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Abstract—Network slicing is recognized as a key enabler for
5G and beyond (B5G) services. However, its dynamic nature
and the growing sophistication of DDoS attacks put it at risk
of Economical Denial of Sustainability (EDoS) attack, causing
economic losses to service provider due to the increased elastic use
of resources. Motivated by the limitations of existing solutions,
we propose FortisEDoS, a novel framework that aims at enabling
EDoS-aware elastic B5G services. FortisEDoS integrates a new
deep learning-based DDoS anomaly detection model, called
CG-GRU, that leverages the capabilities of emerging graph
and recurrent neural networks in capturing spatio-temporal
correlations to accurately identify malicious behavior, allowing
proactive mitigation of EDoS attacks. Moreover, FortisEDoS
uses transfer learning to effectively counteract EDoS attacks
in newly deployed slices by leveraging the knowledge acquired
in previously deployed slice. The experimental results show the
superiority of transfer learning-powered CG-GRU in achieving
higher detection performance with lower computation overhead,
compared to other baseline methods.

I. INTRODUCTION

The joint use of network virtualization and softwarization
is vital for realizing network slicing to enable next-generation
mobile networks support diversified deployment scenarios,
whereby multiple services can share the same substrate [1].
Each slice is designed with custom network capabilities to
meet the performance needs of a specific service type [2].

A key life cycle management operation of network slices
is auto-scaling, which dynamically expands or contracts the
capacity of a network slice instance to accommodate resources
to slice workload to fulfill the performance desire. However,
the auto-scaling capability is a double-edged sword when a
(Distributed) Denial of Service – (D)DoS – attack is underway.
Indeed, the auto-scaling capability can reshape an undetected
(D)DoS attack into an Economical Denial of Sustainability
(EDoS) attack, which results in economic damages to service
provider owing to the increased elastic usage of resources [3].
The undesirable economic impact of EDoS is a critical issue
as it may spread beyond the slice under attack, affecting slices
co-hosted on the same substrate [4]. Hence, providing reliable
dynamic resource provisioning that is EDoS attack aware is
paramount to enable profitable beyond 5G services.

Realizing the aforementioned goal is challenging due to the
growing trend towards more stealthier DDoS attacks that are
aiming at the application layer rather than the network layer.
Such trend is mainly due to the capacity of those attacks to
mimic legitimate behavior with low network bandwidth usage.

Despite the extensive work that has been undertaken to coun-
teract DDoS attacks, the stealthy application-layer DDoS (AL-
DDoS) issue is far from being addressed, and even less in 5G
and beyond network slicing environment. Existing solutions
have a number of limitations, which hampers their effective-
ness and efficiency. The total isolation among slices promoted
by resource isolation based approaches (e.g., [5]) may result
in over-provisioning of resources or may not be possible to
achieve due to lack of strong hardware isolation in the emerg-
ing cloud-native platforms [6]. By imitating legitimate traffic,
AL-DDoS attacks can escape detection by network traffic
analysis based solutions (e.g., [7], [8]) Using resource scaling
as a mitigation strategy by resource allocation-based methods
(e.g., [9]) grows the risk of revamping an undetected AL-
DDoS attack into an EDoS attack [10]. The recent anomaly
detection approaches (e.g., [6], [11], [12]) that leverage the po-
tential of Deep Learning (DL) to recognize abnormal behavior
based on anomalies detected in service performance and/or
resource usage metrics are a promising direction to tackle
EDoS attack. However, existing anomaly detection methods
only consider temporal correlations between metrics and/or
assume that sufficient amount of historical data is available
for training the DL models to learn normal behavior.

Driven by aforementioned limitations of DL-based anomaly
detection approaches and the limited research work tackling
the EDoS issue in 5G network slicing, we propose FortisEDoS,
a novel framework that incorporates a deep transfer learning
model to enable highly elastic 5G and beyond services that can
deliver the desired quality of experience while being imper-
vious to EDoS attacks. FortisEDoS leverages the capabilities
of emerging DL techniques, particularly convolutional neural
networks (CNN), recurrent neural networks and graph neural
networks, to capture both temporal and spatial dependencies
among resource usage and service performance metrics and
adopt a dynamic thresholding strategy to accurately recognize
anomalous status of a slice’s virtual network function (VNF)
under AL-DDoS attack. Moreover, FortisEDoS exploits the
concept of transfer learning to empower effective identification
of anomalous VNF’s status even when representative historical
data of normal behavior are scare. To the best of our knowl-
edge, this is the first contribution of deep transfer learning in
tackling EDoS attacks against network slicing.

The remainder of the paper is organized as follows. Sec-
tion II introduces the proposed FortisEDoS framework, de-
lineating its architecture and the design of the deep transfer



learning-based DDoS anomaly detection model. Section III
describes the experimental setup and provides a comprehen-
sive analysis of the performance results. Finally, Section IV
concludes the paper and highlights future research directions.

II. FORTISEDOS ELASTIC MOBILE VCDN FRAMEWORK

A. Framework Overview

In the following, we introduce FortisEDoS, a novel frame-
work that aims to enable elastic 5G network slicing while
intelligently preventing malicious resource scaling requests
generated by AL-DDoS attacks. As depicted in Fig. 1, we
consider a vCDN provided as a service over a MEC-enabled
5G networks to deliver video content. A vCDN service is
dynamically deployed on-demand as a slice into the MNO’s
network. Each slice consists of a set of basic VNFs (e.g.,
streamers, caches) chained together to provide a vCDN ser-
vice. The vCDN slices can share 5G core network (CN)
functions (e.g., AMF and SMF) or have their dedicated 5G
CN functions (e.g., UPF and I-UPF). The VNFs of a vCDN
slice can be deployed over several edge compute nodes and
the VNFs of different vCDN slices can be co-hosted on the
same edge compute node.

The FortisEDoS framework includes a vCDN Management
Layer that comprises a set of modules providing required
functionalities to enable EDoS-aware elastic vCDN services.
Specifically, it incorporates the following core components:
• Monitoring System is continuously tracking, via the de-

ployed monitoring agents, data related to resource usage
(e.g., CPU, RAM) and performance (e.g., response time)
metrics of the different vCDN slice’s VNFs and their
hosting nodes. The collected data are used to drive the
resource scaling and anomaly detection decisions made by
the auto-scaling module and DDoS Mitigator, respectively.

• Auto-scaling Module dynamically expands or shrinks the
capacity of a vCDN slice instance to adjust resources
to slice workload in order to fulfill the agreed Service
Level Agreement (SLA). The scaling decision happens
at the VNF level based on its performance and resource
usage metrics according to the associated auto-scaling
policies. It is worth mentioning that a VNF can either be
scaled horizontally by increasing/decreasing the number of
VNF instances or vertically by increasing/decreasing the
resources used by a VNF instance.

• Admission Controller is in charge of intercepting the
scaling-up/out requests triggered by the Auto-scaling Mod-
ule in order to entrust the scaling decision to the DDoS
Mitigator for validation.

• DDoS Mitigator exploits the potential of DL to automati-
cally discriminate malicious scaling requests engendered
by AL-DDoS attacks from those caused by legitimate
load. It includes a DL-based anomaly detection model
which can effectively identify anomalous VNFs’ metrics
using a data-driven forecasting-based approach. Indeed, the
anomalies are detected when the predicted metrics’ values
drift considerably from the observed ones. If an anomaly

is identified, the scaling operation is flagged as malicious
and will be refused by the Admission Controller. Details on
the proposed DL model and the selection of the anomaly
threshold will be provided in the subsequent sections.

B. Attacker Model

We assume that the attacker has control over a subset of
user devices that can legitimately use a 5G vCDN service
delivered via HTTP-based technologies. The attacker aims
at depleting the vCDN slice’s resources (e.g., CPU, RAM)
to inhibit legitimate users from accessing the vCDN service
or at the very least increase the service response time. To
this end, we suppose that the attacker can conduct AL-DDoS
attacks against the vCDN’s VNFs exposed to end user, such as
the video streamer. Specifically, the attacker is able to carry
out both high-rate and low-rate HTTP-based DDoS attacks.
In high-rate mode, the attacker floods the exposed service
with a large number of legitimately formed HTTP requests.
In the low-rate mode, the attacker establishes multiple HTTP
connections with the exposed service by sending partial HTTP
requests at a very slow rate, which leads to exhausting the
connection queue space.

We further assume that the attacker can generate stealthier
DDoS traffic patterns that can escape detection by network
traffic analysis based mechanisms [8]. Thus, the malicious
traffic will reach the exposed VNF and results in requesting
additional resources through auto-scaling, allowing to reshape
the AL-DDoS attack into an EDoS attack.

C. Problem Formulation and Methodology

We consider a set of n slices S = {S1, · · · , Sn}, where each
slice Si is composed of a set of m VNFs Vi = {f i

1, · · · , f i
m}.

Each VNF f i
j ∈ Vi is defined by a set of features x ∈ Rd

representing its resource usage and performance metrics. d
refers to the dimension of the VNF’s features set.

The VNF’s metrics collected at regular intervals over a
period of time can be formulated as a multivariate time series
X = {x(1),x(2), · · · ,x(T )} ∈ RT×d, where T is the length
of the time series. Each step x(t) ∈ Rd in the time series is
a d-dimensional vector {x(t)

1 ,x
(t)
2 , · · · ,x(t)

d } representing the
VNF’s metrics data observed at time t.

We aim to detect the AL-DDoS attack by determining
anomalies in VNF’s metrics using a forecasting-based ap-
proach, where an anomalous VNF’s status is detected when
the expected metrics values diverge greatly from the measured
ones. As each metric may not only depend on its own historical
values, but also on other metrics’ past, we embrace a multi-
variate time series forecasting approach in order to improve
the anomaly detection accuracy. Given the observed metrics
values of previous w time steps x(t−w+1), · · · ,x(t), the mul-
tivariate time series forecasting task intends to learn a model
F : Rw×d 7→ Rh×d for predicting the future metrics values
for the next h time steps, denoted by x̂(t+1), · · · , x̂(t+h). It
can be formally written as

[x̂(t+h), · · · , x̂(t+1)] = F (x(t), · · · ,x(t−w+1)) (1)
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Fig. 1: The overall architecture of FortisEDoS Elastic 5G vCDN Framework.

The forecasting model is trained to successfully predict
future metrics values from normal values by minimizing the
prediction error. Thus, during the inference, the prediction
error is anticipated to rise in the presence of anomalous
metrics values due to DDoS attack. Leaning on this hypothesis,
we use the prediction error to measure the anomaly score,
which represents the deviation of true metrics values from
the predicted ones. If the derived anomaly score is above a
detection threshold, the VNF status is tagged as anomalous.

D. Data Preprocessing

The data pre-processing module prepares the raw time series
data into the appropriate format to fit for the forecasting model.
The train dataset includes only data of normal behavior.

Firstly, the raw time series data are cleaned by imputing
missing/infinity values. They are then normalized using the
Min-Max scaling technique, which scales the values in each
time series to be in the range [0, 1]. The data normalization
helps in improving the model stability and training time by
removing scaling differences between metrics. Finally, the
normalized data are segmented into a series of sub-sequences
by applying a sliding window technique. As shown in Fig. 2,
the training dataset is constructed as a supervised dataset,
where the inputs are the observed metrics values of previous
w time steps and the outputs are the future values to forecast
for the next h (= 1 in Fig 2) time steps.

E. Forecasting Model Architecture

The upper part of Fig. 2 elucidates the overall architecture of
CG-GRU model. It is an hybrid model that consolidates the
potential of different DL algorithms to provide both feature
extraction and forecasting capabilities. In fact, DL techniques
have the potential of uncovering complex patterns from a
large-amount of data, delivering accurate decisions [13].

The feature extraction stage consists in capturing both
temporal and spatial dependencies within the multivariate time
series using three types of neural network layers:

• Leveraging the high capability of CNN in extracting high-
level representations from data, the local relevant features

within a sliding window are extracted from the pre-
processed multivariate time series using a one-dimensional
Convolutional (Conv1D) layer. The local features are de-
rived by first convolving the input data with a learned con-
volution kernel and then applying a non-linear activation
function.

• The resulting features are then fed into a Graph Attention
(GAT) layer to extract the spatial correlations between
the VNF’s metrics. Thanks to the attention mechanism
of GAT, different weights are assigned to each pair of
features, allowing to measure the degree of influence of
VNF’s metrics on each other. It is worth noting that unlike
previous graph-based methods, GATs have the advantage
of capturing the importance levels, not requiring prior
knowledge of the global graph structure, being storage and
computationally efficient, and providing the interpretability
of the model [14].

• The features extracted by the GAT layer are processed
by multiple Gated Recurrent Unit (GRU) layers to derive
the temporal dynamics of the VNF’s metrics. Each GRU
layer contains several hidden units to update the hidden
state, each of which consists of two gates, called reset
gate and update gate. The reset gate forgets irrelevant
past information, while the update gate retains relevant
information from the previous time step.The use of GRU
is motivated by their demonstrated effectiveness and effi-
ciency in modeling long-term temporal sequences thanks
to their capability to remember useful past observations
while reducing computation [15].

The forecasting stage takes the spatio-temporal represen-
tations learned by the feature extraction block as inputs to
predict the future VNF’s metrics values. It hinges on a Multi-
Layer Perceptron (MLP) network consisting of multiple fully-
connected layers.

F. Forecast-based DDoS Anomaly Detection

To set an appropriate threshold for detecting malicious
VNF scaling requests, we adopt a dynamic thresholding
methodology [12]. This method allows to calculate an anomaly
detection threshold that is automatically adjusted according
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Fig. 2: The overall architecture of training the TL-powered CG-GRU model and selecting the dynamic anomaly threshold.

to the past smoothed forecasting errors. The key advantage
of this method is its leaning on a non-parametric probability
distribution estimation approach, which overcomes the limita-
tions of traditional Gaussian assumptions on the past smoothed
forecasting error distribution.

The forecasting error of the i-th VNF’s metric at time step
t, e(t)i , is calculated by

e
(t)
i = |x(t+1)

i − x̂
(t+1)
i | (2)

where x
(t+1)
i and x̂

(t+1)
i are, respectively, the actual value and

forecast value of the i-th VNF’s metric at time step t.
Using the metric-specific forecasting errors, the global

forecasting error of the VNF at time step t is computed as
e(t) = 1

d

∑d
i=1 e

(t)
i .

The dynamic threshold is derived using the
smoothed global forecasting errors at time step t,
ξs = [e

(t−w)
s , · · · , e(t−1)

s , e
(t)
s ], where w is the historical

window size. The exponentially weighted moving average
(EWMA) algorithm is applied to smooth the global forecasting
errors, enabling reduced false positives. The threshold ε is
picked from the set ϵ = µ(ξs) + β ∗ δ(ξs) such that:

ε = argmax(ϵ) =
∆µ (ξs) /µ (ξs) + ∆δ (ξs) /δ (ξs)

|ξa|+ |Eseq|2
(3)

where

∆µ (ξs) =µ (ξs)− µ ({es ∈ ξs | es < ε})
∆δ (ξs) =δ (ξs)− δ ({es ∈ ξs | es < ε})

ξa ={es ∈ ξs | es > ε}
Eseq =continuous sequences of ξa ∈ ξa

Note that ∆µ (ξs) and ∆δ (ξs) represent the decrease in the
mean and the standard deviation of the global forecasting
errors, respectively. ξa denotes all the global forecasting errors
that are above the dynamic threshold. The parameter β is
selected from an ordered set B of positive values representing
the standard deviations above µ (ξs).

The values of the VNF’s metrics at a time step t are
considered anomalous if the corresponding smoothed global
forecasting error e(t)s exceeds the calculated threshold.

G. Transfer Learning empowered DDoS Anomaly Detection

A newly instantiated vCDN slice will possibly lack repre-
sentative training data that incorporate all variations of their
VNFs’ normal behavior, which may result in performance
degradation of DDoS anomaly detection. Furthermore, col-
lecting such representative data to build the forecasting-based
model is time and resource consuming. Thus, it is vital to
reduce the (re)training time and cost to enable prompt detec-
tion of attacks and guarantee service profitability, particularly
when a massive number of slices is deployed.

To deal with the above-mentioned issues, we exploit the
potential of Transfer Learning (TL) to leverage knowledge
gained by a model in previously instantiated slice (denoted as
source domain) for enhancing and speeding up the learning
of a model in a newly deployed slice (denoted as target
domain). Specifically, we consider transferring the knowledge
about feature representations of a normal behavior derived by
the model of the source domain to the new model of the
target domain. Indeed, DL networks allow transferability of
general features across domains, thanks to their capability to
learn general features (i.e., domain-independent) on the first
layers and specific features (i.e., domain-dependent) on the
layers closer to the output [16]. Driven by that, we realize



the TL by setting the weights of the feature extraction layers
of the new CG-GRU model to ones inherited from the pre-
trained CG-GRU model. New fully-connected layers are added
and fine-tuned on the target data to customize the model
for the associated VNF. Note that the weights of the feature
extraction layers are frozen during the tuning phase to preserve
the transferred knowledge. Fig. 2 illustrates the proposed TL
process.

III. PERFORMANCE EVALUATION

A. Experimental Setup
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Fig. 3: The overall testbed architecture.

To assess the performance of FortisEDoS, we built a
testbed based on a Kubernetes (K8s) cluster set up on an
OpenStack cloud. As illustrated in Fig. 3, the K8s cluster
comprises one master node and seven worker nodes. Open5GS
(https://github.com/Gradiant/openverso-charts) and UERAN-
SIM (https://github.com/aligungr/UERANSIM) are used to
implement the 5G SA Core and simulate the 5G RAN and
User Equipments (UEs), respectively. It is worth noting that
Open5GS supports network slicing by allowing the configura-
tion of various slice parameters, including slice type, assigned
bandwidth, and quality of service class. The simulated UEs
are used to generate normal or malicious load. The vCDN
slices consist of two Cloud-native Network Functions (CNFs),
namely a video streamer and a cache, chained together to
provide an HTTP-based on-demand video streaming service.
The two CNFs are deployed as K8s services running a NGINX
web server and are spread over two worker nodes. The video
streamer service is exposed to the end user, which can access
the service via the 5G network. Each vCDN slice instance has
its own namespace to guarantee isolation of API resources
between slices. The Monitoring System uses Prometheus API
and different probes to extract the raw resource usage and
performance metrics from the vCDN slices’ CNFs and their
hosting nodes. The DDoS Mitigator is deployed on a separate
worker node, which serves also as a platform for training and
testing the CG-GRU model implemented using Pytorch library.

The Auto-scaling module is implemented using the K8s
Horizontal Pod Autoscaling (HPA) functionality which we
extended with the event-driven scale feature provided by
the KEDA tool (https://keda.sh). We defined various scaling
policies to handle the load on a CNF based on per-pod metrics
(e.g., CPU) or external metrics obtained from Prometheus
(e.g., response time).

B. Dataset Generation & Model Training

Due to the lack of real data, we used our testbed to generate
realistic datasets to train and test CG-GRU. To this end, we de-
veloped a normal load generator that models the arrival times
of legitimate video streaming requests according to Poisson
process with fixed hourly rate. The normal load generator
includes a python script that controls the Selenium WebDriver
(https://www.selenium.dev) for automating the loading and
playback of the requested videos in a web browser. The “im-
patient user” behavior is approximated by randomly varying
the duration of the video streaming sessions. To generate mali-
cious load, we implemented the attack agents using Slowloris
tool (https://github.com/gkbrk/slowloris) for low-rate DDoS at-
tacks and Hulk tool (https://github.com/grafov/hulk) for high-
rate DDoS attacks. The DDoS attacks are carried out against
the video streamer service.

The raw resource usage and performance metrics data were
recorded from two vCDN slices over a period of 5 days. A
time series for each metric was recorded using a data sam-
pling period of 60s. The training data were collected during
the first 4 days of attack-free activity. The 5th day served
to create the testing dataset where AL-DDoS attacks were
executed on different periods of the day. Specifically, three
Hulk attacks with different intensities and one Slowloris attack
were launched. Training and testing datasets were generated
for each vCDN slice’s CNF with a total of 5401 and 2701
samples, respectively. During training, 20% of samples in the
training dataset are used for validation.

As the performance of CG-GRU model is sensitive to hyper-
parameter settings, we leveraged grid searchand ASHA [17] to
find the best model’s configuration that minimized the forecast
error on the validation set. Each possible configuration is
trained at most 100 epochs using Rectified Linear Unit (ReLU)
as the activation function, Adam as the optimizer and Mean
Squared Error (MSE) as loss function. The hyper-parameters
setting of the best model, achieving a forecasting loss of
3.61%, uses 2 GRU layers with 90 neurons per layer, 2 dense
layers with 60 neurons per layer, a kernel size of 3, a historical
window size of 80, a learning rate of 0.001, a dropout rate of
0.2, and a batch size of 150.

A more detailed description of the implemented normal load
generator and the hyperparameter tuning process can be found
in [18]. These details have been omitted here due to page-limit.

C. Performance Metrics

The effectiveness of FortisEDoS in preventing fraudulent
resource scaling requests is assessed by measuring the perfor-
mance of CG-GRU in detecting AL-DDoS attacks over the



testing dataset using Precision, Recall (a.k.a. sensitivity) and
F1-score metrics, which are respectively calculated as TP

TP+FP ,
TP

TP+FN , and 2× Recall×Precision
Recall+Precision . Note that TP (True Pos-

itive) represents the number of correctly detected anomalies
FN (False Negative) denotes the number of anomalies that
are falsely detected as normal samples, FP (Flase Positive) is
the number of the normal samples that are wrongly flagged as
anomalous ones, and TN (True Negative) refers to the number
of the normal samples that are correctly detected.

Besides its effectiveness, we evaluate the efficiency of For-
tisEDoS in terms of the economic damage repair (EDR), which
is measured by the difference in extra CNF replicas induced
by AL-DDoS attack with and without DDoS Mitigator.

D. Performance Results
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Fig. 4: Attack Detection Performances.

1) Attack Detection Performances: We compare CG-GRU
with the LSTM-based anomaly detection model proposed
in [12]. Moreover, we conduct a layer ablation study to assess
the impact of the local features extracted by Conv1D layer
and the spatial features derived by GAT layers on the DDoS
attack detection. To this end, we compare CG-GRU with GRU,
where only the temporal information extracted by GRU layers
is used. We also transplant the Conv1D and GAT layers to
LSTM model proposed in [12] to assess their impact on the
model’s performances.

The results depicted in Fig. 4 demonstrate the superiority
of CG-GRU model in achieving the highest performance
scores compared to all other models. In fact, CG-GRU model
exhibits a high sensitivity in identifying anomalous CNF’s
status while yielding an acceptable Precision of 86.43% and
a F1 score of 92.37%. It is worth noting that in our case
a high Recall is preferred over a high Precision, as the
unsuccessful detection of anomalous CNF’s status may lead to
economic losses due to accepting malicious resource scaling
operations. Compared with the LSTM-based model, CG-GRU
improves the Precision, Recall and F1 scores by at least
3.96%, 1.56% and 2.98%, respectively. This improvement is
attributed to the quality of the learned spatio-temporal features,
which allows better estimation of the anomaly threshold. This

statement is corroborated by the results of the ablation study,
which demonstrate the importance of capturing both spatial
and temporal dependencies from convolved data. The results
reported in Fig. 4 show that adding Conv1D and GAT layers
allows CG-GRU model to outperforms the baseline GRU
model, increasing the Precision, Recall and F1 scores by at
least 2.89%, 1.64% and 2.22%, respectively.

2) Effectiveness of TL: To test the effectiveness of applying
TL in terms of both attack detection and training time, we
transfer the CG-GRU model trained on data collected from the
video streamer CNF of vCDN slice 1 (denoted vStreamer1)
to a newly deployed video streamer CNF of vCDN slice 2
(denoted vStreamer2). Unlike vStreamer1, only few interac-
tions have been performed between the simulated legitimate
users and vStreamer2 and with access to the same video file.
Hence, the training dataset collected from vStreamer2 is not
representative of a normal behavior.

Let TL-CG-GRU denote the CG-GRU model for
vStreamer2 built using TL. For comparison, we train
another CG-GRU model for vStreamer2 from scratch using
its training dataset (hereafter denoted as CG-GRU-vS2).
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Fig. 5: The performances and training time of CG-GRU model
with and without transfer learning.

Fig. 5 reports the training time as well as the attack detection
performance indicators over Streamer2’s testing dataset. The
results demonstrate the superiority of the transferred model
TL-CG-GRU in boosting the detection performance while
considerably reducing the training overhead. Indeed, TL-CG-
GRU results in a gain of 25.51% and 17% in precision
and F1-score, respectively, compared to CG-GRU-vS2. This
supports our idea that the spatio-temporal features derived by
the feature extraction layers are more generic and therefore
can be transferred among CNFs of different slices. Moreover,
TL-CG-GRU substantially speeds up the training of CG-GRU-
vS2 model by at least 61%, thanks to the reuse of knowledge
regarding feature representations during the fine-tuning phase.

3) Economic Damage: Fig. 6 depicts the number of extra
replicas induced by Hulk and Slowloris attacks on vCDN
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Fig. 6: Economic damage caused by Hulk (H) and Slowloris (S) attacks on vCDN slice1, with and without FortisEDoS.

slice 1, with and without using FortisEDoS. Note that with-
out FortisEDoS, the attack is stopped when the maximum
replica count of vStreamer CNF is reached (set to 15 in our
experiment). The results show that FortisEDoS can reduce the
economic damage, computed as the area under the curve, from
12180s to 1320s under Hulk attack, achieving 89.16% EDR.
In the case of Slowloris, the EDR is 100% thanks to the early
detection of this attack.

IV. CONCLUSION

In this paper, we proposed FortisEDoS, a novel frame-
work for enabling highly elastic B5G services while being
immune to EDoS attacks. FortisEDoS achieves its goal by
(i) integrating CG-GRU, a new DL-powered DDoS anomaly
detection model which exploits the forecasting errors be-
tween the observed VNF’s metrics and the predicted ones
to determine malicious VNF scaling requests due to stealthy
AL-DDoS attacks; and (ii) adopting the concept of transfer
learning to yield effective detection of EDoS attack in newly
deployed slices. The experimental results showed the superior
performance of FortisEDoS in accurately detecting EDoS
attack, reducing related economic damage, and confirmed the
benefit of transfer learning in boosting both attack detection
effectiveness and training speed when representative historical
data of normal behavior are scare. In the future, we intend to
devise an advanced mechanism for selecting the appropriate
VNFs/slices for knowledge transfer.
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