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Abstract—Multi-access Edge Computing (MEC) provides ser-
vices for resource-sensitive and delay-sensitive Internet of Things
(IoT) applications by extending the capabilities of cloud comput-
ing to the edge of the networks. However, the high mobility of IoT
devices (e.g., vehicles) and the limited resources of edge servers
(ESs) affect the service continuity and access latency. Service
migration and reasonable resource (re-)allocation consequently
become needed to ensure quality of service (QoS). However,
service migration results in additional latency. In addition, dif-
ferent mobile IoT users have different resource requirements and
different resource allocation policies of target edge servers also
determine whether service migration is necessary. Subsequently,
how to jointly optimize service migration and resource allocation
is a challenge that needs to be carefully addressed. To this
end, this paper investigates the joint optimization problem of
service migration and resource allocation (SMRA) in MEC
environments to minimize the access delay of IoT users. It
proposes a joint SMRA algorithm based on deep reinforcement
learning (DRL), which takes into account the mobility of IoT
users and decides whether to migrate services, where to migrate,
and how to allocate resources through the long short time
memory (LSTM) algorithm and the parameterized deep Q-
network (PDQN) algorithm. Moreover, the PDQN algorithm
effectively solves the discrete-continuous hybrid action space
challenge in the SMRA problem. Finally, we conduct evaluation
using a real-world dataset of Beijing cab trajectories to verify the
effectiveness and superiority of our proposed SMRA solution.

Index Terms—Internet of Things (IoT), service migration,
resource allocation, deep reinforcement learning (DRL), long
short term memory (LSTM), parametrized deep Q-Networks
(PDQN), MEC, edge computing, and cloud.

I. INTRODUCTION

Ulti-access Edge Computing (MEC) is a new comput-
ing paradigm which solves the access delay problem
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Fig. 1. A service migration scenario.

of traditional cloud computing by deploying services at edge
servers (ESs) closer to Internet of Things (IoT) users. As
IoT devices are becoming increasingly intelligent, emerging
IoT applications (i.e., autonomous driving, online gaming,
ultra-high-definition video, etc.) place high requirements on
service performance and resources. Nevertheless, ESs are
normally equipped with limited heterogeneous resources and
have limited coverage, while different IoT users have different
resource requirements and different mobility patterns. For
delay-sensitive and resource-intensive IoT applications, how
to improve resource utilization and reduce access delay while
maintaining service continuity is a huge challenge for edge
system performance optimization.

As shown in Fig. 1, we consider the following scenario
whereby user u; connects to edge server e; at time ¢ and
requests service s, on edge server e;. We assume that user u;
will move to the vicinity of edge server eg at time ¢t+1. On the
one hand, if the user continues to connect to the source edge
server eq, it will result in a long communication delay between
the mobile user u; and the source edge server e;. On the other
hand, we can perform service migration to migrate the service
so from the source edge server e; to the target edge server es,



so as to shorten the communication distance and reduce the
communication delay. Service migration is an effective means
of ensuring service continuity, but it will additionally induce
the migration delay. In addition, performing service migration
will change the association between IoT users and ESs, and
we need to consider the heterogeneity and limited resources
of the target edge servers. The resource allocation policy of
target edge servers determines the computation latency and
communication latency of mobile users after service migration,
which in turn affects the decision of whether to migrate or not.
Therefore, we need to consider the service migration problem
and resource allocation problem jointly and only perform
service migration that is necessary and beneficial for reducing
access delay.

To ensure service continuity and reduce access delay, future
smart [oT systems should be able to perceive IoT users’ mobile
behavior and have the ability to execute service migration
and resource allocation schemes in advance. Unfortunately,
most previous research works have studied service migration
and resource allocation as separate optimization problems,
ignoring the fact that service migration decision and resource
allocation scheme are mutually influential. Service migration
is the factor that affects service continuity, while resource allo-
cation strategy is another factor affecting the service migration
decision. In addition, different IoT users may have different
resource requirements and mobility patterns. Furthermore, the
resources of ESs may be limited and heterogeneous. They
dynamically change over time. These characteristics increase
the difficulty of jointly optimizing service migration and
resource allocation. To fill the above gaps, we investigate
the SMRA problem by jointly considering these two factors
to determine whether service migration is needed, where to
move the services, and how to allocate resources, ultimately, to
accommodate the mobility of IoT users, optimize [oT system
resource utilization, minimize user access delay, effectively
avoid service disruptions, and improve overall quality of
service (QoS).

With the above background, we try to solve the joint
optimization problem of service migration and resource al-
location (SMRA), establish a joint optimization model by
integrating resource constraints, and propose a deep rein-
forcement learning (DRL)-based SMRA algorithm which is
able to predict mobile behavior of users and find an optimal
service migration policy and resource allocation scheme to
ensure the service continuity and minimize the access delay
of users. Specifically, the main contributions of this paper are
summarized as follows:

« Different from existing studies, this paper investigates the
joint optimization problem of dynamic service migration
and resource allocation, comprehensively considering the
heterogeneity and limited resources of edge servers, as
well as the different resource requirements and mobility
of IoT users. The obtained optimal service migration
policy and resource allocation scheme can ensure ser-
vice continuity, minimize the access delay of users and
improve resource utilization under the limited communi-
cation and computing resource constraints.

o Considering the mobility of IoT users and the dynamic

changes of available resources of edge servers, this paper
formulates the joint optimization SMRA problem as a
Markov Decision Process (MDP) and proposes a DRL-
based SMRA algorithm, which uses long short term
memory (LSTM) predicting the mobility behavior of IoT
users to improve migration accuracy and reduce the action
space. Then, the parameterized deep Q-network (PDQN)
algorithm is used to solve the continuous-discrete hybrid
action space challenge faced in the joint optimization
process without destroying the original structure of the
action space.

e In order to verify the performance of our SMRA algo-
rithm, we conducted experiments using the Beijing cab
GPS track dataset. The experimental results indicate that
our SMRA algorithm can obtain a smaller average task
processing latency and has better performance compared
to other baseline methods.

The rest of this paper is organized as follows. In Section II,
some related work are reviewed and the remaining challenges
of service migration and resource allocation are summa-
rized. Section III presents the system model and the problem
formulation. Section IV analyzes the service migration and
resource allocation problem and proposes a DRL-based SMRA
algorithm. Section V evaluates the performance of SMRA
algorithm with real-world cab trajectory dataset. Section VI
concludes this paper.

II. RELATED WORK

Currently, there are few studies on the joint optimization
of SMRA problems, so we mainly discuss the related work
from the aspects of service migration and resource allocation,
separately.

A. Service Migration

Service migration is an effective way to ensure service
continuity and avoid service disruptions [1]. There are already
some preliminary studies on service migration. The litera-
ture [2] presented using the Lyapunov optimization technique
to address the challenges of service placement and service
migration, which focused on the case where an edge server
allocates an equal amount of computational resources to the
users it serves. However, the fact is that resource requirements
vary from user to user and change dynamically over time.
The literature [3] presented a comprehensive analysis of user
mobility, service types, and system environment characteris-
tics, and gave an initial placement and migration scheme for
the service. This study initially solve the service migration
problem but ignores the impact of the resource allocation
policy of the target edge server on the service migration
results. Since different edge servers have different available
resources, if the target edge server has fewer resources (e.g.,
computation resource and communication resource) relative to
the source edge server and cannot allocate enough resources
to IoT users, it will inevitably increase the computation and
communication time of tasks after service migration, which in
turn affects the result of whether to migrate or not.



The literature [4] proposed a dual-delay deep determin-
istic policy gradient (DDPG) algorithm to address long-
term dynamic task allocation and service migration issues.
Nevertheless, the mobility of users is unknown, and if the
system performs the service migration operation after the
users have deviated from the coverage of the source edge
server will increase the access latency and degrade the user
experience. Thus, it is necessary for the system to be able to
predict the mobility of users and perform migration operations
in advance so that seamless handover can be achieved and
thus service continuity can be guaranteed. The literature [5]
proposed to solve the service disruption problem caused by
user mobility through base station switching, however, the
authors neglected the change in computational resources due
to base station switching. In contrast, our proposed scheme
considers user mobility and the change in resources during
service migration. This complicated issue has not been studied
in service migration.

In addition, there are several studies focusing on service
slice migration and resource management. The authors of [6]
designed, modeled, and evaluated two DRL-based algorithms
for allowing a fine-grained selection of system-based triggers
regarding network slice movement patterns. This work aims
to make their defined triggers more intelligent while keeping
system resources stable, but does not ensure reduced network
resource overhead. To address this issue, the authors in [7]
further developed a network-aware agent capable of selecting
accurate bandwidth values while ensuring fast and reliable
service migration. However, system resources include not only
bandwidth resources but also computational resources, and we
need to manage system resources in an integrated manner to
achieve optimized QoS.

B. Resource Allocation

In the IoT environment, the requirements of mobile users
for resources and the remaining resources of edge servers are
dynamically changing over time, and unreasonable resource
allocation strategies will have an impact on service migration
decisions. The literature [8] proposed to solve service migra-
tion and resource allocation by a relaxation and rounding-
based approach with the aim of maximizing the weighted
sum of the offload rate and migration cost. This paper mainly
considered a static and stable edge computing scenario, and
the authors assumed that the migration cost of each user is
fixed, ignoring the dynamic nature of system state. However,
in real IoT systems, the available resources of the edge
servers and the location of IoT users change over time, and
service migration and resource allocation policies need to be
dynamically adjusted according to the real-time changes of
system to ensure service performance and resource utilization.
In addition, the authors did not consider the real computing
power (e.g., CPU cycles) of edge server in order to simplify
the model, but defined computing power as the number of
users it can serve.

For multi-user MEC systems, dynamic service migration
decisions and resource management are more complicated
since it involves sharing of resources among multiple mobile

users. However, existing studies on the dynamic optimisation
of resource allocation for multiple users mainly focus on
the optimization of offloading policies. The literature [9]
considered stochastic vehicular traffic, dynamic computational
requests and time-varying communication conditions, and pro-
posed a DRL-based approach to find computational offloading
and resource allocation strategies in vehicular edge computing
networks to maximize the long-term utility of the network. The
literature [10] focused on the changing communication and
computational resources in a end-edge-cloud coordination net-
work and proposed a DRL-based computational offloading and
resource allocation algorithm to reduce energy consumption.
To obtain discrete offloading decisions, the authors employed
a rounding technique to refine the continuous values output
by the DDPG algorithm, but this will inevitably affect the
results. In contrast, we use the PDQN algorithm applicable
to the continuous-discrete hybrid action space to solve the
complex model of service migration and resource allocation
established in this paper.

Different from the above studies, we explore an unknown
direction, and investigate the joint optimization problem of
dynamic service migration and resource allocation in a multi-
user IoT environment, considering the heterogeneity of edge
servers and limited resources, as well as the resource require-
ments and mobility of different IoT users, with the aim of
ensuring service continuity, minimizing user access time, and
maximizing resource utilization.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first illustrate the system model. We
then formulate the joint optimization SMRA problem as a
total latency minimization problem under communication and
computational resource constraints. The key notations, used in
this paper, are summarized in Table I.

A. System Model

As shown in Fig. 1, we consider an IoT system which
includes a set of mobile users U £ {1,2,...,U}, a set of base
stations (BSs) integrating edge servers & = {1,..., E} and a
cloud server. We assume that in the case where a mobile user
does not establish a connection with any other BS, it can only
connect to the nearest BS and can only access the resources
on the edge servers equipped by that BS [10], [11], [12]. We
consider a scenario where each mobile user has a latency-
sensitive computational task to process. We use v € U and
e € & to represent the u-th mobile user and the e-th edge
server, respectively. We use D, . to denote the input data-
size (in bits) for processing the task and C, . represents the
number of CPU cycles required to compute one-bit data of
this task. Each BS is equipped with an edge server, which has
limited computational and transmission resources. In contrast,
the cloud server have powerful computing resources and acts
as a controller of the IoT system in this paper which is
responsible for service migration and resource allocation.

On each edge server, the underlying operating system (OS)
is used as an underlying support environment to provide
support for the task processing of different intelligent services



TABLE I
LIST OF KEY NOTATIONS.

Notation [ Description
Tu,e Data communication rate of user u to edge server e
bu,e Channel bandwidth
Pu Transmission powers of user u
Gu,e Channel gain between mobile user v and edge server e
o? Gaussian noise power
Dy,e(t) The task data size of user

2™ (t) | Transmission time of task data from user u to edge server e
Su,e(t) Computation resource allocated to user u by edge server e
Cu,e(t) The number of CPU cycles for computing one-bit task data
I,%"P(t) | Computation time for ES e to process the tasks of user u
I (t) ST suspending time of user u
D™ (1) The size of state context data of user u
C’i?j (t) The processing intensity required to suspend the SI of user u
Bu,er (t) The proportion of computational resources allocated to check-

point function
f 55 ,(t) The computing capacity of SF required by user u
e (t) SI resuming time of user u
Cres () The processing intensity required to resume the SI of user u
Iiy:f(t) State context data synchronization time
re:e/ (t) Data communication rate of edge server e to e’
L9 (t) The service migration time of user u
I¢omy™(t) | Transmission time of task data from user u to edge server e’
Izbg"p (t) | Computation time of ES e’ to process tasks from user u
fule/ () Computation resource allocated to user u by edge server e’
137:} (t) Total task processing delay in non-migration case
I{Ze(t) Total task processing delay in migration case
L,(t) Total task processing delay of user w at time ¢
wy (t) | Binary service non-migration decision variable
L (t) | Binary service migration decision variable
Qu,e(t) Link relationship between user u and edge server e at time ¢
Fyer (1) Available CPU capacity of edge server €’ at time ¢
Te,er (1) Data communication rate of edge server e to e’
B, (1) Available bandwidth of edge server e’ at time ¢
L () The predicted location of user w at time ¢ + 1
LP™C, (t) Location of the nearest edge server to the predicted user
’ location.

and the operation of upper-layer software. On the OS, various
edge service functions (SF) at the edge are deployed to meet
the specialized task processing needs of different applications.
At the same time, SFs store and manage stateless contextual
information, such as public databases, executable code, etc.,
that is relevant only to a particular type of business but not to
a particular user. Each SF can serve multiple users performing
the same type of service. Once the user’s computational task
is assigned to an SF that has been activated on the edge server
for processing, the SF first instantiates a Service Instance
(SI) for that user, which is dedicated to processing the user’s
computation task and storing and managing some user-specific
state context data, such as task real-time processing status,
private data, etc.

As in [13], a mobile user sends requests to the nearest edge
server by a wireless link connection. Therefore, based on the
Shannon formula, the data communication rate (in bit/s) of
mobile user u is given by

PuGu,e
Fue = buelogy (1+545), ()
where b, . is the channel bandwidth, g, . represents the

channel gain, which is related to the distance between mobile

user u and edge server e, p, denotes the transmission power

of mobile user u, and o2 is the white Gaussian noise power.

In this paper, we will optimize and update the IoT system
according to each time slot ¢. At the beginning of each time
slot, the IoT system controller needs to make a choice based on
migration delay and non-migration delay to determine whether
to migrate or not, as well as the resource allocation policy for
target edge server in case of migration.

1) Non-migration Model: If the service does not need to
be migrated, the delay of mobile user u accessing the source
edge server e consists mainly of communication delay and
computation delay.

e Communication delay: The wireless transmission delay
of tasks offloading from mobile user u to source edge
server e can be written by

D, (1)

Tue(t)
Since the size of the result data obtained after task
processing is very small relative to the size of task data,
we omit the transmission delay of the downlink in this
paper.

o Computing delay: After receiving the tasks from mobile
users, the source edge server will allocate the available
computing resources to each task for computation. We de-
note the computational resources allocated by the source
edge server e to the mobile user u by fy .(¢) (in CPU
cycles/s). Thus, the computational delay of the source
edge server e to process tasks from mobile user u can be
written as

Icomm (t) —

u,e

2

Isoeﬂlp(t) — D’Uye(t)cwe(t) ) (3)
’ fue(t)

To sum up, when a mobile user moves from the source
edge server e to the vicinity of the target edge server ¢/, if no
service migration is performed and user w continues to access
the source edge server e, the task processing delay can be
expressed as follows:

LE(8) = L™ (8) + L™ (8)- )

2) Migration Model: In the case where services need to be
migrated, the total delay from the start of executing service
migration until the mobile user u completes access to the target
edge server ¢’ includes:

o The service migration delay from the source edge server

e to the target edge server ¢’;

o The communication delay between the mobile user u and

the target edge server ¢’;

o The computational delay of the target edge server €’ to

perform the tasks from the mobile user wu.

(a) Migration delay: Service migration aims to synchronize
user-dependent context data from source edge server to target
edge server. As in [4], executing service migration includes
the following steps: Suspending the user’s SI; Preparing the
user-dependent SF environment; Synchronizing the user’s state
context data; Resuming the user’s SI and service processes.

The suspend and resume of user’s SIs can be implemented
using Checkpoint functional modules [14]. In this paper, we



assume that this function module is embedded in each SF
with constant processing power. Therefore, the SI suspend
time I;%(t) and resume time I, (t) for user u at time ¢
are respectively given by

s - DO

= S OFE®D ®
res (1) = w

Iu,e’( ) 5u,e/(t) ST ( ) ) (6)

where D;mj (t) (in bits) represents the size of the state context
data of user w, 55 (t) represents the computing capacity
of the SF required by u (in CPU cycles/s), By, (t) is the
proportion of computational resources allocated by the SF to
the embedded Checkpoint function, and C’i“es( ) and C% (1)
(in CPU cycles/bit) represent the processing intensity required
to suspend SI and resume SI of user u, respectively (i.e., the
number of CPU cycles required by compute one-bit of state
context data).

The synchronization time of the user state context data relies
on the state context data size and the data transmission rate
between source edge server and target edge server [2], which
is written as Dmig(t)

u,e’
Tee (t)
where 7. . denotes the data communication rate between the
source edge server e and the target edge server ¢/, similar to
Eq. 1.

There are two cases for the time to prepare the SF environ-
ment required by user u. If the SF that the user w relies on is
already activated on the target edge server, it is not necessary
to reactivate a new one, so the SF environment preparation
time can be ignored. Instead, the target edge server need to
activate a new SF. In this paper, to simplify the processing,
we only consider the case where the SF preparation time is
constant for each application, and the SF environment can
be activated and adjusted with a short control frame at the
beginning of the state context information synchronization.

To sum up, the service migration delay from the source edge
server e to the target edge server ¢’ is given by

L0 (1) = I (6) + Lo (1) + 120 (8). ®)

u,e’ u,e

1597 (t) =

u,e

(7

(b) Communication delay: When the service migration is
complete, mobile user u can access the target edge server €’
The transmission delay of the tasks offloading from user u to
the target edge server ¢’ can be expressed as follows:
D, (1)

Tu,er (1)
where 7, .- denotes the data communication rate between the
user u and the target edge server €', similar to Eq. 1.

(c) Computing delay: We use f,, .- to represent the compu-
tational resources allocated by the target edge server ¢’ to the
mobile user u, then the computational delay of the target edge
server ¢’ to process the tasks from the mobile user u can be
written as follows:

Lo (t) =

comm (t) —

u,e’

€))

Due(t)Cue(t)

10
0 (19

Thus, when a user moves from the edge server e to the
vicinity of the edge server €, if service migration is performed
and the service is migrated from the source edge server e to
the target edge server €', the task processing delay can be
expressed as follows:

Ig?e’ ( ) =

comm( )
u,e’

Icomp( )

u,e’

+I79(1).

u,e’

QY

B. Problem Formulation

In this paper, we define the target edge server as the closest
edge server to the predicted user location. According to Eq.
4 and Eq. 11, if the user continues to access the source edge
server after the move, the task processing latency is I, (¢). If
the server is migrated to the target edge server and the task is
processed through the target edge server, the task processing
latency is 1;". (). We need to decide whether users continue
to access the source edge server or perform a service migration
and access the target edge server based on the computing and
communication resource allocation policy of the target edge
server. Therefore. we set I,,(t) to be the total task processing
delay of user u at time ¢, and we have

I’U«(t) = w::,yg,e’ (t)I;L,m< ) + w;ne e’ ( )IZ[,L@’ (t)7

where w™? ,(t) and w!"

e e e (t) are the binary service migra-
tion decision variable, when wy't /(t) = Tand wy, . (t) =0,
the service in the source edge server e are not migrated
to the target edge server e’, otherwise, wy') e,( ) = 0 and
wy', () = 1. We aim to find the optimal service migration
policy and resource allocation scheme that minimizes the
total task processing delay, and considering the target edge
server resource constraint, the optimization problem can be

formulated as

(12)

P w’Lj'LTnZ(CL)ZZ;’%ZLff,(t) Th_{r;O T ;)HEZMI (13a)
Fu,er ()04 e ()
s.t. Zaue .fue ( )S Fu,e’(t>, (13b)
ueU
ZO‘U,e’(t) uer (1) < Buer(t), (13¢)
ueU
wg,rg,e’ (t) + wg?e,e' (t) = 1) (13d)
w::,yg,e’ (t)’ w:ﬁe,e’( ) € {07 1} (]36)
> e () =1, (13f)
e'c&
Qyy ! (t) S {07 1}7 (13g)
Yu € U, Ve € &, (13h)

where «, . (t) represents the link relationship between user u
and target edge server ¢’ at time ¢, and we have

Qy e (t) = {
(14)

Constraint (13b) denotes that the CPU requirements of
all users connected to the edge server e’ cannot exceed the
available CPU capacity of the edge server ¢/, where F, . (t)
denotes the available computing capacity of e’ at time t.

1, if user u is served by edge server €/,
0, otherwise.



Constraint (13c) represents that the bandwidth allocated to all
users connected to the edge server e’ for offloading cannot
exceed the available bandwidth of the edge server ¢/, where
B, (t) denotes the available bandwidth of e’ at time ¢. In
particular, after the user u-dependent services are migrated,
the corresponding computational and bandwidth resources
on the source edge server need to be released, meanwhile,
the corresponding resources on the target edge server are
occupied, so that Fy, ./ (t) and B,, ¢ (t) in constraints 13(b) and
13(c) are dynamically changing over time. Constraint (13d)
and (13e) indicate that for migration decisions within each
decision cycle ¢, there are just two options for non-migration
and migration. Constraint (13f) and (13g) indicate that each
user can be served by only one edge server in each decision
cycle t.

Since the service migration decision variables w;’¢’ ., (t) and

ee,e! (t) are binary variables, the problem P is non-convex.
In addition, we consider the user mobility, edge server resource
heterogeneity and limited, which are difficult to solve with
traditional optimization algorithms. In contrast, deep reinforce-
ment learning can update the service migration and resource
allocation policies by interacting with the environment in real
time, which makes it possible to adapt to the dynamic changes
of service requirements in emerging IoT systems. Therefore,
we present a DRL-based algorithm to solve the problem P.

IV. DRL-BASED SMRA APPROACH

In this section, we first reformulate the delay minimization
problem as MDP and define the state, action, and reward
function. Then we propose a DRL-based SMRA algorithm.

A. DRL-Based Framework

The problem P is described as MDP which mainly consists
of three parts: state, action and reward.

(1) State: At the beginning of each time slot, the con-
troller observes system states, which includes the predicted
user location, the location of the edge server closest to the
predicted location, resources allocated to users by the source
edge server, and the available resources of the target edge
server. In particular, according to the problem P, when the
computational and bandwidth resources allocated to the user
by the source edge server e are known, the resources available
at the source edge server e do not have an impact on the total
task processing latency. Thus, the computational resources and
bandwidth of source edge server e need not be considered in
the state space of reinforcement learning. The system state at
time ¢ can be defined as follows:

st 2= {LE(8), LY (8), fue(t) bue(t), Fuer (), Buer (t)u € U,
5)

where
o LPTe(t): represents the predicted location of the user
at the next time ¢, where to determine the location of
the target edge server capable of service migration, we
predict the user’s location L2"¢(¢) at time t + 1 by the
LSTM [18] algorithm, and the edge server closest to the
LPre(t) is the target edge server for service migration.

The prediction process is described in detail in the next
subsection B.

o L5 (t): We use ¢ represents the target edge server
which is the nearest edge server to L2™¢(t), and LY, (t)
is the location of the target edge server e’. There are
many edge servers in the vicinity of the user, and
we take the edge server closest to the predicted user
location as the target edge server and add it to the
current state as a known value. Firstly, the size of the
state and action space can be greatly reduced, avoiding
the exponential computational complexity due to global
search. Second, in general, if the user device has not yet
established a connection with another base station, it will
automatically connect to the nearest base station [10],
[11], [12]. If the user device wants to access resources
on other edge servers, it needs to perform base station
handover first. According to the X2 handover principle in
5G environments, the user device needs to continuously
send measurement reports to the currently connected
base station, which decides whether handover is required
based on these measurement reports, and if handover is
required, the base station will notify the core network
to decide which target base station to handover to.
However, too much switching increases the complexity
of scheduling between edge servers, core network, base
stations, and user devices, consumes a lot of energy,
and increases latency [16], [17]. Therefore, considering
the computational complexity and handoff overhead, this
paper defines the edge server closest to the predicted user
location as the target edge server.

o fue(t): denotes the computing resources allocated to
users by edge server e at time t.

o by(t): denotes the bandwidth resources allocated to
users by edge server e at time .

o F, e (t): denotes the remaining available computing re-
sources of the target edge server ¢’ at time ¢.

e By (t): denotes the remaining available bandwidth of
the target edge server ¢’ at time ¢.

(2) Action: In state s;, the system controller needs to
decide whether to perform service migration and determine
computation and communication resources that the target edge
server allocates to users. Therefore, the action of mobile user
u at time t can be defined as follows:

A nm
ar = {wu,e,e’

(1), wirte,er(£); fu,er (), buer ()| € U}, (16)

where

m m . . oo .
o wy't (), wy, ./ (t): represents service migration deci-

sions of user w at time t.

o fu,e (t): represents the computing resources allocated to
user u by the target edge server ¢’ at time .

o by e (t): represents the bandwidth resources allocated to
user u by the target edge server ¢’ at time t.

(3) Reward: In state s;, the system executing the action
a; will obtain a reward value. For the problem P, our opti-
mization objective is to minimize the task processing delay.



Therefore, the reward function can be expressed by

re = —E[>_ L(t).

ueU

a7

Since I,(t) is determined by weighting the task processing
time I",,(¢) in the migration case and the task processing
time I7(t) in the non-migration case, as in Eq. 4, Eq. 11
and Eq. 12. If the target server has insufficient or even no
available remaining computational and bandwidth resources,
then it cannot allocate sufficient resources for users to perform
task processing, resulting in a longer task processing time for
the target edge server than for the source edge server, i.e., the
reward value obtained from the migration action is lower than
that obtained from the non-migration action, and our migration
decision variables wy,"’ ., (t) and wy;, ., (t) are 0 or 1 decisions
and our goal is to find a strategy that yields a high reward
value, so we would choose not to migrate the service and
continue to access the source edge server. Otherwise, we will
choose to migrate the service.

In reinforcement learning, the policy is defined as a mapping
from state to actions 7 : S — A, where S represents the
system states, and A represents the system actions. The ob-
jective is to find the optimal policy 77* that maximizes long-run
expected rewards through interaction with the environment.

Z 7t7a (stv at)] )

t

(18)

™ = argmax E
s

where 1" represents the episode termination time step and
~v € [0,1] is the discount factor. To solve 7*, Q-learning
algorithm [15] uses Q-values to represent state-action pairs,
which are stored in a Q-matrix that is updated according to the
rewards of each policy. However, the huge size of S and A will
result in a huge size of Q-matrix. To the above issues, DRL
combines deep neural network (DNN) and RL by inputting the
state-action pairs into a DNN to output Q-values. The Bellman
equation of action-value function (i.e. Q-function) is given by

Q(Stvat) = E (19)

Tt,St4+1

e+ max @ (S¢g+1,a141)
at+1€A

In the classical DRL algorithm, in order to address the
shortcomings in solving the Q-function with DNN, the deep Q-
network (DQN) algorithm uses “empirical replay” techniques
and asynchronous updating of the Q-network. However, DQN
is only applicable to handle discrete action spaces, for the
continuous action space, DQN cannot efficiently calculate the
optimal action a*(s) = max, Q*(s,a), and it is difficult
to obtain greedy strategies. To overcome this problem, the
DDPG algorithm is proposed, which introduces a deterministic
actor network to output approximate maximized Q-value and
updates the actor network by gradient ascent. However, the
action space shown in Eq. 16 is a complex discrete-continuous
hybrid action space, and just using DQN or DDPG is not
sufficient to solve this challenge. For this reason, we use
PDQN to solve the hybrid action space challenge, which
combines the features of DQN and DDPG.

B. SMRA Algorithm based on LSTM and PDQON

In this paper, we need to find a optimal service migration
and resource allocation policy based on the current state of the
IoT system, including determining where to migrate, whether
to migrate and how to allocate resources. To determine the ser-
vice migration location, we first use the LSTM [18] algorithm
to predict the user’s future location LE™(t) from historical
user location data and add the edge server closest to the user’s
next location as the target edge server for service migration
to the current state. Then, we use the PDQN algorithm to
determine whether to perform service migration and how to
allocate resources. DRL is a long-term iterative optimisation
process, while LSTM is suitable for handling time series data.
We use the location predicted by LSTM as one of the states
of DRL, allowing the intelligent system to learn both the
location prediction model and the decision model. In addition,
the SMRA algorithm based on LSTM and PDQN can be
embedded directly into the intelligent system without relying
on external mapping applications, making it easier to deploy
and maintain. We hope that the SMRA algorithm will improve
the intelligence of the system, allowing the intelligent system
to make optimal service migration and resource allocation
plans before the user moves, ensuring service continuity and
resource utilisation.

The SMRA algorithm gives actions for service migration
and resource allocation based on the real-time state of the
system and calculates the reward values after the actions are
executed, after which the system enters a new state. Based
on these empirical data of states, actions, action reward and
next state values, the DRL model is trained and updated.
Finally, the trained DRL model is used to implement intel-
ligent management of the IoT system. We separate the action
space of Eq. 16 and use k to represent the discrete actions
{wp o (1), 0, (1)} and zp (2, € Ay, X to represent
the set of continuous actions) to represent the continuous
actions { fu,e (t), by, (t)}. More specifically, we can denote
the discrete-continuous hybrid action space A as

A={(k,xg) | zx € X, forall k € K}, (20)

where K is the set of discrete actions. We represent the action
value function Q(s,a) by Q(s, k, z1), in which s € S, a € A,
k € K, and z; € Xj;. We use k; to represent the discrete
action chosen at time ¢ and z, to represent the corresponding
continuous parameter. Then the Bellman equation can be
written by

Q(st, kt,zp,)= E rt—l—vrknax sup Q(St+17k,xk):|.

TtySt41 T EXy
2D
For the above Bellman equation, we need to compute
Ty = argsup, ey, @ (s¢11,k,73) for each £ € K, and

choose the largest Q (s¢+1, k, z}). When function Q) is fixed,
xr) = argsup,, cx, @ (s¢11,k,2x) can be regarded as a
function xg S — X, for Vs € S and Vk € K that maps
the state space to the continuous domain of action parameters.



Then the Bellman equation of Eq. 21 can be rewritten by

Q(staktaxkt) = E

TtySt4+1
(22)
Similar to DQN, we use DNN Q (s, k, xy;w) to approxi-
mate @ (s, k,xy), in which w represents the network param-
eters. For such Q(s, k, zx;w), similar to DDPG, we approxi-
mate z2(s) by a d inistic poli k x(0): S
P y a deterministic policy network x4 (-;60) : S —
A}, in which 6 represents the parameter of deterministic policy
network. It means that when w is fixed, the objective of PDQN
is to find the corresponding parameter 6 such that
Q (s, k,xk(s;0);w) = sup Q(s,k,zp;w),Vk € K. (23)
T €EXy
Then we use the following least mean squares loss function
for w similar to DQN.
0 w) =

[Q (s, oy 2ry;w0) — ye)? (24)

DN | =

where

y _{ rt,if 8441 is the terminal state,
=

n<+7na$kexd¢2(&+4,k7wxsuq;90;U%),ebeés
(25)

is evaluated by the target network and s;;; denotes the next
state following the adoption of the hybrid action (k,xy).
Furthermore, as our objective is to find # which maximize
Q (s, k, xk(s;0); w) while w is fixed, we perform the following
loss function for 6

K
020) ==>_Q (st k,wi(s150);w1)

k=1

(26)

In addition, the value network and deterministic policy
network weights w; and 6, are updates via gradient descent
according to

27)
(28)

W41 < Wy — Oétvwth (wt) s
041 < 00 — BiVoly (61),

where oy and [3; are the learning rate.

Fig. 2 shows the service migration and resource allocation
framework. First, x-network takes the current state s; which
is observed from IoT system as input and generates xj for
all actions £k € K, in which we explore the continuous
action part using a noise process similar to DDPG. After
that, the Q-network takes the state s, and the parameters
xj, generated by the z-network as input and outputs the Q
values of all actions k. The e-greedy strategy determines the
desired actions a;. Then, the action a; is executed to obtain the
reward value r; and the next state sy of system. Meanwhile,
the possible location of user at time ¢ + 1 are predicted by
the LSTM algorithm and added to the state s;. Finally, the
empirical data of system state s;, action a;, action reward
r¢ and next time state s;y; are stored to the replay buffer
‘R for subsequent PDQN training. In this process, we use
the “empirical replay” [20] technique to store the empirical
data (s¢, at, St41,7¢) into replay buffer and update the network
by retrieving continuously small batches of samples from the
pool, which weaken the interference of data correlation and
thus improves the learning efficiency.

|:Tt +V}?€1% Q (8t+17k‘,$;;Q (St+1))] .

k = argmax,0, Noise N,
t s
Ql“'T-:QK Cb' x1:~~ax1(
Q-network X-network
— ]
T State
A
€-greedy Ky
: Mottt} ]
a, ‘
oliifln LSTM predict user | Sample
location L2 (¢)
| y L >(Replay Buffer
Add L (1) 10 S, ,
storage {Sz sG> S5 1

Fig. 2. Service migration and resource allocation framework.

The detailed steps of the SMRA algorithm based on LSTM
and PDQN are shown in Algorithm 1, where line 1 initializes
the relevant parameters. In line 3-6, the x-network generates
xy, for all k € K with the current state s; as input. This part
uses a noise process N similar to the DDPG algorithm to
explore continuous actions. Line 7 explores the action based
on e-greedy. Line 8 execute action a; and observe reward r;
and new state s;4;. Line 9 and line 10 use LSTM algorithm
to predict the future location of user and concatenate this
information into state s;. Line 11 stores the obtained empirical
data into the replay buffer R. Line 13 sample a mini-batch
transitions randomly from replay buffer R for training. Lines
14 and 15 describe the training process of the Q-network and
the x-network, which is similar to the DDPG algorithm.

The complexity of Algorithm 1 is mainly determined by
the calculation of neural network parameters and LSTM
algorithm. Assuming that -network DNN contains H fully
connected layers and and x-network DNN contains J fully
connected layers. For each iteration of training, the time com-
plexity for a fully connected layer is wy,; = O (Z{f:o nQ.h -
ng h+1 + Zj:o Ngj * Ny j+1), Where ngp, and n, ; mean
the unit number in the h-th @-network DNN layer and the
j-th z-network DNN layer, ngo and ng;o equal the input
size [10], [21], [22], [23]. In addition, the time complexity of
the LSTM algorithm for forward and backward propagation
is related to the length of the sequence and the number of
model layers. Therefore, the time complexity of LSTM is
Wistm = O(L-p-(4g* +4g)), where L is the sequence length,
p is the input dimension and g is the number of hidden units.
Let z be the total number of training iterations, the total time
complexity of Algorithm 1 is O(z - Wy + 2 - Wistm)-

Algorithm 1 is able to adapt to the dynamic changes of
the complex IoT environment, and is adaptive and learning



Algorithm 1 SMRA Algorithm

Input: Stepsizes {a, ¢ },~, exploration parameter €, a prob-
ability distribution &, replay buffer size BB, minibatch size M,
user location L,,.

Output: Decisions for service migration w(';(t), wy", (t),
decisions for resource allocation fy ¢/ (t), by e (1) /

1: Initialize: replay buffer R, network weights wy and 6.

2: for each episode do

3:  Observe current state s;

4:  Initialize a random process N for action exploration
5: fort=1,...,T do
6:
7

Compute action parameter xy < xy (S¢,0¢) + N
Select action a; = (ki, z, ) based on e-greedy policy:

a sample from distribution &, €

YW= k= argmazrier @ (s¢, k, xp;w), 1 — €

8: Execute action a;, observe reward r; and new state
St+1

9: Compute the user’s position for the previous 7 times,
obtaining a location vector L, (t — 7), ..., L,(t).

10: Predict future locations by LSTM algorithm based on
L,(t—7),...,Ly(t) and add LE™¢(¢) in s;

11 Store (s¢,a, S¢+1,7¢) in replay buffer R

12: Update current state S; <— Syy1

13: Sample M transitions (s;,a;, S;+1,7;) randomly
from replay buffer R

14: Train Q-network:

compute y; by (25) and loss by (24)

perform stochastic gradient descent step by (27)
15: Train x-network:

compute loss by (26)

perform stochastic gradient descent step by (28)
16:  end for
17: end for

through interactive feedback with the IoT environment to learn
the best service migration and resource allocation strategies.
In addition, Algorithm 1 has location prediction capabilities to
ensure that service migration and resource allocation decisions
are made before the user moves to the next edge server
coverage area, thus addressing service continuity and resource
utilisation issues.

V. SIMULATION RESULTS AND DISCUSSION
A. Experimental Settings

We validate our SMRA scheme using a real-world dataset
containing the GPS trajectories of 10,357 cabs in Beijing [24].
The trajectory data of each cab includes longitude, latitude and
time, and its longitude and latitude change dynamically with
time. The dataset was released by Microsoft Research Asia,
and the release date was from February 2 to February 8, 2008.
In our experiments, we treat each mobile cab in the dataset as
a mobile user.

In the default case, we randomly select the trajectory data
of 70 mobile users in a certain area from the dataset and
deploy 60 edge servers, setting the distance between the edge
servers to Skm to ensure that the deployed edge servers
can cover the selected 70 users. The channel gain is set to

TABLE 11
SIMULATION PARAMETERS.
Parameter | Values
Available channel bandwidth, B 10MHz [28]
Transmission powers of user u, py,e 24dBm [28]

Gaussian noise power, o

Available CPU capacity of edge server €',
F,,

The task data size, Dy, e

The number of CPU cycles required to com-
pute one-bit task data, Ciy,e

Computation resource allocated to user u by
edge server e, fy,e

Minimum value of computation resource al-
located to user by edge server, fﬁ?;”
Maximum value of computation resource al-
located to user by edge server, f;'¢®
Bandwidth resource allocated to user u by
edge server e, by, e

Minimum value of bandwidth resource allo-
cated to user by edge server, bu””e”
Maximum value of bandwidth resource allo-
cated to user by edge server, b}'¢”

-100dBm/Hz [26]
150 x 108 cycles/s [28]

[200, 300]KB [4]
[300, 500]cycles/bit [4]

[ min Trm,;c]
ue Ju,e

10 x 107 cycles/s
80 x 107 cycles/s
b e, be]

0.3 MHz

5 MHz

The size of state context data of user wu,

[1, 8IMByte [4]

D™

u,e’
The proportion of computational resources
allocated to the checkpoint function, 3,, ./
Processing intensity required to suspend SI,
CSuS

u,e’
Processing intensity required to resume SI,
C'I‘SS

u,e’

Computing capacity of SF required by user,
SF

[20,30]% [4]
[228, 538]cycles/bit [4]
[350, 450]cycles/bit [4]

[200, 300] x 106Hz [4]

u,e’

Discount Factor, v 0.9 [26]
Replay size, R 1000 [26]
Mini-batch size M 25 [26]
The greedy policy parameter, € 0.05
Averaging rate, v 0.01 [27]

(du,e)™, where d,, . represents the distance between user u
and edge server e and o = 3 is the pathloss factor [25]. We
use Euclidean distance formula to calculate the distance. The
default experiment parameters settings are as table II. With
the experimental parameters taking default values, we set the
execution period of the cloud server (i.e. service migration and
resource allocation execution cycle) to every 10 minutes.

To verify the superiority of SMRA algorithm presented in
this paper, we compare it by the following five methods:

e DDPG-based scheme: We selecte the state-of-the-art
method from literature [10] for our comparison experi-
ments. This literature used a DDPG-based algorithm to
solve the computational offloading and resource alloca-
tion problem. In order to adapt DDPG to a hybrid action
space with discrete and continuous actions, the literature
uses a rounding technique to refine the binary offloading
decision.

e DON-based scheme: We discretize the continuous re-
source allocation values in the action space of this paper
by approximating each x; with a discrete subset, and then
solve them using the DQN-based algorithm.

o Random migrate scheme (RMS): When the edge server
closest to the user at time ¢ and ¢ + 1 is the same
edge server, we do not perform migration, otherwise, the
service randomly chooses whether to migrated to the edge



server closest to the user.

o Always migrate scheme (AMS): This migration scheme
migrates the services required by the user to the edge
server closest to the user as the user moves.

o Never migrate scheme (NMS): The service will not be
migrated no matter how the user moves.

B. Parameter Analysis

In practice, different users have different resource require-
ments, so we set the computing resources and bandwidth
allocated to users by the edge server varying within a certain
range, and we adjust the size of the maximum value of the
range of computing resources and bandwidth and conduct
two sets of experiments to compare the proportion of users
migrating and the average task processing latency, respectively.
Fig. 3 shows the variation of the proportion of user migration
for different algorithms when the upper limits of the random
range of computational resources and bandwidth allocated to
users are increased. We can see from the figure that when
the allocated computational resources and bandwidth to users
are relatively small, the resource demand of each user can be
satisfied, so the migration rate remains constant as the resource
demand of users increases. When the resources allocated to
users reach a certain value, the edge server will not be able to
satisfy the resource demand of each user, which will result in
fewer users that can be served by the edge server and a lower
migration ratio.

Fig. 4 shows the variation in the average task processing
delay of users when the upper limit of the random range of
allocated computing resources and bandwidth increases. We
can see from the figure that when the allocated computing
resources and bandwidth to users are relatively small, the
resource demand of each user can be satisfied and the average
task processing latency of each user remains constant. When
the resources allocated to users reach a certain value, the edge
server will not be able to satisfy the resource demand for
each user, This will result in fewer users to be served by edge
servers and lower migration rates.

Fig. 5 illustrates the variation of the average task processing
delay of users as the number of iterations increases for
discount factors of 0.1, 0.2, 0.5, 0.9, respectively, from which it
can be seen that the average delay decreases gradually with the
number of iterations for different discount factors and finally
converges to an optimal solution.

C. Comparison Experiments

Fig. 6 compares the performance of the six algorithms
by adjusting the number of users. From the figure, we can
see that as the number of users increases, the average task
processing latency also increases, but the DRL-based scheme
grows relatively slowly, and using the DRL-based scheme to
address the service migration and resource allocation issues is
significantly better than the other three schemes. More specifi-
cally, compared with always migration scheme, the DRL-based
scheme can choose the appropriate policy for service migration
according to the current system state, thus avoiding frequent
service migration, and compared with never migration scheme,
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Fig. 3. Impact of different maximum user resource requirement ranges on
service migration ratio. (a) Maximum value of bandwidth resource allocated
to user by edge server. (b) Maximum value of computation resource allocated
to user by edge server.

the DRL-based scheme avoids excessive latency between edge
servers and users due to long communication distance. In
addition, among the three DRL-based schemes, the SMRA
scheme proposed in this paper can achieve lower average
task processing latency compared to DQN-based and DDPG-
based schemes due to better preservation of the action space
structure.

Fig. 7 illustrates the performance comparison of six schemes
as the number of edge servers increases. We can see from the
figure as the number of edge servers increases, the resources
of edge servers also increase and therefore the average task
processing latency becomes smaller. The deep reinforcement
learning based methods have a smaller average task processing
latency compared to the other three solutions because of the
trade-off between migration latency and non-migration latency.
The SMRA scheme proposed in this paper is consistently
optimal in different performance comparisons.

In order to analyze the superiority of SMRA algorithm
from multiple perspectives, we further compare the SMRA
algorithm with the DQN-based scheme and the DDPG-based
scheme. Fig. 8 presents the variation of user average task
processing latency with increasing number of iterations for
different deep reinforcement learning based schemes, from
which we can can find the average task processing delay of all
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three schemes gradually decreases as the number of iterations
increases and finally converges to an optimal solution. How-
ever, the SMRA scheme can guarantee the minimum average
user task processing delay for the final convergence.

VI. CONCLUSION

This paper investigated the joint optimization problem of
service migration and resource allocation in edge IoT sys-

E —— AMS

@ 25 4

8 NMS 5

5 —¥— RMS

L2 20 ] — DQN-based T

- .

) —m— DDPG-based

3 —+— SMRA y J

2 15 4

n

a

[

o

£ 101

'

i

=

v 54 [

2 *  =: ¥ + —HN

g

< o4 } | | ! } |
30 40 50 60 70 80 90 100

The number of users

Fig. 6. Impact of the number of users on average task processing delay.

30 4

L —— AMS  —¥— RMS —m— DDPG-based
@

§ NMS —— DQN-based —+— SMRA

S 25

é 5 ¥
B

£ 204 N

o

g T .

@ 15 80

[

I+

5

210

@

=

g 54 1
o

Y

< 0 ! } | |

T T T
50 60 70 80 920 100
The number of edge services

N
o
w
=}
s
o

Fig. 7.
delay.

Impact of the number of edge servers on average task processing

20 —— DQN-based
T DDPG-based
v 184 —— SMRA
o
]

5
:O: 16
7
T 14
= ¥
g
@ 12 4
[
]
£ 10
a
a
W
& 84 A
v
8
£ °]
x

a4

T T T T T
50 100 150 200 250 300
Episode

Fig. 8. Iterative changes of different schemes.

tems, fully considering the different resource requirements
and mobility of IoT users, as well as the limited resources
and heterogeneity constraints of edge servers, with the aim
of minimizing the access delay of IoT users. The paper
formulated the joint optimization SMRA problem as a MDP
and proposed a DRL-based joint SMRA scheme, whereby the
LSTM algorithm and PDQN algorithm can sense the user
mobility and decide whether to migrate a service, where to
migrate it, and how to reallocate the resources, effectively
ensuring the resource utilization and service continuity of the



IoT system and reducing the access delay of IoT users. In
addition, the PDQN algorithm effectively solves the com-
plex discrete-continuous hybrid action space problem in the
SMRA problem. Finally, we conducted simulation experiments
using real datasets of Beijing cab trajectories to verify the
effectiveness of SMRA algorithm and conducted comparison
experiments to prove the superiority of the SMRA algorithm.
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