilities and MEC nodes exist along
the trajectory. A high number of UAVs may further contribute
to increasing the complexity of the solution. In this section, we
propose an accelerated algorithm for MAUP with polynomial
run time complexity.

Accelerated MAUP (AMAUP) is based on the notion of
shortest path between two vertices defined in the Subsection
III-A. Indeed, after removing all MEC nodes with insufficient
resources for a given UAV u ∈ U from the network repre-
sented by the graph G = (V,E,W ), a new directed weighted
graph is calculated and a shortest path calculation algorithm
is applied to determine the flight trajectory of that UAV.



A. Dijkstra Algorithm

Let G(V,E,W ) be a positive weighted graph. Dijkstra’s
algorithm is used for finding the shortest path between a
source vertex S ∈ V and a destination vertex D ∈ V . The
algorithm works in three steps:

1) The algorithm starts by assigning a tentative distance
value for each v ∈ V . This value is set to 0 for S and to
infinity for all other nodes. Then, the algorithm keeps
track of two sets, (i) the set of visited vertices V ST
initialized to the empty set, and (ii) a set of unvisited
vertices UV ST initialized to V , that is V ST = {∅}
and UV ST = {V \ S}.

2) Next, the algorithm selects an unvisited vertex with the
smallest tentative distance as the current node CN .
It then updates the tentative distance of its unvisited
neighbors, i.e., j ∈ {neighbors(CN) ∩ UV ST} to
the minimum value considering the current tentative
distance of j and the cost for reaching j from S via CN
i.e., min[tentative(j), tentative(CN) + w(cn, j)]. In
completing this step, the CN is marked as a visited
vertex and removed from UV ST .

3) Step 2 is repeated until the destination node D is marked
as visited or UV ST becomes empty.

B. AMAUP description

In order to provide a comprehensive insight of AMAUP,
Algorithm 1 and the detailed example depicted in Fig. 2
are used to elaborate the numerous execution steps. Fig.
2(a) depicts the input graph G, the set of UAVs and their
source and destination locations as well as their resource
requirements including the resource capacities of MEC nodes,
which are represented by the numbers inside the vertices.

AMAUP starts by sorting the set of UAVs according to their
resource demand (Algorithm 1: line 2). This will later serve
to minimize the probability of network partitioning during
the execution of the algorithm. Then, the input graph G =
(V,E,W ) is converted to a directed weighted graph dG =
(dV, dE, dW ) (Algorithm 1: lines 3 – 9 ) by transforming
each edge (i, j) ∈ E into two directed edges (i, j) and (j, i)
in dE. The weight of the new directed edges is calculated
using the weighted function λ((i, j)) = wi,j/Rj , where wi,j
is the weight of the edge (i, j) in the graph G and Rj is the
resource capacity of the MEC node represented by the vertex
j. The resulted graph is illustrated in Fig. 2(b). The weighted
function λ makes the MEC nodes with the higher resource
capacity favored and accessible with low cost. This ensures
load balancing between the MEC nodes, while minimizing the
probability of network partitioning.

The next step is the calculation of flight paths for the sorted
set of UAVs. Indeed, the algorithm passes iteratively on the
sorted set of UAVs and performs the following actions for
each UAV u ∈ U :

1) Generate a sub-graph ˙dG of dG by removing all the
vertices that do not satisfy the resource demand of u
(Algorithm 1: lines 11 – 32 ). In the example illustrated

Algorithm 1 Algorithm of AMAUP
Input:

G = (V,E,W ): Network model graph.
U : The set of UAVs.
r: The set of resources needed by UAVs.
R:The set of resources available at MEC nodes.

Output:
P: The set of paths.

1: P = {∅};
2: Sort(U);

Convert G to a directed weighted graph dG
3: dV = V
4: for all (i, j) ∈ E do
5: dE = dE ∪ {(i, j), (j, i)}
6: dW [i, j] =W [i, j]÷R[j]
7: dW [j, i] =W [i, j]÷R[i]
8: end for
9: dG = (dV, dE, dW )

10: for all u ∈ U do
Construct a sub-graph: ˙dG = ( ˙dV , ˙dE, ˙dW )

11: ˙dV = dV ;
12: ˙dE = dE;
13: ˙dW = dW ;
14: for all v ∈ ˙dV do
15: if (R[v] < r[u]) then
16: ˙dV = ˙dV \ v;
17: for all (i, j) ∈ ˙dE do
18: if i == v or j == v then
19: ˙dE = ˙dE \ (i, j);
20: ˙dE = ˙dE \ (j, i);
21: ˙dW = ˙dW \ ˙dW [i, j];
22: ˙dW = ˙dW \ ˙dW [j, i];
23: if i == v & η(j) == ∅ then
24: ˙dV = ˙dV \ j;
25: else if η(i) == ∅ then
26: ˙dV = ˙dV \ i;
27: end if
28: end if
29: end for
30: end if
31: end for
32: ˙dG = ( ˙dV , ˙dE, ˙dW );

Calculate the shortest path:
33: P[u] = Dijkstra( ˙dG,S(u),D(u))

Reserve resources:
34: for all v ∈ dV do
35: if v ∈ P[u] then
36: R[v] = R[v]− r[u];
37: for all (i, j) ∈ dE do
38: if j == v then
39: if R[v] == 0 then
40: dW [i, j] =M
41: else
42: dW [i, j] = W [i, j]÷R[v]
43: end if
44: end if
45: end for
46: end if
47: end for
48: end for
49: return P



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2: Execution of the AMAUP solution.

in Fig. 2, none of the vertices are removed in the first
iteration as all MEC nodes satisfy the resource demand
of u3. However, some vertices are removed later in the
2nd and 3rd iterations as depicted in Fig. 2(f) and Fig.
2(j), respectively.

2) AMAUP uses the Dijkstra algorithm to find the flight
path to the destination with lowest cost (Algorithm 1:
line 33). As stated before, the weighted function λ
favours the selection of MEC nodes with high resource
capacity and small distance from the source location.
Fig. 2(c), Fig. 2(g) and Fig. 2(k) depict the selection of
the flight paths for UAVs u3, u1 and u2.

3) Finally, the algorithm updates dG by decreasing the
amount of the available resources on the set of nodes
that belong to the selected path, as well as the weights
of the set of edges with their endpoints in the selected
path (Algorithm 1: lines 34 – 43).

The use of the weighted function λ minimizes the proba-
bility of partitioning the sub-graph ˙dG during the first step of
the iterative paths calculation phase. However, this probability
is not eliminated and ˙dG may get partitioned. Hence, it may
be impossible to find a path for a candidate UAV.

VI. PERFORMANCE EVALUATION

In this section, we present our simulation setup and discuss
the obtained results. To the best of the authors’ knowledge,

there is no similar work in the literature that has the same
solution objectives. For this reason, herein, we evaluate only
our solutions, MAUP and AMAUP, without comparing them
to other base-line approaches. The solutions are evaluated in
terms of: i) run time, which is defined as the time needed
to execute each solution; ii) the average distance traveled by
each UAV. While the former metric shows the complexity of
the proposed solution, the latter captures the cost in terms of
energy consumption and travel time. The longer the distance
that is traveled, the longer the travel time and hence the more
energy is consumed.

We evaluated the former metrics by varying the number of
MEC nodes and UAVs. For each scenario, we run 50 repe-
titions, altering the UAVs starting and destination locations,
the resource demand of UAVs and the resource capacities of
MEC nodes. The MAUP solution was implemented using the
GUROBI tool. Meanwhile, we developed a simulator using
Python and the extended package related to graph theory
called NetworkX for evaluating the AMAUP solution. All our
experiments were conducted on a multi-core server with the
configuration described in Table II.

In the simulation results, each plotted point represents the
average of the 50 repetitions and the plots are presented with
95% confidence interval.
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Fig. 3: Run time complexity.
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Fig. 4: The average of traveled distances.

TABLE II: Hardware Configuration.

Type Configuration
CPU Intel(R) Xeon(R) CPU E5-2680 V3 @ 2.50GHZ
RAM 256 GB
OS Ubuntu 16.04
Kernel 4.4.0-124-generic

A. Run time complexity

Fig. 3(a) and Fig. 3(b) show the run time complexity of
MAUP and AMAUP as a function of the number of MEC
nodes |N | and the number of UAVs |U|, respectively. As
depicted in these figures, increasing the number of MEC nodes
or UAVs results in increased run time complexity for both
MAUP and AMUP solutions. A higher number of UAVs has
a bigger impact on the run time complexity, especially for the
MAUP one. Overall, Fig. 3 shows that AMAUP outperforms
MAUP irrespective of the number of MEC nodes and UAVs.
From Fig. 3(a), the difference in the run time between MAUP
and AMUP increases sharply and reaches more than 12 times
higher. Also the gap in execution time between AMAUP and

MAUP widens with the increase in UAVs number, where
MAUP takes up to 17 times more than AMAUP, as illustrated
in Fig. 3(b).

B. Traveled distance
Fig. 4(a) and Fig. 4(b) show the average traveled distance

related to the set of UAVs as a function of the number of
MEC nodes |N | and the number of UAVs |U|, respectively.
The results clearly show that MAUP outperforms AMAUP in
term of the average traveled distance, with the performance
advantage growing as the number of MEC nodes increases. As
illustrated in Fig. 3(a), the gap between MAUP and AMAUP
raises from 10% when the number of MEC nodes is 50 to
15% when the number of MEC nodes is up to 300. However,
the performance advantage of MAUP on AMAUP is nearly
stable when varying the number of UAVs. As depicted in Fig.
4(b), the difference between the MAUP and AMAUP is almost
constant at 14%. AMAUP cannot select the optimal paths in
terms of the length of the traveled distance as the algorithm
alters the weight of vertices among the MEC nodes. This
is accomplished using the weighted function λ to minimize



the probability of network partitioning and to ensure load
balancing between MEC nodes. However, the obtained results
are encouraging given the trade-off between the run time
complexity and the traveled distances.

VII. CONCLUSION

In this paper, we introduced the novel problem of edge
cloud resource-aware flight planning for UAVs, proposing
two solutions, namely MAUP and AMAUP. MAUP uses an
integer linear programming model that minimizes the total
length of the selected paths, while ensuring adequate resources
availability in MEC nodes for each UAV. On the other hand,
AMAUP uses the notion of shortest paths in a weighted
graph to minimize the length of the selected paths. MAUP
aims to find the optimal solution, meanwhile, AMAUP aims
to reduce the run time complexity at the cost of a slight
degradation in comparison with MAUP. The simulation results
demonstrated the effectiveness of the proposed solutions in
achieving their design goal. As future research, we intend
to improve the proposed solutions by taking in consideration
time windows for allocating edge resources to UAVs rather
than the end-to-end strategy used in this paper. Furthermore,
the capability of UAVs to connect to multiple cells at the
same time will be explored, especially to solve the problem
of network partitioning faced in the AMAUP solution.
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