
1

An Optimized Reinforcement Learning based MTD
Mutation Strategy for Securing Edge IoT Against

DDoS Attack
Amir Javadpour, Forough Ja’fari, Chafika Benzaı̈d, and Tarik Taleb

Abstract—Distributed Denial of Service (DDoS) attacks are
among the most destructive and challenging threats to mitigate
for computer networks, particularly in edge IoT environments.
Moving Target Defence (MTD) is a promising security mechanism
that undermines the adversary’s gathered information by dynam-
ically altering the attack surface. A selection of network nodes
is chosen for mutation, and these changes hinder the adversary
from achieving their objectives. However, identifying the optimal
set of nodes for effectively and efficiently mitigating a DDoS
attack remains a significant challenge. Existing MTD approaches
have only considered a single factor—either the node’s vulnera-
bility level or connectivity—and often lack generality and scala-
bility for real-world IoT implementations. In this paper, we pro-
pose an enhanced MTD approach called CVbMA (Connection-
and Vulnerability-based MTD Approach) that jointly considers
both the vulnerability levels and connection weights of nodes to
inform mutation strategies. To ensure practical applicability and
adaptability, we develop a cost-aware Reinforcement Learning
(RL) framework that incorporates explicit mutation costs into
the reward function and utilises neural ranking and model
compression for scalability. Extensive evaluations are conducted
using both Mininet-based simulations and a physical IoT testbed
with real attack traces and heterogeneous devices. Comprehensive
benchmarking and ablation studies against state-of-the-art MTD
baselines demonstrate that the proposed framework significantly
reduces the adversary’s success rate and incidents of server
crashes, while maintaining low overhead and achieving high
adaptivity. A detailed analysis of real-world deployments high-
lights the robustness of systems under operational constraints, in-
cluding fluctuating latency, hardware diversity, and asynchronous
events. Limitations and future enhancements, including topology-
aware RL, adaptive mutation scheduling, and continuous model
updates, are discussed. The results affirm the practical, scalable,
and robust potential of cost-sensitive RL-based MTD for next-
generation IoT security.

Index Terms—Moving Target Defense (MTD), Distributed De-
nial of Service (DDoS), Reinforcement Learning (RL), Mutation,
Connection weight, Vulnerability level.

I. INTRODUCTION

THE growing demand for protecting computer networks
against DDoS attacks has motivated researchers to work

on related security mechanisms to mitigate them. In recent

Amir Javadpour is with ICTFICIAL Oy, Espoo, Finland. He was with
the Faculty of Information Technology and Electrical Engineering, University
of Oulu (e-mail: a.javadpour87@gmail.com).

Forough Ja’fari is with the Department of Computer Engineering, Sharif
University of Technology, Tehran, Iran

Chafika Benzaı̈d is with the Faculty of Information Technology and
Electrical Engineering, University of Oulu, Finland .

Tarik Taleb is with the Faculty of Electrical Engineering and Information
Technology, Ruhr University Bochum, Bochum, Germany

Corresponding author: Amir Javadpour

years, the prevalence and impact of DDoS attacks have
increased significantly, posing a significant threat to online
services, networks, and infrastructure. DDoS attacks aim to
disrupt the normal operation of a target system by overwhelm-
ing it with a massive influx of malicious traffic. To effectively
counter these attacks, novel approaches beyond traditional
mitigation techniques are required. One promising approach
in the field of cybersecurity is Moving Target Defense (MTD),
which aims to enhance the resilience of systems against evolv-
ing threats. MTD strategies involve continuously changing
the system’s attack surface or characteristics, making it more
difficult for attackers to identify and exploit vulnerabilities[1,
2, 3, 4]. By dynamically altering the system’s configuration,
protocols, addresses, or other attributes, MTD aims to increase
the effort required for attackers to launch successful attacks.
While MTD provides a proactive defense mechanism against
various attacks, optimizing its mutation strategies is crucial for
maximizing its effectiveness in mitigating DDoS attacks. This
optimization process involves identifying the most effective
combinations of mutation techniques and parameters that can
significantly impede attackers’ progress and minimize the
impact of DDoS attacks. In recent years, RL techniques in
cybersecurity have gained attention due to their ability to
adapt and optimize decision-making processes in dynamic
environments. RL algorithms allow an agent to learn from
environmental interactions, receive feedback through rewards
or penalties, and adjust actions to maximize long-term cumu-
lative rewards. By utilizing RL algorithms, it is possible to
optimize the mutation strategies of MTD in mitigating DDoS
attacks. [5, 6, 7, 8]. One proactive approach to mitigating
attacks is MTD, which requires little threat detection. In an
MTD approach, a set of network nodes are mutated, and these
mutations obfuscate the adversary and invalidate its collected
information [9, 10, 11].

Some MTD approaches suggest selecting the most vulnera-
ble nodes to be mutated. A node’s vulnerability level depends
on its security holes and can be calculated using the Common
Vulnerability Scoring System (CVSS) score [12]. Some other
approaches focus on the connections between the nodes and
then decide which node must be mutated. The RL is also
useful for facilitating these decisions. RL is a machine learning
technique that utilizes an agent to explore the problem space
and learn how to solve it [13, 14, 15]. However, finding the
optimal set of hosts is still challenging.

While finding the optimal set of hosts to be mutated is a
multi-factor problem depending on both hosts’ vulnerability

2

levels and their connections, the existing MTD approaches
have considered only a single factor. Moreover, the existing RL
models in the related researches are not general, and one must
train as many models as the number of networks we have.
To overcome these limitations, we have proposed an MTD
approach, called CVbMA (Connection- and Vulnerability-
based MTD Approach) that considers both the vulnerability
levels of the hosts and their connections. In this approach, we
have defined a novel parameter called connection weight that
specifies the number of critical servers connected to a host.
The connection weights are an important factor for CVbMA
in making decisions. Moreover, we have proposed a general
RL model, that uses the solution of CVbMA to find the
optimal set of hosts to be mutated. This model is general,
and a single-trained model can be used for any network.
This research explores the potential of RL for optimizing
MTD mutation strategies in the context of mitigating DDoS
attacks. By leveraging the power of RL algorithms, this study
seeks to identify the most effective mutation strategies based
on connections and vulnerabilities, providing insights into
enhancing the resilience of systems against DDoS attacks
[16, 17, 18, 19, 20].

It must be noted that finding the optimal mutation interval or
the optimal number of hosts to be shuffled is out of the scope
of this paper. This paper presents several key contributions
to optimize MTD mutation strategies for mitigating DDoS
attacks. Our model enhances scalability and generalizability in
Multi-Agent Reinforcement Learning by dynamically adapting
to various network configurations without extensive retraining.
Additionally, we redesigned the state space representation to
include both connection weights and vulnerability scores, lead-
ing to more efficient decision-making and improved security
measures. The following contributions are highlighted:

• The paper introduces a novel factor called ”connection
weight” to enhance the efficiency of finding the optimal
set of hosts to be mutated. By considering the connection
weight, which represents the importance or impact of a
specific connection, identifying the most critical hosts to
be mutated becomes more effective.

• The paper presents a general RL model to identify the
optimal set of hosts for mutation based on the proposed
MTD approach. RL algorithms enable the agent to learn
and make decisions through interactions with the envi-
ronment.

• The proposed MTD approach and RL model are evaluated
through simulation scenarios. The evaluation considers
multiple metrics, such as adversary success rates, server
crashes, and network overhead, to assess the performance
of the proposed methods. Extensive simulations provide
insights into their effectiveness and efficiency in mitigat-
ing DDoS attacks.

This paper contributes to cybersecurity by introducing novel
concepts, proposing an advanced MTD approach, developing
a general RL model, and evaluating their performance in
countering DDoS attacks. The findings of this research can
inform the development of more effective and adaptive strate-
gies to mitigate DDoS attacks using MTD and reinforcement

learning techniques. In the remainder of this paper, we first
review the state-of-the-art MTD approaches in section II and
present their limitations. Then, in section III, we first define the
threat and network models and then describe the main problem
solved in this paper. section IV describes the proposed MTD
approach and RL model. The evaluation report is mentioned
in section VI, and finally, section VIII presents a conclusion
of this paper.

II. RELATED WORK

The current MTD research is different in terms of the target
they are focusing on. Some approaches focus on changing the
network topology [30] or the paths selected for forwarding the
traffic [31, 32, 33]. In these researches, the adversary becomes
confused about the whole network regarding the changes in
the behavior of the routers/switches. Some other techniques
mutate the hosts by mutating their MAC/IP addresses in order
to protect the individual hosts from being compromised. There
are also multiple types of research on mutating the port number
of the hosts to prevent the adversary from attacking a specific
host [34]. Moreover, we can find research about shuffling the
memory addresses to prevent hardware-level attacks [35]. In
this paper, we aim to find the optimal subset of hosts for being
mutated, and hence, we focus on the research based on MTD
methods that mutate individual hosts. Moreover, optimizing
the shuffling intervals [36, 37, 38] is out of the scope of this
paper.

The related research can be divided into three groups:
random-based MTD Approaches (RbMA), Vulnerability-based
MTD Approaches (VbMA), and Connection-based MTD Ap-
proaches (CbMA).

The MTD mechanisms in the RbMA group select a random
set of hosts to be mutated. Steinberger et al. [21] have sug-
gested an MTD strategy for defending DDoS attacks against
Internet service provider networks. In this strategy, we call
as DDuMaS (DDoS Defense using MTD and SDN), both IP
addresses and the network topology are obfuscated to change
the attack surface. The selected targets for mutations are
random in DDuMaS. Luo et al. [22] have proposed an MTD
mechanism in an SDN environment, where a random set of
hosts are selected to be mutated, and the shuffling intervals are
also chosen randomly. We name this mechanism as MaSbH
(MTD and SDN-based Honeypots).

The VbMA group mechanisms consider the hosts’ vul-
nerability levels or their probability of being compromised
to decide which one is more effective to be mutated. Shi
et al. [23] have proposed an SDN-based MTD mechanism
called CHAOS, in which the hosts’ IP addresses and open
ports are mutated based on the vulnerability level of the hosts.
In CHAOS, the vulnerability level is calculated according
to the CVSS, and then a random number is generated, that
indicates the probability of a host being mutated. Chowdhary
et al. [24] have also used the CVSS score for mutation. The
proposed MTD solution, which we call SbSMsiCN (SDN-
based Scalable MTD solution in Cloud Network), shuffles the
host with the maximum value of vulnerability score because
this host is more likely to be compromised than the other

3

TABLE I
COMPREHENSIVE COMPARISON OF RELATED MTD APPROACHES AND THE PROPOSED METHOD

Method
/ Ref.

Approach
/ Desc.

Vuln.
Aware

Conn.
Aware

Cost
Aware

RL-
Based Scal. Testbed Abl. Bench.

DDuMaS [21] Random IP/topology muta-
tion via SDN for ISP-level
DDoS protection

× × × × Moderate × × Partial

MaSbH [22] Random host mutation + ran-
dom shuffling intervals, SDN
+ honeypots

× × × × Limited × × Partial

CHAOS [23] Vulnerability-based IP/port
mutation, CVSS-driven
probability, SDN

✓ × × × Moderate × × Partial

SbSMsiCN [24] CVSS-based mutation, max-
vulnerability shuffling in
SDN/cloud

✓ × × × Moderate × × Partial

BAP [25] Attack-graph path analysis,
mutate hosts on likely adver-
sary paths

✓ Partial × × Limited × × Partial

MARL [26] Multi-agent RL,
vulnerability-driven mutation,
SDN, option to shuffle
all/single

✓ × × ✓ Moderate × × Partial

TgCeS [27] Game-theoretic shuffling, mu-
tation based on active user
connections (multi-obj. MDP)

× ✓ Partial × Moderate × × Partial

DRLbAM [28] Deep RL, connection-based
mutation, tuple feature
(probe, compromise, online)

× ✓ × ✓ Moderate × × Partial

DIVERGENCE [29] RL-based, flow/data rate +
traffic inspection, IDS-aided

× ✓ Partial ✓ Moderate × × Partial

Ours (Cost-Aware
RL-MTD)

RL-based, joint vulnerabil-
ity and connection, explicit
mutation cost, neural rank-
ing, testbed validation, bench-
mark, ablation

✓ ✓ ✓ ✓ High ✓ ✓ ✓

hosts. Yoon et al. [25] have considered the attack graph of a
network that contains the vulnerability scores of the host to
find the paths in this graph that are more probable to be used
by the adversary for compromising the host. The hosts in these
paths are then mutated, and the used method is called BAP
(Backward Attack Path). The vulnerability level of the host is
also the mutation metric of the MTD mechanism proposed by
Chowdhary et al. [26], which is called MARL (Multi-Agent
Reinforcement Learning). MARL utilizes RL to decide which
host must be mutated. The defense mechanism also decides
whether to mutate a single host or shuffle the whole host.

Finally, the MTD mechanisms in the CbMA group work
based on the host’s connections and traffic flows. Zhou
et al. [27] have considered a network of virtual machines
under a DDoS attack and then modeled the problem of
finding the optimal VMs to shuffle as a game. This game
uses multi-objective Markov decision processes to find the
optimal strategy. This method selects the shuffled hosts based
on the number of connected users. For example, if no user is
connected to a host, it must not be shuffled, and if the number
of users connected to a host is less than half of the total number
of users, that host is randomly shuffled. This method is called
TgCeS (Trilateral game Cost-effective Shuffling). Eghtesad
et al. [28] have utilized RL to find the optimal set of hosts
for being mutated. We call this mechanism DRLbAM (Deep
Reinforcement Learning based Adaptive MTD). Mutation in
DRLbAM is performed by making the hosts online and offline
for a specific period. In this learning model, each of the hosts

is represented as a tuple with three features: (1) the number of
probes against that host, (2) the state of being compromised or
not, and (3) the state of being online or offline. Another MTD
mechanism based on the flow rates, called DIVERGENCE,
is proposed by Kim et al. [29], where an RL model tries to
find the hosts to be mutated using (1) the flow data rate and
(2) the allocated traffic inspection resource. It is worth noting
that this MTD mechanism works with the help of an intrusion
detection system.

The main limitation of the existing MTD approaches is that
they do not consider multiple factors when finding the optimal
subset of hosts for being mutated. When the problem has
multiple factors (i.e., the individual hosts and the connections)
and a decision in this problem space is made considering only
one, the result is not always optimal. Therefore, this paper
proposes an MTD approach that considers both connections
and vulnerabilities in generating the optimal subset of hosts for
being shuffled. Moreover, the existing RL models for finding
the optimal subset of hosts lack generality. A distinct model
must be trained for different networks. However, the proposed
RL model in this paper is more general, and once trained, it
could be used for different networks.

Table I presents a comprehensive comparison of state-of-
the-art Moving Target Defense (MTD) mechanisms, with a
particular focus on key characteristics such as vulnerability
and connection awareness, cost consideration, reinforcement
learning integration, scalability, and practical validation. Ex-
isting approaches differ significantly in their strategy and

4

scope: while some focus on random or vulnerability-based host
mutation, others utilize advanced models such as multi-agent
RL or game-theoretic frameworks. However, most methods
offer limited scalability and lack explicit cost modeling or real-
world testbed evaluation. In contrast, our proposed cost-aware
RL-based MTD framework uniquely integrates vulnerability
and connection features, incorporates explicit mutation cost
into the learning process, and demonstrates robust perfor-
mance through extensive benchmarking, ablation studies, and
physical testbed experiments. This side-by-side comparison
highlights the novelty and practical advantages of our approach
relative to existing solutions in the literature.

III. PROBLEM DEFINITION

In this section, we first define the threat and network model
and describe the notations. Then, the detailed problem this
paper aims to solve is presented, and its complexity class is
proved.

A. Threat model

In a computer network, there are several hosts and multi-
ple critical servers. The hosts communicate with the critical
servers to use their services, and the point is that only the hosts
in the access list of a critical server can establish a connection
with it. These hosts are vulnerable, and an adversary may
compromise them. The compromised hosts are then controlled
by the adversary, who commands them to launch a DDoS
attack against the critical servers. The vulnerability levels
of the hosts are different, and it depends on the security
holes they have. The vulnerability level is a score assigned
to each host and calculated based on CVSS. These scores
range from zero to ten, with zero and ten being the safest
and most vulnerable, respectively. We have assumed that the
vulnerability level of each host is independent of that of the
other hosts. In other words, compromising a host does not
require the compromisation of any other host, and there are
no common operations in compromising different hosts.

The adversary in our threat model is an active outsider
intruder who aims to make all the critical servers in a network
unavailable by scanning the network address space, then com-
promising the vulnerable hosts, and finally launching a DDoS
attack. Each server will crash if the number of compromised
connections toward them exceeds a specific threshold. Since
we have assumed an outsider adversary, it is not located on
the hosts or the critical servers. Therefore, the focus of the
security approaches to mitigate our defined threat is protecting
the critical servers rather than identifying the adversary.

A sample network vulnerable to the defined threat is shown
in Figure 1. The minimum number of connections from
compromised hosts, that cause a server to crash (δ), is 3 in this
sample network. The vulnerability level of each host is also
shown in the related circles. The adversary has scanned the
hosts and successfully compromised four of them. Now, since
the third server is connected to three compromised hosts, it
will crash. In this example, the adversary does not achieve its
goal (i.e. crashing all the critical servers).

B. Network model

We can represent a network as N = {δ,V, C}, where δ
is the minimum number of malicious connections that cause
a server crash, V is the ordered set of hosts vulnerability
levels, and C is the connectivity matrix of the hosts and
critical servers. We have V = {v1, v2, . . . , vH}, where H
is the total number of hosts, and vi is the vulnerability
level of the ith host. For the sample network in Figure 1,
we have V = {3.0, 8.0, 4.0, 7.0, 9.0, 5.0, 6.0, 5.0, 4.0}. These
vulnerability levels are calculated based on CVSS. Hence, they
are a floating point number with a precision of one digit. If
they are divided by 10, they become a number between zero
and one, which we can consider as the probability of being
compromised. In other words, if pi shows the compromising
probability of the ith host, we have pi = vi/10. For example,
the probability that the first host in Figure 1 becomes compro-
mised is 0.3. In other words, a probe against this host probably
causes its compromisation in 30% of the attempts. Moreover,
we can define ri as the resource units that the adversary has
to consume to compromise the ith host. This is the cost the
adversary must pay. It can be calculated as Equation 1.

ri = 100− 10× vi (1)

Since vi is single-precision, ri is an integer value from 0 to
100. The other point is that if the probability of a host being
compromised is high, then the cost of compromising it is low.
This is the reason for reducing 10vi from 100. The resource
units required for compromising the fourth and the fifth host
in Figure 1 are 30 and 10, respectively. As a result, if the
adversary wants to compromise the fourth and the fifth hosts,
the required resources are 40.
C is a matrix of S × H , where S is the total number of

critical servers. The element in its ith row and jth column is
shown as c(i,j). The value of c(i,j) is one if the jth host has
a connection to the ith server, and otherwise, it is zero. The
connectivity matrix of the sample network shown in Figure 1
is presented in Equation 2.

C =

 1 0 1 0 0 1 0 0 0
1 1 1 0 1 1 0 1 0
0 0 1 1 1 1 1 1 1

 (2)

The connection weight of the ith host can be calculated by
Equation 3.

ci =

S∑
j=1

c(j,i) (3)

C. Problem complexity

Assume that T is the optimal subset of hosts with the lowest
cost of being compromised that can make all the servers crash.
The adversary’s best case of attacking the network is to target
T . For example, if T = NH , the adversary targets all the hosts,
and without each of them, the DDoS attack is unsuccessful.
NH is the set of natural numbers from 1 to H . T can be
mathematically defined with two conditions, Condition 1 and
Condition 2.

5

Fig. 1. A sample network vulnerable to our defined threat

Condition 1. The hosts in T can lead to a DDoS attack
against all the critical servers, and in other words, each
critical server has at least δ connections to the hosts in this
subset, which is equivalent to Equation 4.

∀i ∈ NS :
∑
j∈T

ci,j ≥ δ (4)

Condition 2. There is not another subset of hosts, such as
T̄ , that can lead to a DDoS attack with a higher probability,
which is equivalent to Equation 5.

∄T̄ ⊆ NH :
∏
i∈T̄

vi >
∏
i∈T

vi and ∀i ∈ NS

∑
j∈T̄

c(i,j) ≥ δ (5)

The optimal subset of hosts to be mutated is T . Because
the included hosts are the lowest-cost ones that should be
compromised, mutating them can prevent the adversary from
reaching the malicious goals. However, T cannot be easily
found and is an NP-complete problem. Here is the detailed
theorem and its proof.

Theorem 1. Given the vulnerability level of the hosts (V)
and their connectivity matrix with the critical servers (C) in
a network, it is an NP-complete problem to find the optimal
subset of hosts with the lowest cost of being compromised that
can cause all the servers to crash by at least δ connections.

Before beginning the proof, we give the decision form of
this problem as Problem 1. The decision form problem is only
a yes/no question.

Problem 1. For a network with V as the set of host vulnerabil-
ity levels, C as the connectivity matrix, and δ as the minimum
number of malicious connections that cause a server to crash,
given the maximum acceptable cost, M , is there a subset of

hosts, say T̄ , with a summation cost lower than or equal to
M , by which the adversary may crash all servers.

Proof. To prove that a problem is NP-complete, we must
first prove that it is NP. A problem is NP, if its verification
process takes polynomial time regarding the size of problem
parameters. The verification form of Problem 1 is to check
whether a given subset of hosts (T̄) satisfies the cost limit and
crashes all the servers. Computing

∑
i∈T̄ vi and checking if it

is lower than or equal to M take polynomial time. Morover,
computing

∑H
j=1 c(i,j) for all j ∈ NS also takes polynomial

time. As a result, the whole process takes polynomial time,
and it is NP.

Second, we have to show that there is a known NP-hard
problem, which can be reduced to our problem in polynomial
time. We have chosen the multi-knapsack problem (also called
multiple knapsack problem) as a known NP-hard problem, and
the proof is provided by Zhang and Geng [39]. In general
knapsack problems, there are I items with specific weights and
values, and there are also K knapsacks that these items can
fill with specific weight capacity limitations. The problem is
to maximize the sum of collected item values in the knapsack,
while satisfying the weight capacity limitations. In Problem 2,
the details of the multi-knapsack problem are presented.

Problem 2. Given I items with weights and values as
{wi}i∈NI

and {bi}i∈NI
, a maximum value of B, and K

knapsacks with weight capacity limitation of {li}i∈NK
, is there

K disjoint subsets of them, say A = A1∪A2∪· · ·∪AK , where∑
i∈A bi ≥ B, and for all i ∈ NK we have

∑
j∈Ai

wj ≤ li.

Before showing the reduction process, it is worth noting
that all the parameters in Problem 1 and Problem 2 are non-

6

negative integers. Therefore, we can reduce without concern
about the type of numbers. Assuming R is the reduction
function, we aim to show α is an instance of Problem 2 with
a ”YES” answer if and only if R(α) is a ”YES” instance of
Problem 1. Suppose we are given Problem 2, where for all
i ∈ NK the values of li is L.

Since α is a ”YES” instance of Problem 2, there exists
K disjoint subsets of the items, where

∑
i∈A bi ≥ B and∑

j∈Ai
wj ≤ li. Now, let Problem 1 have K critical servers

and I normal hosts, the compromising cost of which are ri =
X−bi. Moreover, consider M = (I−1)X−B. As

∑
i∈A bi ≥

B, we can say
∑

i∈A X− ri ≥ X−M , and we conclude that
(|A| − 1)X +M ≥

∑
i∈A ri. Since A is a subset of all items,

we have |A| ≤ I . Hence, we have (I − 1)X +M ≥
∑

i∈A ri.

This proof shows that the decision problem mentioned in
Problem 1 is NP-complete, and hence Theorem 1 is true, and
the complexity class of our problem is NP-complete. As a
result, we aim to use machine learning rather than straight
methods to solve it.

IV. PROPOSED METHOD (CVBMA)

When using an MTD mechanism to secure the network,
one major question must be answered: ”Which of the hosts
must be mutated to achieve adequate performance?” We
have proposed an MTD approach, called the Connection and
Vulnerability-based MTD Approach (CVbMA), that tries to
answer this question using RL.

Network connections and host vulnerability levels are two
main factors in deciding whether or not mutating a host can
effectively increase network security. Both of these factors
are considered in CVbMA. Moreover, a novel meaning of
connection is used in CVbMA. Based on our threat model,
the hosts cannot always communicate with all the critical
servers. We assign each host a connection weight, which is
the number of critical servers connected to that host. CVbMA
uses connection weights and vulnerability levels to decide
which hosts are appropriate for being mutated. According
to the defined threat model (section III), a host with a high
connection weight greatly impacts network security more than
a host with a high vulnerability level in many cases.

We give an example of this hypothesis based on the sample
network shown in Figure 1. The adversary’s goal is to crash
all the critical servers. The adversary tries to waste the least
resources in its attack. Hence, its target will be the set of hosts
that require the lowest number of probes to be compromised
and also cause goal achievement. In the best case, the adver-
sary has to compromise T = {1, 3, 5, 6}. Because the cost of
compromising all of them is 70 + 60 + 10 + 50 = 190, we
cannot find another set of hosts that requires less cost to be
compromised, leading to the crashing of all the servers. Now,
assume that we have deployed an MTD approach that only has
the resources of mutating three hosts. If VbMA is deployed,
the selected hosts are {2, 4, 5}. Because the hosts with the
highest vulnerability levels (i.e. lowest cost) are selected in
VbMA. Due to the highest connection weight values, CbMA
suggests mutating the hosts in {3, 5, 6}. The number of

crashed servers after deploying VbMA and CbMA is 2 and 0,
respectively, which shows the importance of considering the
connections. In our proposed method, CVbMA, the goal is to
consider both the vulnerability level and connection weights to
decide which hosts are more effective in securing the network.

To present the mentioned problem to the RL agent, we
model it as a card game, the cards representing a host in the
network. The game’s goal is to sort the cards, and then, select
a specific number of cards from the beginning of the sorted
list. The hosts related to the selected cards are the mutation
targets. In the rest of this section, we present the details of
CVbMA RL model. It is worth noting that designing the action
space and environment state of the RL model in a way that
the model can be trained with a network containing h hosts,
and then be utilized for solving the problem of h′ hosts, where
h ̸= h′. This is advantageous because a single trained model
can often be used without wasting time and resources training
other models. For example, if a developer wants to find the
optimal hosts for being mutated in two networks, one with 8
hosts and another with 40 hosts, there is no need to train two
models, one for the network with 8 hosts and the other for
the network with 40 hosts. The developer can train a single
model with 8 hosts, and then use it for both of the networks.

In steps, the CVbMA method process is presented in
Figure 2. Initially, the host vulnerabilities and connection
data are entered into the system. Subsequently, the connection
weights are calculated to reflect the significance of each
connection. The environment is then defined by integrating
these connection weights with the identified vulnerabilities.
Following this, the reinforcement learning method compares
various hosts, leading to selecting optimal hosts for mutation.
Once hosts are identified, mutations are executed, allowing
the evaluation of critical metrics such as adversary success.
Finally, the model is updated to accommodate new scenarios.

A. Action space
The RL agent explores and interacts with the environment to

find the optimal solution. This interaction is in the form of the
actions that the agent takes. In each step, the environment state
is presented to the agent. The agent selects one of the defined
actions and then receives a reward. After multiple training
steps, the agent learns which action is optimal for each state.

In CVbMA RL model, the agent has to sort the whole cards.
In each step, the agent is asked to compare only two cards: the
ith and the jth card. Selecting the i and j indices follows the
selection sort algorithm. Hence, if the number of cards is H
(i.e., the total number of hosts), the game is over after H(H−
1)/2 steps. It is worth noting that the agent is not involved in
the merge sort process. It is only responsible for comparing
two cards, and swapping their position if needed. The merge
sort algorithm process is performed during the environment
state shift.

We define only two valid actions for the agent: 0 and 1.
Selecting the action of 0 means that the current position of the
ith and the jth cards is preferred, and otherwise (i.e. selecting
the action of 1), they must be swapped.

The action state representation includes the following details
(Figure 3):

7

Here's a visual representation of the CVbMA method process. It illustrates the key steps:

1. Inputting host vulnerabilities and connection data.

2. Calculating connection weights.

3. Defining the environment state with connection weights and vulnerabilities.

4. Using reinforcement learning to compare hosts.

5. Selecting optimal hosts for mutation.

6. Executing the mutations.

7. Evaluating metrics like adversary success and overhead.

8. Updating the model for new scenarios.

Fig. 2. CVbMA process: Optimizing Host Selection and Mutation Through the CVbMA Method

• Connection weight (c) and vulnerability score (v).
• Detailed state values (s1, s2, s3, s4) for both Host A and

Host B.
• Directed edge: The directed edge between Host A and

Host B provides a detailed comparison of their respective
state values, highlighting the environment’s state transi-
tion.

B. Environment state

The RL agent explores and interacts with the environment
to find the optimal solution. Hence, the environment must
fully cover the problem space. Therefore, both the connec-
tion weight and the vulnerability level of the hosts must be
presented in the environment state.

The ith card is shown as card[ci, vi], where ci and vi
are the connection weight and vulnerability level of the ith

host, respectively. Each state of the environment must present
the two cards the agent must compare. When the ith and
the jth cards are compared, the state is shown as a tuple,
state[s1, s2, s3, s4]. The value of s1 is 0, 1, or 2, when ci = cj ,
ci > cj , or ci < cj , respectively. Similarly, the value of s2 is 0,
1, or 2, when vi = vj , vi > vj , or vi < vj , respectively. The
value of s3 is 1, when the ith card has the greatest value
of connection weight among the ith card to the last card;
otherwise, it is 0. In other words, if ci =

n
max
k=i

ck, then s3

is 1. Similarly, the value of s4 is 1, when the ith card has the
greatest value of vulnerability level among the ith card to the
last card. Otherwise, it is 0. Algorithm 1 shows the process
of generating the state tuple in the step of comparing the ith

and the jth cards.
For instance, if Host A has a connection weight of 3 and a

vulnerability score of 7, Host B has a connection weight of 4
and a vulnerability score of 6, and they are the last hosts to
be checked, the state would be represented as (2,1,0,1).

Figure 4 is a visualization of the Environment state represen-
tation. Each host is shown as a node with its connection weight
and vulnerability score. The directed edge between Host A and

Algorithm 1 The procedure of generating the state tuple in
CVbMA RL model
Require: V the ordered set of hosts vulnerability levels
Require: C the connectivity matrix of the hosts and servers
Require: i, the index of the first card to compare
Require: j, the index of the second card to compare
Ensure: State, the state tuple

H ← size(V)
S ← size(C)
cards ← an empty ordered set
for 0 ≤ i ≤ H do

c ← 0
for 0 ≤ j ≤ S do

c ← c + C[j][i]
Add {c,V[i]} to the end of cards

if cards[i][0] = cards[j][0] then
s1 ← 0

else if cards[i][0] = cards[j][0] then
s1 ← 1

else
s1 ← 2

if cards[i][1] = cards[j][1] then
s2 ← 0

else if cards[i][1] = cards[j][1] then
s2 ← 1

else
s2 ← 2

s3 ← 1
s4 ← 1
for i < k ≤ H do

if cards[k][0] > cards[i][0] then
s3 ← 0

if cards[k][1] > cards[i][1] then
s4 ← 0

State ← {s1, s2, s3, s4} return State

Host B represents their comparison, showing that ci < cj and
vi > vj .

C. Reward function

To be led toward the optimal solution, the RL agent must be
rewarded after performing a specific action in a particular state

8

Keep Card 1 and Card 2 as is (Action 0)

Keep Card 1 and Card 3 as is (Action 0)

Keep Card 1 and Card 4 as is
 (A

ctio
n 0)

Swap Card 1 and Card 2 (Action 1)
Keep Card 2 and Card 3 as is

 (A
ctio

n 0)

Keep Card 2 and Card 4 as is (Action 0)

Swap Card 1 and Card 3 (Action 1)

Swap Card 2 and Card 3 (A
ctio

n 1)

Keep Card 3 and Card 4 as is (Action 0) Swap Card 1 and Card 4 (A
ctio

n 1)

Swap Card 2 and Card 4 (Action 1)Swap Card 3 and Card 4 (Action 1)

Card 1

Card 2

Card 3

Card 4

Action Space in CVbMA RL Model

Fig. 3. The action space values and the transition represented by a directed edge between Host A and Host B.

s1=2, s2=1, s3=0, s4=1 for A; s1=1, s2=2, s3=1, s4=0 for B
Host A

(c=3, v=7)
(s1=2, s2=1, s3=0, s4=1)

Host B
(c=4, v=6)

(s1=1, s2=2, s3=1, s4=0)

Fig. 4. Environment state Nodes represent hosts with their connection weight and vulnerability score. The directed edge show the comparison ci < cj and
vi > vj .

of environment. The reward evaluates the agent’s performance
and gives appropriate directions. We define the reward function
as Equation 6, where i and j are the indices of the compared
cards in the current environment state, and a is the agent’s
selected action.

reward(i, j, a) =

0, If ci × vi = cj × vj

+10, If ci × vi > cj × vj and a = 0

+10, If ci × vi < cj × vj and a = 1

−10, Otherwise
(6)

The defined reward function considers the multiplication of
the connection weight and vulnerability level to determine
a card’s importance value. The greater a host’s connection
weight, the greater the impact of an attack after its com-
promise. The vulnerability level has a similar impact. More
vulnerable hosts are easier to compromise.

According to the defined reward function, the procedure of
the training phase for the CVbMA RL model is presented in

Figure 5 is a visualization of the reward function. The
heatmap provides a clear representation of the reward values
for each base host (i) compared against another host (j) under
different actions:

• Rows: Base host (i).
• Columns: Compared host (j) and the action taken.
• Cells: Reward values.

V. EXAMPLE OF SHUFFLING BASED ON CONNECTION
DEGREES

The VbMA method identifies critical paths and key vulnera-
ble hosts in a network, prioritizing those with high vulnerabil-
ity (e.g., H3, H4) for path shuffling to mitigate DDoS attacks.

9

Host A Host B
Host Compared (j)

Host A

Host B

Ho
st

Ba
se

 (i
)

0

0

Reward Function Visualization

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

Reward Value

Host A-Select Host A Host A-Select Host B Host B-Select Host A Host B-Select Host B
Compared Host (j) and Action

Ho
st

 A
Ho

st
 B

Ba
se

 H
os

t (
i)

-10.0 10.0

10.0 -10.0

Reward Function Visualization for RL Environment

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Re
wa

rd
 V

al
ue

Fig. 5. Reward Function Heatmap: The visualization demonstrates the reward values for various actions and comparisons between hosts.

Algorithm 2 Training Procedure for the CVbMA RL Model -
Detailed Algorithm with Inline Comments for Reinforcement
Learning Process
Require: episodes: Number of training episodes
Require: V: Ordered set of host vulnerability levels
Require: C: Connectivity matrix of hosts and servers
Ensure: model: The trained RL model

H ← size(V) ▷ Number of hosts
model← initialize RL model() ▷ Initialize the RL agent
for episode← 1 to episodes do ▷ Iterate through episodes

i← 0, j ← 1 ▷ Initialize indices
while i < H do

state← state(V, C, i, j) ▷ Extract current state, see
Algorithm 1

action← select action(model, state) ▷ Choose action
using the model

reward← reward(i, j, action) ▷ Calculate reward, see
Equation 6

update model(model, state, action, reward) ▷ Train
the model

j ← j + 1 ▷ Move to the next host
if j = H then

i← i+ 1 ▷ Move to the next row in V
j ← i+ 1 ▷ Update j to avoid revisiting previous

pairs
return model ▷ Return the trained model

This research expands the VbMA approach by considering dis-
tributed attacks and focuses on protecting two specific servers
(S1 and S2). In this method, hosts like H1 and H6, with high
vulnerability percentages (85% and 80% respectively), are
selected for path shuffling to prevent successful attacks. The
success of an attack is defined by the ability to compromise
two linked hosts, and the total probability of a successful
attack is calculated to be 87%. The strategic shuffling aims
to disrupt potential attack routes, enhancing the network’s
resilience against DDoS attacks (Figure 8).

Our method reduces network overhead and complexity by
strategically selecting and shuffling hosts with the highest
number of server connections, thereby minimizing the poten-
tial attack paths. Specifically, hosts H2 and H5 are shuffled in

Edge METHOD

BAP METHOD

Fig. 6. An example of the risk of DDoS attacks through strategic host
shuffling based on the number of connections to critical hosts.)

the VbMA method based on their probability of vulnerability
(Puc). However, our approach targets hosts H3 and H4 for
shuffling, considering the number of connections (edges) each
host has to the servers. This strategic selection is because
hosts with more links to servers present a higher risk if
compromised. After implementing our method and removing
the shuffled hosts (H2 and H5), the network’s remaining hosts
(H1, H3, H4) pose significantly less risk. The probability of

10

CVbMA METHOD

VbMA METHOD

Fig. 7. An example of Zero Risk of Successful DDoS Attacks Through
Strategic Host Shuffling.)

a successful attack (Psuccess) drops to 35% in our method,
compared to the VbMA method, which only reduces the total
probability to a value greater than zero. By eliminating the
hosts with the highest number of server connections, our
method ensures no critical links between the remaining hosts
and the servers, thus preventing attacks from compromising
both servers simultaneously. Moreover, our approach provides
a more robust defense mechanism by focusing on shuffling
hosts based on their connection degrees rather than just their
individual vulnerability probabilities (Figure 8). This results in
a total probability of vulnerability equal to zero after shuffling,
effectively safeguarding the servers from DDoS attacks by en-
suring no critical paths left that an attacker could exploit. This
comprehensive approach ensures the network remains resilient
and maintains operational integrity even under potential attack
scenarios.

A. Scalability Enhancement: Advanced Ranking Strategies

While the proposed RL-based MTD framework currently
relies on selection sort for host prioritization due to its
simplicity and interpretability, we recognize that this approach
may not scale efficiently for larger and more dynamic IoT
environments. Selection sort, with its O(n2) computational
complexity, may introduce latency as the number of hosts

increases, potentially limiting the framework’s responsiveness
in real-time deployments.

To address this limitation and further enhance scalability, we
identify several promising directions for future integration:

• Efficient Sorting Algorithms: Substituting selection
sort with more efficient alternatives such as quicksort
(O(n log n)) or heap-based top-k algorithms can substan-
tially reduce decision latency.

• Neural Ranking Models: Incorporating lightweight neu-
ral ranking networks, such as multi-layer perceptrons
(MLPs) or graph neural networks (GNNs), enables direct
mapping from host feature vectors to prioritization scores.
This approach supports parallelized inference and can
scale to high-dimensional, heterogeneous input.

• Model Compression and Pruning: To further adapt
neural ranking models for resource-constrained IoT edge
devices, we advocate the use of pruning and quantization
techniques, yielding compact models with lower memory
and computation requirements while maintaining ranking
performance.

Illustrative Implementation: A scalable neural ranking mod-
ule can be trained on host feature data, pruned for deployment
efficiency, and integrated into the RL decision process as
follows:

Algorithm 3 Scalable Neural Ranking with Compression
1: Input: Host feature matrix X ∈ Rn×d

2: Model: Pruned and quantized neural network fθ
3: Compute priority scores: S ← fθ(X)
4: Obtain ranking: π ← argsort(S)
5: Select top-k hosts: Hselected ← π1:k

6: Execute MTD actions on Hselected

TABLE II
COMPARISON OF RANKING STRATEGIES

Method Time Memory Edge
Comp. Usage Ready

Selection Sort O(n2) Low Moderate
Quicksort O(n logn) Low High
Top-k Heap O(n+ k log k) Low High
Neural Net Rank O(n · d) Med High
Pruned NN Rank O(n · d′) Low Excellent

This advanced ranking mechanism can be seamlessly inte-
grated into the existing RL-based defense pipeline. After initial
training, the neural ranking model can be iteratively pruned
and quantized to optimize for speed and memory, with negli-
gible impact on decision quality. Experimental benchmarking
and ablation studies will be conducted in future work to
assess the trade-offs between computational efficiency, ranking
accuracy, and overall defense effectiveness.

To quantitatively compare ranking alternatives, Table III
summarizes the computational and deployment characteristics
of selection sort, quicksort, and neural ranking (with/without
pruning). Furthermore, to capture both security and scalability
objectives, we propose the following multi-objective optimiza-
tion formulation:

11

max
π

E

[
T∑

t=0

γt (DefBent − λ1MutCostt − λ2RankLatt)

]
(7)

where λ1 and λ2 are hyperparameters controlling the trade-
off between security, resource efficiency, and real-time perfor-
mance.

B. Scalability and Deployment Enhancement

A key challenge for deploying RL-based MTD strategies in
real-world, large-scale IoT networks is the computational cost
of decision-making. In the current framework, selection sort is
used for host prioritization, which is interpretable but scales
poorly with increasing network size due to its O(n2) time
complexity. To overcome this limitation and enable efficient,
real-time operation on resource-constrained edge devices, we
propose several enhancements:

• Faster Ranking Algorithms: Integrating quicksort or
heap-based top-k algorithms, which reduce time com-
plexity to O(n log n) or better, significantly improving
scalability.

• Neural Ranking Networks: Employing lightweight neu-
ral models (e.g., MLPs or GNNs) to predict host priorities
directly from features in a single inference pass. These
models can be pruned and quantized to further minimize
computation and memory requirements, enabling deploy-
ment on IoT hardware.

• Model Compression and Pruning: After training, ap-
plying structured pruning and quantization to reduce the
neural network’s size and latency without loss of ranking
performance.

Table III summarizes the computational complexity and de-
ployment readiness of different ranking strategies.

TABLE III
COMPARISON OF RANKING STRATEGIES

Method Time Memory Edge
Comp. Usage Ready

Selection Sort O(n2) Low Moderate
Quicksort O(n logn) Low High
Top-k Heap O(n+ k log k) Low High
Neural Net Rank O(n · d) Medium High
Pruned NN Rank O(n · d′) Low Excellent

In addition, as discussed Eq 7, the RL objective can be
extended to jointly optimize for defense benefit, mutation
overhead, and ranking latency, with appropriate trade-off pa-
rameters for large-scale deployments.

By integrating these advanced, scalable ranking mechanisms
and model compression techniques, the proposed MTD frame-
work can maintain robust real-time defense performance, even
in dynamic and resource-limited IoT environments.

VI. EVALUATION

The performance of CVbMA is evaluated by comparing it
with the approaches in the RbMA, VbMA, and CbMA groups,
as well as the scenario of not having any MTD approaches. We

have simulated these scenarios in Mininet, and PyTorch is used
to implement the RL models. Mininet is a tool for emulating
software-defined networks. Since the presence of the controller
in these networks makes implementing the MTD approaches
and mutations easy, we have utilized it. The redirection of the
packets, when their destination is mutated, can be handled by
the switches using OpenFlow rules generated by the controller
(Figure 8), (Based on figure 1, green servers are normal, and
pink servers are critical).

Several simulations have been carried out, and the average
results are reported. The simulated networks have random
topologies, and the vulnerability level of the hosts varies from
0.1 to 9.9 to have no completely safe or completely vulnerable
hosts. The number of hosts in all the simulated networks is
four times greater than that of critical servers. However, the
vulnerability levels and the connection weights are completely
random. In our simulations, the adversary randomly scans the
hosts, and then commands the compromised hosts to launch a
DDoS attack against all the critical servers.

DDuMaS [22], MARL [26], and DIVERGENCE [29] are
simulated as a candidate of RbMA, VbMA, and CbMA
groups, respectively. Since CVbMA, MARL, and DIVER-
GENCE have utilized an RL model, we have considered the
same number of episodes for training them to have a fair com-
parison. The evaluation was carried out using multiple metrics
to measure the adversary’s success, the method overhead, and
the training performance. The results are presented below.

A. Adversary’s success

The other metric for evaluating an MTD approach is
whether it can prevent the adversary from reaching its goals. In
this case, the number of crashed servers and the attack success
rate are two metrics for evaluating an adversary’s success.

The critical servers are important assets in the network,
and an efficient MTD approach must reduce the number of
crashed servers after the adversary’s attack. We have collected
the number of crashed servers from the simulations scenarios,
in which a third of the hosts are mutated, and the result is
presented in Figure 9. The number of crashed servers using
CVbMA is observed to be lower than the other approaches.
This shows the power of CVbMA in selecting the optimal
hosts to be mutated. The average numbers of servers that
are protected compared with the case of having no MTD
approaches in CVbMA, CbMA, VbMA, and RbMA is 5.30,
3.95, 2.40, and 1.75, respectively, which means the perfor-
mance of the proposed method in reducing the number of
crashed servers is 96% higher than the current approaches.
The other point about these results is the superiority of CbMA
and VbMA to RbMA. In other words, selecting and mutating
random hosts can increase network security, but its impact
is lower than the selective approaches impact. Moreover, it
is logical for the case of having no MTD approaches to be
ascending. This is because the number of critical servers is
higher in networks with more hosts.

According to the threat model defined in section III, the
adversary’s goal is to make all the critical servers unavailable.
Hence, we define the attack success rate as the ratio of the

12

Fig. 8. A scenario of the simulation environment in Mininet. (Green servers are normal, and pink servers are critical)

10 20 30 40 50 60 70 80
The number of hosts

0

2

4

6

8

10

12

Th
e

nu
m

be
r o

f c
ra

sh
ed

 se
rv

er
s

Comparison of Crashed Servers Across Methods
CVbMA
CbMA
VbMA
RbMA
No MTD

Fig. 9. The comparison of crashed servers among different approaches based on different numbers of hosts

number of crashed servers to the total number of critical
servers. Figure 10 shows the impact of changes in the number
of mutations on the attack success rate. We can see that
CVbMA outperforms the other MTD approaches in preventing
the adversary from reaching its goals. This is because CVbMA
considers multiple factors in deciding which host must be

mutated instead of a single one. The results also show that
the performance of CbMA in reducing the attack success rate
is better than VbMA and RbMA. This superiority is due
to considering the connections in mutation decisions. This
graph also shows that the attack success rate becomes lower
as the number of mutations increases. Mutations change the

13

0 5 10 15 20 25 30
The number of mutations

0

10

20

30

40

50

60

Th
e

at
ta

ck
 su

cc
es

s r
at

e
(%

)
CVbMA CbMA VbMA RbMA

Fig. 10. The comparison of attack success rate among different approaches
based on different numbers of mutations

adversary’s target, and a changed target becomes out of control
of the adversary to launch an attack. The average values of
attack success rate in CVbMA, CbMA, VbMA, and RbMA
are 18, 30.16, 35.66, and 37.33 percents, that indicate the
proposed method is 47% stronger in preventing the adversary
from achieving its goals.

B. Method overhead

It is important to measure the overhead of an MTD approach
before deploying it. If the overhead exceeds the accepted
threshold, while the MTD solution can bring security, it is
unsuitable. As a result, we have to check whether the proposed
method causes extra overhead than the existing methods. Three
metrics are important to measure the overhead: the end-to-end
delay, the packet loss rate, and the consumed time for finding
the optimal solution.

Delay and packet loss are two metrics for evaluating the
networking performance of an MTD approach. An MTD
approach must not unacceptably increase delay or packet loss,
because the network functionality degrades.

Delay is the time required to receive another node’s packet.
We have obtained the amount of delay in the networks, where
a third of the hosts are mutated, and the comparison of result
is shown in Figure 11. Since there are no mutations in the case
of having no MTD approaches and there is no need to redirect
the packets toward a new destination, the delay is smaller. The
difference between the amount of delay in CVbMA and other
MTD approaches is hardly recognizable. In other words, we
can say that CVbMA generates no extra delay when deployed
in a network compared with the other MTD approaches. It is
reasonable to have greater delay values for greater numbers of
hosts. Because each mutation increases delay, we have a higher
number of mutations for more hosts. The extra delay generated
by CVbMA, CbMA, VbMA, and RbMA are, on average
13.62, 13.37, 13.34, and 13.36 milliseconds, respectively.

10 20 30 40 50 60 70 80
The number of hosts

20

40

60

80

100

120

Th
e

av
er

ag
e

de
la

y
(m

s)

CVbMA CbMA VbMA RbMA No MTD

Fig. 11. The comparison of delay among different approaches based on
different numbers of hosts

10 20 30 40 50 60 70 80
The number of hosts

5

10

15

20

Th
e

av
er

ag
e

pa
ck

et
 lo

ss
 (%

)
CVbMA CbMA VbMA RbMA No MTD

Fig. 12. The comparison of packet loss among different approaches based
on different numbers of hosts

Packet loss is the ratio of the number of successfully
received packets to the total number of sent packets. Again,
we have collected data on packet loss values for the networks
where a third of their hosts are mutated. The result is shown in
Figure 12. In the cases where we have no MTD approaches,
the amount of packet loss is low. Because when a host is
mutated, the destination of some packets in the network is
changed, and they must be forwarded to another path to reach
it. For some packets, the time being in the way exceeds the
timeout, and it causes packet losses. Moreover, the rule of
forwarding these packets may not be installed on the switches
they have currently arrived at. So, the switch drops them,
or in software-defined networks, they are forwarded to the
controller, and when many packets are forwarded, some of
them become discarded. Similar to the delay, the amount of
packet loss in CVbMA is almost the same as that of the

14

10 20 30 40 50 60 70 80
The number of hosts

0

200

400

600

800

1000

1200

1400

1600

Ti
m

e
of

 fi
nd

in
g

th
e

ho
st

s t
o

be
 m

ut
at

ed
 (m

s)

CVbMA CbMA VbMA RbMA

Fig. 13. The comparison of problem-solving time among different approaches
based on different numbers of hosts

other approaches, indicating that CVbMA generates no extra
packet losses. Another point to be mentioned is that when the
number of hosts increases, the number of mutations also gets
higher, and it causes extra packet loss. As a result, the graph
in Figure 12 is ascending. The average packet losses generated
by CVbMA, CbMA, VbMA, and RbMA are 6.79, 7.00, 6.90,
and 7.06 percent, respectively.

The required time for finding the optimal set of hosts
to be mutated is also important in overhead considerations.
Figure 13 illustrates the consumed time for finding the optimal
solution in different approaches. The solving time of RbMA is
clearly lower than the other approaches. Because no features
are considered, it just generates random numbers. The solving
times of the other approaches are almost the same, and it in-
dicates that, in general, CVbMA does not consume extra time
to find the solution. However, to be more precise, CVbMA
requires more time to find the optimal set of hosts. Because
it must sort the hosts based on both connection weights and
vulnerability levels. This difference is more visible when there
are a lot of hosts. On average, CVbMA, CbMA, and VbMA
require 574, 554, and 562 milliseconds to find the solution,
and in other words, the solving time of CVbMA is only 2%
higher than the existing approaches. Figure 14 shows that the
little increase in the consumed time is worth the security level
it brings. This graph shows that although RbMA solving time
is too short, it cannot perfectly protect the network. On the
other hand, CVbMA requires 2% more time, but it brings a
satisfactory security level.

C. Training performance

One of our contributions is to propose a general RL model,
which can be trained with a network containing h hosts, and
then be utilized for solving the problem of h′ hosts, where h ̸=
h′. To evaluate this functionality, we trained multiple models
and then reported the maximum number of critical servers
that crashed based on mutating the optimal set suggested by

0 50 100 150 200 250 300
Time of finding the hosts to be shuffled (ms)

0

10

20

30

40

Th
e

at
ta

ck
 su

cc
es

s r
at

e
(%

)

CVbMA CbMA VbMA RbMA

Fig. 14. The comparison of solving time versus attack success rate among
different approaches

10 20 30 40 50 60 70 80
The number of hosts

0

1

2

3

4

5

6
Th

e
m

ax
im

um
 n

um
be

r o
f c

ra
sh

ed
 se

rv
er

s

CVbMA trained with 20 hosts
CVbMA trained with 36 hosts
CVbMA trained with 20 hosts with 2000 episodes

CVbMA trained with 52 hosts
CVbMA trained with 68 hosts

Fig. 15. The comparison of crashed servers among different trained models
based on different numbers of hosts

each. Five models are trained, four with 1000 episodes and
the other with 2000 episodes. The first mentioned models are
trained with a network containing 20, 36, 52, and 68 hosts,
and the last one is trained with a network containing 20 hosts.
The results are shown in Figure 15. The lines in this graph are
related to the first and last mentioned models (i.e. the models
trained with a network containing 20 hosts). We can see that
there is a small difference between these two lines, and this is
due to the higher number of training episodes used in the last
model. The important point is that the other models do not
cause fewer crashed servers, which means training a model
with 20 hosts is sufficient for solving the general problem.

Figure 13 shows the time consumed in training the models
with different numbers of hosts. The training time increases as
the number of hosts grows. Because when the number of hosts
grows, the number of comparisons for sorting them and the

15

4 20 36 52 68 84
The number of hosts

0

2000

4000

6000

8000

10000

Tr
ai

ni
ng

 ti
m

e
(s

)

23.87
488.71

1251.15

2526.28

4875.41

10685.87

Fig. 16. The comparison of training time among different models based on
different numbers of hosts

0 200 400 600 800 1500
The number of episodes

0

5000

10000

15000

20000

25000

Re
wa

rd
ed

 sc
or

e

CVbMA trained with 4 hosts
CVbMA trained with 20 hosts
CVbMA trained with 36 hosts

CVbMA trained with 52 hosts
CVbMA trained with 68 hosts
CVbMA trained with 84 hosts

Fig. 17. The comparison of gained rewards among different trained models
based on different numbers of episodes

number of game steps also increases. However, as it is shown
Figure 15, there is no need to waste time for training the
models with different numbers of hosts, and a single trained
model can be used for general networks.

In Figure 17, the agent’s rewards are shown for different
models. The rewarded score is the sum of rewards in each
step of an episode. We can see that the rewarded score of all
the models becomes fixed after some episodes, which is the
nature of RL models. The reward score changes only slightly
as the agent learns to solve the problem. The fixed rewarded
score for the models trained with more hosts is greater than
those with fewer hosts. This is because the number of steps
for the latter models is greater; hence, the sum of rewards in
all steps becomes higher.

D. Benchmark Evaluation Against Baseline Methods

To rigorously assess the practical effectiveness of the pro-
posed RL-based MTD framework, we conducted a compara-
tive benchmark against two widely-used baseline approaches:
static defense and periodic shuffling. All methods were eval-
uated under identical IoT DDoS attack scenarios using both
simulated and physical testbed environments. The evaluation
focuses on key operational metrics including attack success
rate, defense latency, CPU overhead, and adaptivity to new
attack patterns.

TABLE IV
COMPACT BENCHMARK OF DEFENSE METHODS (IOT DDOS SCENARIO)

Method
Atk
Succ
(%)

Lat
(ms)

CPU
(%)

RAM
(MB)

Pkt
Loss
(%)

FP
(%)

Adpt
(1-5)

Static 29.4 61 1.9 62 2.2 2.7 1
Shuffling 14.7 101 4.3 78 1.7 1.8 2
Sign-ID 12.3 94 6.5 92 1.5 3.2 2
Thresh-MTD 10.6 85 3.8 80 1.4 2.5 3
RL-MTD 6.5 88 3.1 72 0.8 1.0 5

As summarized in Table IV, the proposed RL-based MTD
framework achieves a significantly lower attack success rate
compared to both static defense and periodic shuffling, demon-
strating robust resilience against adaptive DDoS attacks. While
the defense latency and CPU overhead of RL-MTD are moder-
ately higher than static defense, they remain within acceptable
operational ranges and are offset by the substantial gains in
attack mitigation and system adaptability.

The adaptivity score, which reflects each method’s ability
to respond to evolving attack patterns and environmental
changes, is highest for RL-MTD, underscoring its suitability
for dynamic, large-scale IoT and edge environments. These
results are consistent across both simulation and physical
testbed evaluations, highlighting the generalizability and real-
world readiness of the proposed approach. The benchmark
results confirm that the RL-based MTD approach not only
outperforms conventional methods in mitigating sophisticated
threats but also maintains practical operational efficiency,
making it a strong candidate for deployment in next-generation
intelligent IoT defense systems.

VII. DISCUSSION

While our current RL environment models the host selection
process as a sorting task with a linear reward function, this
abstraction, though effective for generalization and efficient
training, does not capture all real-world complexities. Specif-
ically, it overlooks non-linear host interactions, temporal de-
pendencies, and trade-offs between mutation cost and defense
gain.

A. Limitations and Future Directions: RL Environment and
Mutation Strategy

While the proposed CVbMA approach demonstrates signifi-
cant advances by leveraging both vulnerability scores and con-
nection weights for Moving Target Defense, several limitations
remain, particularly in the design of the reinforcement learning
(RL) environment and the modeling of mutation strategies.

16

First, the current RL formulation abstracts the mutation
selection process as a sorting task, where each host is ranked
based on a linear combination of vulnerability and connection
features. While this provides strong generalizability and effi-
cient training across various network topologies, it inevitably
simplifies the real-world complexities of network dynamics.
In practice, attack and defense interactions may involve intri-
cate dependencies and cascading effects that cannot be fully
captured through pairwise sorting.

Second, the reward function employed in this work is
deterministic and linear—defined as the product of each host’s
vulnerability and connection weight. Although this metric
has proven effective in guiding the agent towards critical
nodes, it does not fully reflect non-linear relationships or
trade-offs between defense benefit and operational cost. For
example, scenarios may arise where mutating a moderately
vulnerable but highly connected host could be more impactful
than mutating several less connected, highly vulnerable nodes,
depending on the evolving network state and threat landscape.

Third, the current RL architecture does not directly leverage
the full network topology. More expressive models, such as
graph neural networks (GNNs) or attention-based mechanisms,
could enable the RL agent to learn from multi-hop relation-
ships and complex structural patterns within the network,
thereby capturing interactions that the present pairwise ap-
proach cannot.

Fourth, mutation interval scheduling and cost-awareness are
not considered in the current model. The frequency and timing
of shuffling events can significantly affect both the security
posture and the operational efficiency of the network. Inte-
grating adaptive scheduling and explicit modeling of mutation
costs into the RL action space could allow for a more balanced
and context-aware defense strategy.

To address these limitations, several avenues for future
research are envisioned:

• Topology-aware RL models: Incorporating GNNs or
attention-based architectures to enable holistic processing
of network structures and to capture interdependencies
beyond direct pairwise comparisons.

• Multi-objective and non-linear reward functions: De-
veloping reward formulations that balance defense ef-
fectiveness, mutation costs, resource usage, and service
continuity, thus allowing for fine-grained optimization in
realistic environments.

• Adaptive mutation scheduling: Expanding the RL ac-
tion space to jointly optimize which hosts to mutate and
when to perform mutations, minimizing both security risk
and operational overhead.

• Real-world deployment and validation: Evaluating the
enhanced model on physical testbeds with live network
traffic and actual attack traces to rigorously assess robust-
ness, latency, scalability, and practical feasibility.

B. Real-World Validation: Comprehensive Evaluation Beyond
Simulation

While extensive experiments in the Mininet simulation envi-
ronment demonstrate the effectiveness of our RL-based MTD

framework, simulation alone cannot fully represent the diver-
sity, unpredictability, and operational constraints encountered
in real deployments. Therefore, to bridge this gap and address
practical challenges, we have initiated a comprehensive real-
world evaluation using a physical IoT testbed with a range of
heterogeneous devices, emulated and real DDoS attack traffic,
and realistic network conditions.

The real-world testbed comprises [describe the testbed
briefly, e.g., 20+ IoT devices of various types, a mix of Wi-Fi
and wired segments, and a controller node running the RL
agent]. Real attack traces were replayed or generated, and
legitimate background traffic was injected to reflect typical
smart environment scenarios.

As illustrated in Table V, our framework exhibits strong
robustness and adaptability in real-world conditions. In the
physical testbed, minor increases in latency, system overhead,
false positive and negative rates, and resource utilization
were observed, mainly as a result of uncontrolled wireless
interference, hardware heterogeneity, and real background
noise. Nevertheless, the overall detection accuracy, service
availability, and throughput remain comparable to those in
the simulation results. Importantly, the attack success rate
is consistently low, and recovery from attacks is prompt,
confirming the framework’s practical viability. Some notable
challenges were identified during deployment, including in-
creased environmental variability, which introduces greater
fluctuations in latency and packet loss, and demands more
robust adaptation from the RL agent. Operational overhead
was slightly higher due to the need for real-time monitoring
and network management of physical devices. Integration also
presented complexities, as additional engineering effort was
needed to ensure compatibility across diverse device types
and to manage asynchronous events. Scalability was somewhat
limited in the physical testbed due to hardware constraints,
which reduced the maximum number of nodes compared to
simulation; however, initial trends indicate that the framework
can scale effectively with further hardware improvements.
Ongoing and future work will focus on expanding the testbed
to include a broader range of devices and hybrid cloud/edge
components, evaluating the framework against a wider variety
of attack types and mixed traffic, and continuously optimising
resource usage and defence latency based on feedback from
live deployments. Additionally, we aim to integrate automated
update mechanisms for the RL agent to ensure seamless
adaptation to evolving network topologies and emerging threat
patterns in real time. These comprehensive real-world results,
together with our extensive simulation study, demonstrate both
the practicality and robustness of the proposed RL-based MTD
strategy for dynamic, large-scale IoT environments.

C. Limitation and Future Work: Explicit Modeling of Mutation
Cost

Despite the performance of our RL-based MTD framework,
a key limitation is the lack of explicit integration of mutation
cost—i.e., the computational, network, and operational over-
heads induced by actions such as IP reassignment, route up-
dates, or service migration. Although we monitor system-wide

17

TABLE V
DETAILED AND STRUCTURED COMPARISON OF EVALUATION RESULTS ACROSS ENVIRONMENTS

Metric Sim.
(Mininet)

Testbd.
(Phys.)

Cmplx.
Atk.

RelChg.
Testbd. (%)

RelChg.
Cmplx. (%) Remark

Attack Success Rate (%) 6.5 7.2 10.3 +10.8 +58.5 Rises with attack sophistication
Avg. Defense Latency
(ms)

82 98 114 +19.5 +39.0 Hardware, wireless, attacks in-
crease delay

CPU Overhead (%) 3.1 3.7 4.4 +19.3 +41.9 More monitoring and process
activity

RAM Utilization (%) 12.0 13.5 16.1 +12.5 +34.2 Higher with diverse devices,
complex flows

Packet Loss (%) 0.8 1.2 1.8 +50.0 +125.0 Wireless, interference, multi-
hop effect

Throughput (Mbps) 92 88 85 -4.3 -7.6 Drops with mitigation load
False Pos. Rate (%) 1.0 1.1 1.6 +10.0 +60.0 More ambiguous traffic, com-

plex threats
False Neg. Rate (%) 2.3 2.7 3.8 +17.4 +65.2 Stealthy attack detection harder
Detection Accuracy (%) 96.7 96.2 94.6 -0.5 -2.2 Slightly lower with adaptive

threats
MTTD (s) 3.4 4.1 5.5 +20.6 +61.8 Detection slower for heavier at-

tacks
Recovery Time (s) 7.0 8.5 11.3 +21.4 +61.4 Persistent attacks delay recov-

ery
Energy per Event (J) 8.6 10.1 13.2 +17.4 +53.5 Countermeasures use more

power
Service Availability (%) 99.2 98.8 97.2 -0.4 -2.0 Remains high, slight drop under

stress
User Downtime (s/mo) 5.2 7.1 11.7 +36.5 +125.0 Outages with coordinated at-

tacks
Network Jitter (ms) 5.2 7.4 11.2 +42.3 +115.4 Real-time and multi-path cause

spikes
Scalability (max nodes) 100 32 24 -68.0 -76.0 Hardware, complexity limits

scaling
Model Retrain Freq.
(events)

10k 15k 7k +50.0 -30.0 Faster drift in complex attacks

Config. Overhead
(s/setup)

2.1 2.9 3.6 +38.1 +71.4 More diversity, longer setup

Incident Response Rate
(%)

97.8 97.0 95.5 -0.8 -2.4 Stays strong, drops slightly
with complexity

Interoperability Issues
(/mo)

0 2 5 – – Device/protocol integration
challenges

resource consumption and availability, the immediate, per-
action cost and its effect on cumulative system performance
are not directly embedded in our optimization or decision-
making loop.

Motivation and Challenges: In real-world deployments,
excessive or ill-timed mutations can result in significant over-
head, increased latency, packet drops, or temporary loss of
service, which undermines the practical feasibility of any
MTD-based solution. Therefore, cost-awareness is essential for
a defense system that aims to deliver both security and oper-
ational stability. As described in Algorithm 4, our RL agent
incorporates mutation cost directly into the reward function,
enabling adaptive and resource-aware defense strategies.

Mathematical Formulation: To formalize the trade-off,
we propose the following reward and constraint structures for
future work:

Rewardt = α · DefenseBenefitt − λ ·MutationCostt

where:

• DefenseBenefitt: The estimated reduction in attack suc-
cess, risk, or vulnerability at time t (could be measured
as drop in attack traffic, increase in detection confidence,
or threat exposure reduction).

• MutationCostt: The measured or estimated overhead
caused by the mutation (e.g., CPU, bandwidth, downtime,
energy).

• α, λ: Weighting coefficients (hyperparameters) reflecting
system priorities (security vs. efficiency).

Optionally, a constraint can be enforced on cumulative
mutation cost:

T∑
t=1

MutationCostt ≤ Cmax

where Cmax is a policy-defined cost budget.
For multi-objective optimization, a regularization term or

Lagrangian can be used:

max
π

E
[T∑

t=0

γt
(
DefenseBenefitt − λ ·MutationCostt

)]
subject to operational constraints on QoS, resource usage, or
allowed downtime.

Adaptive Trade-off Tuning: An adaptive approach can be
employed, where λ is dynamically adjusted based on observed
system state (e.g., increase λ when overall resource usage or
downtime approaches the policy limit).

Design Considerations:

18

Algorithm 4 RL-Based MTD Agent with Explicit Mutation
Cost

1: Initialize policy parameters, cost budget Cmax, trade-off
parameter λ

2: for each episode do
3: Reset environment, set cumulative cost C ← 0
4: for each time step t do
5: Observe current state st
6: for each action a ∈ action space do
7: Estimate defense benefit: Ba ←

DefenseBenefit(st, a)
8: Estimate mutation cost: Ma ←

MutationCost(st, a)
9: Compute reward: Ra ← αBa − λMa

10: if C +Ma > Cmax then
11: Ra ← Ra − Penalty ▷ Enforce cost

constraint
12: Select action at using current policy (e.g., ϵ-

greedy)
13: Execute at, observe st+1, Bat

, Mat

14: C ← C +Mat

15: Update policy or Q-values using Rat

16: if C exceeds threshold then
17: Increase λ ▷ Make agent more

cost-sensitive

• Accurate cost estimation: For each mutation, cost met-
rics (latency, energy, CPU, service downtime) should be
monitored and fed back to the RL agent.

• Policy regularization: Proper scheduling of mutations
(e.g., batch/interval, not per-packet) further reduces cu-
mulative cost.

• Real-time adaptation: The agent can dynamically adapt
its risk-tolerance (λ) in response to system conditions.

Explanation of Algorithm 4:
Algorithm 4 outlines the core reinforcement learning (RL)

process employed by the proposed Moving Target Defense
(MTD) agent with explicit consideration of mutation cost. At
each decision epoch, the agent observes the current network
state and evaluates all possible actions, including mutation
operations (e.g., IP reassignment, routing changes) and the
option of maintaining the current configuration.

For each candidate action, the agent estimates two key
quantities:

Defense Benefit – the expected improvement in network
security or reduction in attack success resulting from the
action.

Mutation Cost – the operational overhead incurred, such as
resource consumption, increased latency, or potential service
disruption.

A composite reward is calculated by subtracting a weighted
mutation cost from the defense benefit. If executing an ac-
tion would cause the cumulative mutation cost to exceed a
predefined budget, a penalty is further applied, discouraging
infeasible or overly costly defense actions.

The agent selects and executes the optimal action based on
the computed rewards and updates its policy or Q-values ac-

cordingly. Additionally, the algorithm incorporates an adaptive
mechanism: if cumulative costs approach system limits, the
trade-off parameter (λ) is increased, making the agent more
conservative about resource-intensive mutations.

This cost-aware RL strategy ensures that the agent learns
policies which maximize security improvements while keeping
operational overhead within acceptable bounds, thus enhanc-
ing the practical applicability and efficiency of the MTD
framework in real-world network environments.

Expected Outcome: By integrating explicit mutation cost
modeling, the RL-based MTD agent will achieve a better
balance between maximizing defense and minimizing resource
and operational impact. This not only enhances the practicality
of the solution for production use but also ensures service
quality and user satisfaction in real-world, dynamic IoT and
edge environments.

D. Scalability of RL Training: Comprehensive Analysis and
Deployment Strategies

The scalability of training in RL-based MTD systems is a
major practical concern, particularly for edge or IoT environ-
ments with limited resources and large, dynamic topologies.
Our empirical investigation shows that both time and computa-
tional requirements for training increase non-linearly with the
number of hosts, state-action complexity, and attack diversity.

Comprehensive Training Metrics: Table VI summarizes key
training metrics for a variety of network sizes and attack
scenarios, including both centralized (server) and edge-device
cases. Metrics include convergence episodes, total wall-clock
time, peak memory, average CPU/GPU load, and energy
consumption.
Analysis: - Training Time and Memory: Training duration and
peak memory usage both scale super-linearly with node count
and network complexity, as the RL agent must process more
state-action pairs and longer episode trajectories. - CPU/GPU
Load: Centralized training can benefit from GPU acceleration
for neural policy models; on edge devices, CPU load is
often a limiting factor. - Energy Consumption: Total energy
used per complete training cycle also grows rapidly, raising
sustainability concerns for battery-powered devices or green
IoT.

Practical Implications: - For topologies larger than ∼100
nodes, direct on-device training is often infeasible due to time,
heat, and memory constraints. - Training convergence may
require several hours or days in large, realistic environments,
especially for highly dynamic or adversarial settings. - Fre-
quent retraining to adapt to evolving threats is not always
practical for edge nodes with limited computation and power.

Mitigation Strategies: To address these limitations and sup-
port practical, scalable RL-based MTD deployment, we pro-
pose and validate the following strategies:

• Offline Centralized Pre-training: Train RL policies on
powerful cloud/cluster servers using diverse, large-scale
simulated topologies and attacks. The resulting policies
are then deployed to edge devices for real-time inference
and only occasional lightweight retraining or fine-tuning.

19

TABLE VI
COMPREHENSIVE SCALABILITY ANALYSIS OF RL TRAINING ACROSS NETWORK SIZES AND DEPLOYMENT MODES

Nodes Scenario Episodes Training Time (min) Peak Memory (MB) CPU Load (%) GPU % (if avail) Energy (J)
20 Centralized, DDoS 5,000 12 220 34 – 1,550
50 Centralized, Mixed 8,000 37 390 52 18 4,250
100 Centralized, Mixed 12,000 83 700 68 26 9,750
150 Edge, DDoS only 18,000 165 1,250 91 – 22,100
100 Edge, Mixed + replay 14,000 119 800 78 – 15,900

• Experience Replay & Curriculum Learning: Use pri-
oritized replay buffers and gradually increasing training
difficulty to accelerate convergence and minimize redun-
dant exploration.

• Model Compression, Pruning, and Distillation: After
initial training, apply structured pruning and quantization
to compress the policy and neural ranking models, and
use knowledge distillation to transfer knowledge into
smaller, more efficient models for edge deployment.

• Distributed/Federated Learning: Utilize federated RL
frameworks, where multiple edge devices collaboratively
learn and periodically synchronize models, distributing
training overhead and enhancing generalization.

• Transfer and Meta-learning: Leverage meta-RL and
transfer learning so that policies trained on one topology
or attack scenario can quickly adapt to new network
structures or threat landscapes with minimal retraining.

Ablation Study and Sensitivity Analysis

To further validate the contribution of each component
within the RL-based MTD framework, we conducted ablation
studies by systematically disabling or varying key elements
of the model. Specifically, we examined the effects of (i) re-
moving mutation cost from the reward function, (ii) excluding
neural ranking/pruning, and (iii) using fixed instead of adaptive
RL hyperparameters. Table VII summarizes the impact of
these ablations on attack success rate, defense latency, and
CPU overhead.

The results indicate that excluding mutation cost consider-
ation leads to increased attack success, while removing neural
ranking/pruning notably increases latency and resource usage.
These findings highlight the importance of each component in
achieving optimal system performance.

VIII. CONCLUSION

In this paper, we propose an MTD approach called CVbMA
(Connection and Vulnerability-based Mutation Approach) to
mitigate DDoS attacks targeting critical servers in a network.
Unlike existing MTD approaches, CVbMA considers both host
vulnerability levels and connection weights to determine the
optimal set of hosts to be mutated. While RL has indeed
been explored in MTD approaches, our method introduces
several key innovations that distinguish it from previous works.
In particular, our model offers significant improvements in
scalability and generalizability. Unlike traditional Multi-Agent
Reinforcement Learning (MARL) or Deep Reinforcement
Learning (DRL)-based approaches, which require retraining
for different network topologies or scales, our RL model

adapts dynamically to varying network configurations without
requiring extensive retraining. We also redesigned the state
space representation to integrate both connection weights and
vulnerability scores, addressing a gap in previous models that
typically relied on a single factor. This enhanced state-space
representation enables the RL agent to make more robust and
efficient decisions, ultimately improving the MTD strategy.
This approach is advantageous because addressing a multi-
factor problem like DDoS attacks with a single factor is in-
sufficient. Additionally, we propose a Reinforcement Learning
(RL) model that learns how to apply the CVbMA solution to
a network, enabling the identification of the optimal hosts for
mutation. The CVbMA RL model is designed to be general,
allowing it to be utilized in different network environments
once trained. To evaluate the performance of CVbMA, we
consider multiple metrics, including the adversary’s success
rate, method overhead, and training performance. We have
evaluated the performance of CVbMA considering multiple
metrics, including the adversary’s success, method overhead,
and training performance. The simulation results show that,
without causing extra overhead, CVbMA can reduce the
adversary’s success rate and the number of crashed servers
47% and 96% compared with the existing MTD approaches,
respectively.

In future work, we plan to improve the proposed RL model
by incorporating other sorting algorithms instead of the current
selection sort algorithm. This enhancement aims to optimize
the efficiency of the mutation process. Additionally, we intend
to focus on determining the optimal number of mutations to
reduce further the resources MTD approaches consume. By
optimizing resource utilization, we can enhance the overall
performance and cost-effectiveness of CVbMA and similar
MTD strategies.

ACKNOWLEDGMENT

This research work is partially supported by the European
Union’s Horizon Europe research and innovation program
HORIZON-JU-SNS-2022 under the RIGOUROUS project
(Grant No. 101095933).

REFERENCES

[1] A. Javadpour, F. Ja’fari, T. Taleb, M. Shojafar, and
B. Yang, “Scema: an sdn-oriented cost-effective edge-
based mtd approach,” IEEE Transactions on Information
Forensics and Security, vol. 18, pp. 667–682, 2022.

[2] A. Javadpour, F. Ja’fari, T. Taleb, and M. Shojafar, “A
cost-effective mtd approach for ddos attacks in software-
defined networks,” in GLOBECOM 2022-2022 IEEE

20

TABLE VII
COMPREHENSIVE ABLATION STUDY: PERFORMANCE IMPACT OF MODEL COMPONENTS

Model Variant Attack
Success (%)

Defense
Latency (ms)

CPU
Overhead (%)

RAM
Usage (MB)

Packet
Loss (%)

Recovery
Time (s)

Service
Availability (%)

Adaptivity
Score (1-5)

Full Model (Ours) 6.5 88 3.1 72 0.8 7.8 99.1 5
w/o Mutation Cost 9.8 80 2.4 68 1.3 12.1 97.8 4
w/o Ranking/Pruning 8.2 112 4.7 89 1.1 9.5 98.2 3
w/o Real-World Testbed 7.9 91 3.5 75 1.0 8.2 98.7 3
w/o Adaptive Hyperparams 7.7 97 3.3 73 1.0 8.8 98.8 4
Baseline Static Defense 29.4 61 1.9 62 2.2 19.1 97.2 1

Global Communications Conference. IEEE, 2022, pp.
4173–4178.

[3] Z. Rehman, I. Gondal, M. Ge, H. Dong, M. Gregory, and
Z. Tari, “Proactive defense mechanism: Enhancing iot
security through diversity-based moving target defense
and cyber deception,” Computers & Security, vol. 139,
p. 103685, 2024.

[4] F. Li, L. Shi, Y. Zhao, H. Zhang, Z. Zhao, and Q. Han,
“Cmtd: A fast moving target defense scheme based on cfl
authentication,” IEEE Internet of Things Journal, vol. 12,
no. 1, pp. 822–833, 2025.

[5] B. A. Khalaf, S. A. Mostafa, A. Mustapha, M. A. Mo-
hammed, and W. M. Abduallah, “Comprehensive review
of artificial intelligence and statistical approaches in
distributed denial of service attack and defense methods,”
IEEE Access, vol. 7, pp. 51 691–51 713, 2019.

[6] A. Javadpour, F. Ja’fari, T. Taleb, and C. Benzaı̈d, “Re-
inforcement learning-based slice isolation against ddos
attacks in beyond 5g networks,” IEEE Transactions on
Network and Service Management, 2023.

[7] A. Javadpour, P. Pinto, F. Ja’fari, and W. Zhang,
“Dmaidps: a distributed multi-agent intrusion detection
and prevention system for cloud iot environments,” Clus-
ter Computing, vol. 26, no. 1, pp. 367–384, 2023.

[8] A. Javadpour, F. Ja’fari, T. Taleb, M. Shojafar, and
C. Benzaı̈d, “A comprehensive survey on cyber deception
techniques to improve honeypot performance,” Comput-
ers & Security, p. 103792, 2024.

[9] J.-H. Cho, D. P. Sharma, H. Alavizadeh, S. Yoon, N. Ben-
Asher, T. J. Moore, D. S. Kim, H. Lim, and F. F. Nel-
son, “Toward proactive, adaptive defense: A survey on
moving target defense,” IEEE Communications Surveys
& Tutorials, vol. 22, no. 1, pp. 709–745, 2020.

[10] Z. Abdelhay, Y. Bello, and A. Refaey, “Toward zero-
trust 6gc: A software defined perimeter approach with
dynamic moving target defense mechanism,” IEEE Wire-
less Communications, vol. 31, no. 2, pp. 74–80, 2024.

[11] C. Liu, Y. Li, H. Zhu, Y. Tang, and W. Du, “Parameter-
estimate-first false data injection attacks in ac state
estimation deployed with moving target defense,” IEEE
Transactions on Circuits and Systems I: Regular Papers,
2024.

[12] T. H. Le, H. Chen, and M. A. Babar, “A survey on data-
driven software vulnerability assessment and prioritiza-
tion,” ACM Computing Surveys (CSUR), 2021.

[13] V. François-Lavet, P. Henderson, R. Islam, M. G. Belle-
mare, J. Pineau et al., “An introduction to deep reinforce-

ment learning,” Foundations and Trends® in Machine
Learning, vol. 11, no. 3-4, pp. 219–354, 2018.

[14] A. K. Sangaiah, A. Javadpour, F. Ja’fari, P. Pinto, and
H.-M. Chuang, “Privacy-aware and ai techniques for
healthcare based on k-anonymity model in internet of
things,” IEEE Transactions on Engineering Management,
2023.

[15] Y. Lian, T. Zhang, C. Xu, W. Dong, M. Xu, Z. Xiahou,
J. Kang, J. Liu, and D. Niyato, “Deep reinforcement
learning-based moving target defense for multicast in
software-defined satellite networks,” in ICC 2024-IEEE
International Conference on Communications. IEEE,
2024, pp. 4786–4791.

[16] A. Javadpour, F. Ja’fari, T. Taleb, and C. Benzaı̈d, “5g
slice mutation to overcome distributed denial of service
attacks using reinforcement learning,” in 2024 17th In-
ternational Conference on Security of Information and
Networks (SIN). IEEE, 2024, pp. 1–9.

[17] A. Javadpour, F. Ja’fari, T. Taleb, and M. Shojafar, “A
cost-effective mtd approach for ddos attacks in software-
defined networks,” in GLOBECOM 2022-2022 IEEE
Global Communications Conference. IEEE, 2022, pp.
4173–4178.

[18] A. Javadpour, F. Ja’fari, T. Taleb, and C. Benzaı̈d, “En-
hancing 5g network slicing: Slice isolation via actor-critic
reinforcement learning with optimal graph features,” in
GLOBECOM 2023-2023 IEEE Global Communications
Conference. IEEE, 2023, pp. 31–37.

[19] A. Javadpour, F. Ja’fari, T. Taleb, M. Shojafar, and
B. Yang, “Scema: an sdn-oriented cost-effective edge-
based mtd approach,” IEEE Transactions on Information
Forensics and Security, vol. 18, pp. 667–682, 2022.

[20] A. Javadpour, F. Ja’fari, T. Taleb, and C. Benzaı̈d, “Re-
inforcement learning-based slice isolation against ddos
attacks in beyond 5g networks,” IEEE Transactions on
Network and Service Management, vol. 20, no. 3, pp.
3930–3946, 2023.

[21] J. Steinberger, B. Kuhnert, C. Dietz, L. Ball, A. Sperotto,
H. Baier, A. Pras, and G. Dreo, “Ddos defense using
mtd and sdn,” in NOMS 2018-2018 IEEE/IFIP Network
Operations and Management Symposium. IEEE, 2018,
pp. 1–9.

[22] X. Luo, Q. Yan, M. Wang, and W. Huang, “Using mtd
and sdn-based honeypots to defend ddos attacks in iot,” in
2019 Computing, Communications and IoT Applications
(ComComAp). IEEE, 2019, pp. 392–395.

[23] Y. Shi, H. Zhang, J. Wang, F. Xiao, J. Huang, D. Zha,

21

H. Hu, F. Yan, and B. Zhao, “Chaos: An sdn-based mov-
ing target defense system,” Security and Communication
Networks, vol. 2017, 2017.

[24] A. Chowdhary, S. Pisharody, and D. Huang, “Sdn based
scalable mtd solution in cloud network,” in Proceedings
of the 2016 ACM Workshop on Moving Target Defense,
2016, pp. 27–36.

[25] S. Yoon, J.-H. Cho, D. S. Kim, T. J. Moore, F. Free-
Nelson, and H. Lim, “Attack graph-based moving target
defense in software-defined networks,” IEEE Transac-
tions on Network and Service Management, vol. 17,
no. 3, pp. 1653–1668, 2020.

[26] A. Chowdhary, D. Huang, A. Sabur, N. Vadnere,
M. Kang, and B. Montrose, “Sdn-based moving target
defense using multi-agent reinforcement learning,” in
Proceedings of the 2021 1st International Conference on
Autonomous Intelligent Cyber Defense Agents, 2021.

[27] Y. Zhou, G. Cheng, S. Jiang, Y. Zhao, and Z. Chen,
“Cost-effective moving target defense against ddos at-
tacks using trilateral game and multi-objective markov
decision processes,” Computers & Security, vol. 97, p.
101976, 2020.

[28] T. Eghtesad, Y. Vorobeychik, and A. Laszka, “Deep
reinforcement learning based adaptive moving target de-
fense,” arXiv preprint arXiv:1911.11972, 2019.

[29] S. Kim, S. Yoon, J.-H. Cho, D. S. Kim, T. J. Moore,
F. Free-Nelson, and H. Lim, “Divergence: Deep re-
inforcement learning-based adaptive traffic inspection
and moving target defense countermeasure framework,”
IEEE Transactions on Network and Service Management,
2022.

[30] M. Rawski, S. Kukliński, P. Sapiecha, M. Pelka,
G. Przytuła, P. Wojs, K. Szczypiorski et al., “Mmtd:
Mano-based moving target defense for corporate net-
works,” in 2020 World Conference on Computing and
Communication Technologies (WCCCT). IEEE, 2020,
pp. 79–87.

[31] Z. Karim, A. Sebbar, Y. Baddi, and M. Boulmalf, “Secure
multipath mutation smpm in moving target defense based
on sdn,” Procedia Computer Science, vol. 151, pp. 977–
984, 2019.

[32] A. Aydeger, M. H. Manshaei, M. A. Rahman, and
K. Akkaya, “Strategic defense against stealthy link flood-
ing attacks: A signaling game approach,” IEEE Transac-
tions on Network Science and Engineering, 2021.

[33] C. Xu, T. Zhang, X. Kuang, Z. Zhou, and S. Yu,
“Context-aware adaptive route mutation scheme: a re-
inforcement learning approach,” IEEE Internet of Things
Journal, vol. 8, no. 17, pp. 13 528–13 541, 2021.

[34] Z. Liu, Y. He, W. Wang, S. Wang, X. Li, and B. Zhang,
“Aeh-mtd: Adaptive moving target defense scheme for
sdn,” in 2019 IEEE International Conference on Smart
Internet of Things (SmartIoT). IEEE, 2019, pp. 142–
147.

[35] B. Potteiger, A. Dubey, F. Cai, X. Koutsoukos, and
Z. Zhang, “Moving target defense for the security and
resilience of mixed time and event triggered cyber–
physical systems,” Journal of Systems Architecture, vol.

125, p. 102420, 2022.
[36] S. Debroy, P. Calyam, M. Nguyen, R. L. Neupane,

B. Mukherjee, A. K. Eeralla, and K. Salah, “Frequency-
minimal utility-maximal moving target defense against
ddos in sdn-based systems,” IEEE Transactions on Net-
work and Service Management, 2020.

[37] X. Chai, Y. Wang, C. Yan, Y. Zhao, W. Chen, and
X. Wang, “Dq-motag: Deep reinforcement learning-
based moving target defense against ddos attacks,” in
2020 IEEE Fifth International Conference on Data Sci-
ence in Cyberspace (DSC). IEEE, 2020, pp. 375–379.

[38] S. Yoon, J.-H. Cho, D. S. Kim, T. J. Moore, F. Free-
Nelson, and H. Lim, “Desolater: Deep reinforcement
learning-based resource allocation and moving target
defense deployment framework,” IEEE Access, vol. 9,
pp. 70 700–70 714, 2021.

[39] L. Zhang and S. Geng, “The complexity of the 0/1 multi-
knapsack problem,” Journal of Computer Science and
Technology, vol. 1, no. 1, pp. 46–50, 1986.

Amir Javadpour holds a Ph.D. in Mathe-
matics/Cybersecurity from Guangzhou University,
China. His academic journey is distinguished by
numerous publications in highly-ranked journals and
prestigious conferences. These works span a di-
verse range of topics, reflecting his deep exper-
tise in Cybersecurity, Cloud Computing, Software-
Defined Networking (SDN), Big Data, Intrusion De-
tection Systems (IDS), the Internet of Things (IoT),
Moving Target Defense (MTD), Machine Learning
(ML), Reinforcement Learning, and optimization

algorithms. Beyond his publications, he has made substantial contributions
as a reviewer and author for leading academic venues, including IEEE
Transactions on Cloud Computing, IEEE Transactions on Network Science
and Engineering, and ACM Transactions on Internet Technology. His re-
viewing efforts extend to various reputable journals under Springer and
Elsevier. Additionally, he serves as a dedicated Technical Program Com-
mittee (TPC) member for several international conferences. Dr. Javadpour
actively collaborates internationally, particularly with European consortiums
on funded projects such as Inspire-5Gplus (https://www.inspire-5gplus.eu/)
and Rigourous (https://rigourous.eu/). These partnerships have resulted in
significant contributions to the field, with his work being featured in top-
tier journals and conferences, including Globecom, IEEE Transactions on
Industrial Informatics (TII), IEEE Transactions on Information Forensics and
Security (TIFS), IEEE Transactions on Network and Service Management
(TNSM), and ACM Transactions on Sensor Networks (TOSN). In addition
to his research and publication efforts, he is deeply committed to mentoring
and supervising Master’s and Doctoral students. His extensive experience in
this area has equipped him with the skills and confidence necessary to lead a
research group and conduct independent, high-impact research.

Forough Ja’fari is a Senior Researcher in cyberse-
curity and computer science. She received her Bach-
elor’s degree from Sharif University of Technol-
ogy and her Master’s degree in Computer Network
Engineering from Yazd University, Iran. She is a
visiting scholar researcher at Guangzhou University,
China. Cloud computing, software-defined Network-
ing (SDN), cyber deception, Intrusion Detection
Systems (IDS), Internet of Things (IoT), Moving
Target Defence (MTD), and Machine Learning are
some of her research interests. She is currently a

Guest Editor (GE) of Cluster Computing (CLUS) Journal and a reviewer for
several journals and conferences.

22

Chafika Benzaı̈d is currently a senior research
fellow at University of Oulu, Finland. Between Nov.
2018 and Dec. 2021, she was senior researcher
at Aalto University. Before that, she worked as
an associate professor at University of Sciences
and Technology Houari Boumediene (USTHB). She
holds Engineer, Magister and “Doctorat ès Sciences”
degrees from USTHB. Her research interests lie in
the field of 5G/6G, SDN, Network Security, AI
Security, and AI/ML for zero-touch security man-
agement. She is an ACM professional member.

Tarik Taleb Prof. Tarik Taleb is currently a Chair
Professor at Ruhr University Bochum, Bochum,
Germany. Prior to that, he was a full professor at
the Centre for Wireless Communications (CWC)
– Networks and Systems Unit, Faculty of Infor-
mation Technology and Electrical Engineering, The
University of Oulu. Between Oct. 2014 and Dec.
2021, he was a Professor at the School of Electrical
Engineering, Aalto University, Finland. Prior to that,
he was working as Senior Researcher and 3GPP
Standards Expert at NEC Europe Ltd, Heidelberg,

Germany. He was then leading the NEC Europe Labs Team working on R&D
projects on carrier cloud platforms. Before joining NEC and till Mar. 2009, he
worked as assistant professor at the Graduate School of Information Sciences,
Tohoku University, Japan, in a lab fully funded by KDDI, the second largest
mobile operator in Japan. From Oct. 2005 till Mar. 2006, he worked as a
research fellow at the Intelligent Cosmos Research Institute, Sendai, Japan.
He received his B.E degree in Information Engineering with distinction, M.Sc.,
and Ph.D. degrees in Information Sciences from Tohoku Univ., in 2001, 2003,
and 2005, respectively. Prof. Taleb’s research interests lie in the field of
telco cloud, network softwarization and network slicing, AI-based software
defined security, immersive communications, mobile multimedia streaming,
next generation mobile networking. Prof. Taleb was also directly engaged
in the development and standardization of the Evolved Packet System as a
member of 3GPP’s System Architecture working group 2. Prof. Taleb served
on the IEEE Communications Society Standardization Program Development
Board. As an attempt to bridge the gap between academia and industry,
Prof. Taleb founded the “IEEE Workshop on Telecommunications Standards:
from Research to Standards”, a successful event that was awarded the “best
workshop award” by the IEEE Communication Society (ComSoC). Based
on the success of this workshop, Prof. Taleb also founded and served as the
steering committee chair of the IEEE Conf. on Standards for Communications
and Networking. Prof. Taleb served as the general chair of the 2019 edition of
the IEEE Wireless Communications and Networking Conference (WCNC’19)
held in Marrakech, Morocco. He was the guest editor-in-chief of the IEEE
JSAC Series on Network Softwarization and Enablers. He was on the
editorial board of the IEEE Transactions on Wireless Communications, IEEE
Wireless Communications Magazine, IEEE Journal on Internet of Things,
IEEE Transactions on Vehicular Technology, IEEE Communications Surveys
& Tutorials, and a number of Wiley journals. Till Dec. 2016, he served as
chair of the Wireless Communications Technical Committee, the largest in
IEEE ComSoC. He also served as Vice Chair of the Satellite and Space
Communications Technical Committee of IEEE ComSoc (2006 - 2010). Prof.
Taleb is the recipient of the 2021 IEEE ComSoc Wireless Communications
Technical Committee Recognition Award (Dec. 2021), the 2017 IEEE Com-
Soc Communications Software Technical Achievement Award (Dec. 2017) for
his outstanding contributions to network softwarization. He is also the (co-)
recipient of the 2017 IEEE Communications Society Fred W. Ellersick Prize
(May 2017), the 2009 IEEE ComSoc Asia-Pacific Best Young Researcher
award (Jun. 2009), the 2008 TELECOM System Technology Award from the
Telecommunications Advancement Foundation (Mar. 2008), the 2007 Funai
Foundation Science Promotion Award (Apr. 2007), the 2006 IEEE Computer
Society Japan Chapter Young Author Award (Dec. 2006), the Niwa Yasujirou
Memorial Award (Feb. 2005), and the Young Researcher’s Encouragement
Award from the Japan chapter of the IEEE Vehicular Technology Society
(VTS) (Oct. 2003). Some of Prof. Taleb’s research work has been also awarded
best paper awards at prestigious IEEE-flagged conferences.

	Introduction
	Related Work
	Problem Definition
	Threat model
	Network model
	Problem complexity

	Proposed Method (CVbMA)
	Action space
	Environment state
	Reward function

	Example of shuffling based on connection degrees
	Scalability Enhancement: Advanced Ranking Strategies
	Scalability and Deployment Enhancement

	Evaluation
	Adversary's success
	Method overhead
	Training performance
	Benchmark Evaluation Against Baseline Methods

	Discussion
	Limitations and Future Directions: RL Environment and Mutation Strategy
	Real-World Validation: Comprehensive Evaluation Beyond Simulation
	Limitation and Future Work: Explicit Modeling of Mutation Cost
	Scalability of RL Training: Comprehensive Analysis and Deployment Strategies

	Conclusion
	Biographies
	Amir Javadpour
	Forough Ja'fari
	Chafika Benzaïd
	Tarik Taleb

