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Collaborative Cross System AI: Towards 5G System
and Beyond

Miloud Bagaa, Tarik Taleb, Jukka Riekki, and JaeSeung Song

Abstract—The emerging industrial verticals set new challenges
for the 5G and beyond systems. Indeed, the heterogeneity of
the underlying technologies and the challenging and conflicting
requirements of the verticals make the orchestration and man-
agement of networks complicated and challenging. The recent
advances in network automation and artificial intelligence (AI)
create enthusiasm from industries and academia towards apply-
ing these concepts and techniques to tackle these challenges. With
these techniques, the network can be autonomously optimized
and configured. This paper suggests a collaborative cross-system
AI that leverages diverse data from different segments involved in
the end-to-end communication of a service, diverse AI techniques,
and diverse network automation tools to create a self-optimized
and self-orchestrated network that can adapt according to the
network state. We align the proposed framework with the ongoing
network standardization.

Index Terms—5G, Beyond 5G, Cloud Computing, Edge Com-
puting, and AI.

I. INTRODUCTION

5G and beyond systems are not only about increasing
the network throughput, but also target a large number of
services and applications that will transform our daily lives.
In the future, technologies such as augmented reality, virtual
reality, and holographic telepresence will be commonly used,
enabling new applications, such as industry 5.0, industrial
internet of things (IIoT), and self-driving cars. The network
will adapt itself using various technologies to provide more
extensive broadband, near-instant, efficient, resilient, and re-
liable connectivity with five-nines network availability. This
development sets challenges to orchestrating and managing the
network. The envisioned network will be complex and hetero-
geneous and will consist of various technologies and industrial
verticals with high key performance indicators (KPIs). The
network must adapt to tackle these challenges and achieve the
objectives by providing an intelligent interplay between edge
and cloud resources.

Fortunately, artificial intelligence (AI) has been matured
enough to provide efficient solutions for complex problems, in-
cluding automation industries, telecommunications, and trans-
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portation. Moreover, the emerging advancements in computa-
tion and networking enable AI techniques for managing the
complexity and heterogeneity in the 5G and beyond systems
[1]. Machine learning (ML), a particular case of AI, will play a
crucial role in the future network and industrial verticals. ML
techniques provide the ability to learn from the environment
and enable self-optimized systems that adapt according to the
states of the network and the industrial verticals. Furthermore,
smooth service management and orchestration can be achieved
with intelligent agents, from distributed artificial intelligence
(DAI). Such agents perceive their environment and act to
achieve a common goal. Many DAI learning techniques have
been widely used in the literature, including transfer learning,
federated learning (FL), meta-learning framework (MLF), and
multi-agent reinforcement learning (MARL) for ensuring flu-
ent collaboration between agents. FL enables the distribution
of the learning process among multiple agents, while a central
server manages the global model. MLF aims to overcome
the limitations of FL by enabling more extensive learning
processes and more complex tasks. Meanwhile, MARL offers
the agents (e.g., self-driving cars) with the possibility to
interact among themselves and also with the environment, and
to learn how to optimize the distributed decisions taken by
different agents.

This paper leverages DAI techniques and the ETSI Zero-
touch network and Service Management framework1, enabling
prompt and effective, combined management and orchestration
in an autonomous and blended way. We propose a collabo-
rative cross-system AI that manages resource heterogeneity
and orchestration complexity, as well as the geographical
distribution of clouds and edges. The proposed framework
leverages and enhances DAI techniques to deal with the
above-mentioned challenges and to meet the desired objectives
and KPIs targeted by the emerging industrial verticals and
applications. The framework’s output is a network intelligence
function (NIF) integrated into different management domains
for enabling smart self-orchestration and self-management of
end-to-end network slices. This paper illustrates how the NIFs
leverage AI techniques, such as DAI, FL, MLF, and MARL, to
build a collaborative system that can efficiently make the right
decisions. The NIF agents are integrated into the management
domains from the industrial verticals to the core network. We
have designed our framework to be aligned with the ongoing
standardization, including ETSI MEC [2] and 5G service-
based architecture (3GPP TS 29.520 (v15.1.0)). We also show

1ETSI GS ZSM 002, ”Zero-touch network and Service Management
(ZSM): Reference Architecture”
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how NIF agents, provided within the collaborative cross-
system AI framework, benefit a wide range of applications
that vary from dynamic network customization to autonomous
cars, object recognition, and smart home management.

The rest of the paper is organized as follows. Section
II summarizes different AI technique enablers and different
network automation and orchestration frameworks. In Section
III, we present the collaborative cross-system AI, NIF agents
and their sources of information. Section IV describes use-
cases whereby NIF agents can be used for unified smart
orchestration and management. Finally, Section V concludes
the paper.

II. RELATED WORK AND BACKGROUND ON
CROSS-SYSTEM AI ENABLERS

A. Machine Learning Techniques

ML has recently gained considerable attention from
academia and industry thanks to its ability to provide smart and
scalable solutions. ML techniques, such as supervised learning,
unsupervised learning, and reinforcement learning, have been
widely adopted by network, cloud, and telecom providers.
With these techniques, a network can learn from the envi-
ronment and realize self-optimization and self-configuration
for ensuring the desired KPIs. These KPIs are continuously
and dynamically changing due to heterogeneity in vertical
demands, mobility patterns, and dynamic workload. Moreover,
these techniques can provide fast settings while making an
abstraction on the environment, facilitating the integration of
the same solution into different scenarios. Hereby, abstracting
the complex environment decreases the number of assumptions
in the modeling, thus improving the accuracy.
Supervised Learning: In supervised learning algorithms, the

data’s inner relations may not be known, but the model’s
output is known. This technique requires labeled training
data that is used for training the model. The latter is
mainly used for either classification or regression prob-
lems. Training requires three sets of data. The most
important part of the data is used for training, while the
two remaining pieces are used for testing and evaluation.

Unsupervised Learning: Unlike the supervised learning ap-
proach, the data is unlabeled in these techniques. Relevant
models try to find a correlation between the input data
and classify it into different clusters (i.e., clustering).

Reinforcement Learning: The reinforcement learning (RL)
technique has been widely used in the literature for
self-optimizing a continuously and dynamically changing
network. Reinforcement learning belongs to the same
family as the Markov Decision Process (MDP). MDP
is a model-based approach (i.e., Transition probability),
whereas RL is a model-free approach. RL adopts a unique
model training method that is based on trial and error
and reward functions. The RL agent periodically makes
decisions, observes the environment, and then adjusts the
next action policies for achieving optimal configuration.
RL summarizes the environment and actions in a Q-table.
Unfortunately, the Q-table cannot provide an optimal
strategy in a complicated situation with many states and

actions. A new paradigm, dubbed deep reinforcement
learning (DRL), has been recently suggested to overcome
the limitations of RL. DRL leverages Deep Learning
(DL) [3] for presenting the Q-table as a function by
leveraging the strength of neural networks. DRL is mainly
classified into the following classes: i) Value-based ap-
proach, such as Deep Q Network (DQN), Double DQN
(DDQN), and Dueling DQN (Duel-DDQN) Algorithms;
ii) Policy-based approach, such as REINFORCE (Monte-
Carlo Policy Gradient) and REINFORCE with baseline;
iii) Actor-Critic approach, which is a hybrid between
the two previous approaches. Many algorithms that use
Actor-Critic have been suggested in the literature, such as
Advantage Actor Critic (A2C), Asynchronous Advantage
Actor Critic (A3C), Deep Deterministic Policy Gradient
(DDPG), and Proximal Policy Optimization (PPO) Algo-
rithms [4].

The objective of ML algorithms is mainly to learn parame-
ters for generating a function F that maps the input data (i.e.,
features) to an output (i.e., predictions). In the case of deep
learning (DL), which is a particular case of ML, the param-
eters can be neural weights, bias, and batch normalization
parameters. Formally, ML adopts a data-driven approach by
optimizing the parameters by mapping the changes between
the input and output data. Different gradient descent-based
optimization techniques are adopted in the literature, such as
gradient descent with momentum (GDM), stochastic gradient
descent (SGD), RMSprop, and Adaptive moment estimation
(Adam). The latter leverages both GDM and RMSprop for
achieving better performances in terms of variance and bias
tradeoff.

Besides the gradient descent optimizer and the learning
rate, other methods have been adopted in DL to speed up the
convergence and prevent the vanishing and exploding gradient
problems, such as normalization (i.g., batch normalization),
regularization (e.g., dropout, Frobenius norm, and Xavier ini-
tializer). Various activation functions have been also adopted to
break the linearity between successive neural network layers,
such as Sigmoid, Tanh, and ReLU. Without these activation
functions, whatever the number of neural layers, the deep
neural network can be presented as a simple linear or logistic
regression function. The underlying ML algorithm uses a
dataset containing instances with their respective classes (in
case of supervised learning) to derive the function F or look for
a correlation between attributes to regroup them into similar
categories (unsupervised learning). Most of the applications
are made locally, whereby a data source is used to feed the
learning component holding the model. The model’s success
hinges on the learning algorithm, the attributes selection, and,
more importantly, the data source. The latter plays a significant
role: according to its volume and diversity, it is possible to
extract exciting behaviors that are hard to discover with regular
data analysis.

B. Distributed Artificial Intelligence and Multi-Agent Systems

Distributed Artificial Intelligence (DAI) is seen as a sub-
field of Artificial Intelligence. It has attracted a colossal
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attention due to its capability for solving complex problems.
It solves problems related to coordination, concurrency, and
decision-making. DAI systems are composed of agents, which
are computational entities, software programs, or robots that
perceive their environment, make decisions based on the
perceptions and act accordingly, thus changing the state of the
environment. Traditional AI models focus on solving problems
by searching through a space of potential solutions. DAI
can be classified into three different categories according to
the underlying used methods: i) Parallel AI; ii) Distributed
Problem Solving (DPS); and iii) Multi-Agent Systems (MAS).

Multi-Parallel AI has been proposed to enhance the ef-
ficiency of legacy centralized AI algorithms. It enables the
development and employment of parallel AI Algorithms us-
ing different languages and architectures. Numerous software
and tools have been adopted in the literature for promoting
Multi-Parallel AI systems, such as Spark, GraphLab, and
TensorFlow. From another side, DPS divides a task into sub-
tasks and then allocates them to a set of AI cooperative
computing entities. The latter communicate among themselves
and share the knowledge and resources to perform the final
task. Unfortunately, DPS suffers from the lack of flexibility
and automation. A MAS is a complex system that consists
of several agents designed to carry out specific tasks. These
agents cooperate among themselves to achieve a common
objective. The participating agents and their coordination are
usually defined at design phase to accomplish the task. In
contrast to the previous two classes, a MAS agent has the
ability to learn and make autonomous decisions and actions. A
MAS agent is able to autonomously interact with other MAS
agents and with the environment to learn new contexts and
actions. The MAS agents can be divided into two categories:
Active Agents: do not only learn from their surroundings but

can also impact their respective environments.
Passive Agents: act as passive watchers, acquiring knowl-

edge from their respective environments without neces-
sarily affecting them.

C. Distributed Federated Learning and Multi-Agent Rein-
forcement Learning

1) Federated Learning: Federated learning (FL) is a ML
technique that enables the distribution of the learning process
among many parties (e.g., mobile devices, edges, or clouds).
These parties collaborate with a central orchestration server
(e.g., service provider) while keeping the training data de-
centralized. In this ML technique, the learning agents can
collaboratively train a global learning model without sharing
their local datasets. The central agent will learn from the
different agents and accordingly help the other agents for
enhancing their local models, thus perceiving improved learn-
ing performance. Different techniques can be leveraged for
enabling DLF, such as transfer learning by either initializing
the parameters or freezing the hidden layers. The DFL mecha-
nism has the following characteristic features: i) Decentralized
computation that leads to achieving the optimal learning rate
in an optimal time; ii) Sharing the gained knowledge (i.e.,
trained models) with the new members; iii) Increasing data

privacy (i.e., images and videos) by keeping the generated data
close to their source origination.

Authors in [5] suggest MOCHA, which is a framework
for federated multi-task learning. MOCHA aims at reducing
communication costs and ensuring fault tolerance. Meanwhile,
authors in [6] have proposed supervised federated learning,
dubbed FedProx, that aims at optimizing the local model to
fit the local datasets. In contrast, the global model is optimized
to perform well on distributed datasets by aggregating the local
learning parameters. However, such conventional federated
learning is mainly focused on a single learning task (i.e.,
the global model) with non-i.i.d (non-independent and non-
identically distributed) datasets. Moreover, the global model
can be biased by agents that have massive datasets and
generate a large number of updates [6]. On the other hand,
the generalization and specialization of sub-models can hinder
the convergence (i.e., overfitting or underfitting) of the global
model. To overcome the heterogeneity of the underlying data
and its distribution at different agents, authors in [7] suggest
a Model-Agnostic Meta-Learning (MAML) framework that
leverages federated averaging technique for providing a more
personalized model for each agent and hence offers better
model convergence. Unfortunately, the MAML framework
lacks cohesion relations between the generalization and the
personalization.

Regrettably, the DFL technique comes with unavoidable
communication overhead and complexity that impair the appli-
cability of this technique. An extra communication overhead
between the agents is required for ensuring a coherent vision of
the global model. Moreover, while the splitting of the dataset
has a positive impact on data privacy, the split of the dataset on
multi-agents could harm model accuracy and precision and the
tradeoff between the bias and variance in the ”global” model.

2) Meta Learning Framework - MLF: FL leverages a
distributed multi-agent environment for learning a model for
a task using multiple datasets. However, the resulting global
model is adequate to address only this task due to its rigid
design, limiting the practicality of the model in complex
scenarios or unseen data. To mitigate these issues, MLF [8] has
been proposed to enable generalization from a broad training
data of similar tasks. The model provided by MLF is designed
to be easy to fine-tune by modifying the gradient descent
method, hence enabling generalization in the prediction.

3) Multi-Agent Reinforcement Learning: In the literature,
the model-based approach, i.e., Markov Decision Process
(MDP), has been extended from a single agent to a multi-agent
system by forming a stochastic game that enables extensive
and exciting use-cases. The model-free approach, represented
by reinforcement learning (RL) techniques, has recently gained
a lot of momentum. A multi-agent system employing RL is
called multi-agent reinforcement learning (MARL) [9]. This
approach introduces benefits for distributed systems, such as
autonomous driving and network self-management and self-
orchestration, where more than one agent should collaborate
to achieve the desired objectives. The system state and reward
are split among the agents for achieving a common goal.

MARL algorithms can be classified into three main ap-
proaches: i) fully cooperative; ii) fully competitive; and iii)
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Fig. 1: Collaborative Cross System AI – High-Level Architecture.

hybrid. While the agents collaborate to optimize a single
objective in the first approach, the second approach’s agents
compete to enhance their benefits, similar to a zero-sum
game where mixed-strategy Nash equilibrium is sought. In
the third approach, the first two approaches are mixed to
optimize both the global objective and each agent’s goals.
This approach is similar to the general-sum game, where the
dominant strategy and Nash equilibrium are sought in pure-
and mixed-strategies. MARL leverages theories varying from
optimization theory, dynamic programming, and game theory
to decentralized control.

D. Network Automation and Cognitive Network
ETSI established the Zero-touch network and Service Man-

agement Industry Specification Group (ZSM ISG) that enables
agile, efficient unified management and orchestration in an
autonomous and harmonized way. This concept mitigates
the complexity of the next-generation networks. The ZSM
framework is envisaged as a next-generation management
system that aims at having all operational processes and tasks
(e.g., planning and design, delivery, deployment, provisioning,
monitoring, and optimization) executed automatically. More-
over, the framework ensures both scalability and resiliency
by adopting a decentralized approach and giving more free-
dom to the local sub-system management for making local
decisions. ZSM consists of loosely coupled services with
self-management capability by leveraging the flexibility of
SDN/NFV technologies and the smartness of AI/ML to ensure
a full-automation system that reduces human intervention.
The ZSM architecture is designed in a modular way that
consists of self-contained and loosely coupled services that
communicate using intent-based interfaces. The latter exposes
high-level abstraction to hide the complexity, technology,
and vendor-specific details. Flexibility and extensibility are
improved as new services (horizontal/vertical control scaling)

and capabilities can be added to different sub-systems. The
ZSM architecture consists of two management parts, namely
i) management domains and ii) E2E service management
domain.

Similar to the ETSI ZSM initiative, many research works
have been proposed in the literature towards enabling cognitive
and self-managed networks. The authors in [10] propose
a learning augmented optimization approach that leverages
deep learning techniques and Lyapunov stability theories for
managing different network slices. Both historical records and
real-time observations are used for controlling network slices.
To reduce human intervention in the network and associated
errors, authors in [11] propose a framework that provides intel-
ligence and autonomy to systems by leveraging AI/ML meth-
ods. Wang et al. [12] propose a cognitive network-oriented
framework to provide suitable Quality of Experience (QoE)
using ML techniques in an SDN architecture. Application
management strategy can be learnt based on information ob-
tained from the South Bound Interface (SBI), whereas network
metrics and KPIs achieved are monitored based on information
retrieved from the North Bound Interface (NBI). Sciancalepore
et al. [13] proposed a zero-touch orchestration (z-TORCH)
approach to optimize the Quality-of-Decisions (QoD). The
framework leverages both unsupervised learning and reinforce-
ment learning for placing VNFs at minimum monitoring costs.
Authors in [14] proposed a DeepCog framework that forecasts
the needed resources for accommodating network traffic while
preventing the over-provisioning of resources and ensuring the
desired resource requests. The framework is based on deep
learning technique for achieving the desired objectives.



5

Fig. 2: Collaborative Cross System AI – Conceptual Architecture.

III. CROSS SYSTEM AI FOR ENABLING SMART NEXT
NETWORK GENERATION

A. Cross System AI Framework – Main Overview

Fig. 1 depicts an overview of the proposed framework for
enabling collaborative cross-system AI. Network Intelligence
Functions (NIFs) are integrated into the management domains
for enabling autonomous management and supporting collab-
oration amongst these domains. A NIF agent is designed to
produce decision making insights and recommendations based
on information gathered from various management domains
(i.e., representing the different segments involved in an end-
to-end communication path of a service). NIF agents offer
the agility and autonomy in network and service management
required by the 5G and beyond systems. We have designed our
framework to run separate NIF agents by each management
domain to ensure service granularity, scalability, availability,
flexibility, and load balancing.

The NIF agents communicate through the domain inte-
gration fabric for ensuring smooth collaboration between the
management domains. The collaboration and self-optimization
of the NIF agents are based on the AI enablers, including
ML, DAI, MAS, FL, MLF, and MARL. The insights and
recommendations generated by the NIF agents are then deliv-
ered to the respective network functions (NFs) to accordingly
adapt their behavior. In this context, the NFs benefit from the
NIF agents as they are able to make intelligent decisions that
suit different verticals from the service provider to the user
equipment (UE).

As depicted in Fig. 2, our framework consists of two
hierarchical levels. While the first level consists of the end-
to-end management domain, the second level consists of five
management domains. The management domains are merged
in a unified manner, based on the 5G architecture defined by
3GPP and the MEC specifications. AS depicted in the figure,
the different management domains are interconnected.
End-to-end management domain: is responsible for orches-

trating the whole system for ensuring the desired KPIs
and service level agreements (SLAs) targeted by different
verticals. This management domain is formed by multiple
NIF agents that may run on top of cloud-native envi-
ronments and collaborate to ensure the above-mentioned
objectives.

Management domains: are self-organized and self-managed
to ensure the end-to-end KPIs and SLAs. In each man-
agement domain, the NIF agents, besides their internal
collaborations, also collaborate with other NFs in that
management domain to ensure the desired objectives.
Based on the different segments that are typically in-
volved in the end-to-end communication path of a service,
we distinguish five main management domains: i) indus-
trial verticals domain; ii) access domain; iii) edge cloud
and data network domain; iv) core network domain; and
v) service provider domain.

B. Sources of Information at Management Domains

The focus of this work is on mobile services consumed by
different types of end-users. Various stakeholders are involved
in this ecosystem that forms the entire service-delivery system.
Each stakeholder owns (or rents) and administrates a sub-
system (i.e., management domain). Gathering analytical data
across different mobile network segments can provide valu-
able insights into the optimization and automation of mobile
network operations. The network segments vary from the
end-user devices to the service provider crossing fronthaul,
backhaul, and core network. The gathered analytical data
would have a significant impact on the network softwarization
era, whereby software-defined networking (SDN), networks
function virtualization (NFV), and MEC technologies will play
a crucial role in 5G and beyond mobile systems. Hereunder,
and for the sake of clarity through concrete examples, we
cover some of these information sources, classified as per the
respective sub-system.

1) Industrial Verticals: The user equipment holds data that
can be used to improve the network by predicting the behavior
of a mass of users. NIF agents will leverage these data for
making decisions. This data varies in type and how it can
be collected according to the type of UE. We present the
following non-exhaustive list:
User Information: Characteristics of users that do not reveal

personal information.
Service Usage Information: Installed and running applica-

tions, localization history, perceived QoE measurement
(through response time, throughput, delay), data con-
sumption history, etc.
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Device-specific Information: Information related to the de-
vice and operating system, energy consumption, usage
activity, connected accessories, etc.

The end-devices’ generated data is leveraged by different
NIF agents to predict the behaviors and accordingly allocate
the required network and computation resources. The data is
generated and received as time-series data by the NIF agents.
For this reason, NIF agents apply different data preprocessing
techniques, such as numerosity reduction, and data cleaning,
compression, and reduction. For instance, the data reduction
can be managed using discrete wavelet transform (DWT) and
discrete Fourier transform (DFT) techniques.

2) Radio Access Network: Different AI enablers can be
used to generate insights from the information gathered from
RAN. These insights help NIF agents deployed at the access
network to predict the resource blocks utilization and over-
heard, as well as the mobility and positions of various users
and devices. Then, accordingly, network and computational
resources would be relocated from an access anchor to another
in order to ensure the desired KPIs and SLAs.

3) Multi-Access Edge Cloud: According to ETSI’s white
paper ”MEC in 5G” [2], the actual means of communication in
MEC follows the approach of previous NFs by implementing
a RESTful API. The MEC infrastructure is divided into two
levels: a System Level which holds the MEC Orchestrator,
and a Distributed Host Level that consists of MEC hosts. The
MEC orchestrator communicates with the core network mainly
through the Network Exposure Function (NEF). It has also the
ability to establish communications directly to NFs if proper
authorizations are set. The MEC orchestrator has the following
capabilities:

• Local routing and traffic steering,
• Influence on UPF (re)selection and traffic routing (via

Policy Control Function - PCF or NEF), and
• Session and Service Continuity (SSC) modes for different

UEs and application mobility.
As depicted in Fig. 2, NFs at each MEC hosts are connected

to user plane functions (UPFs) located at the MEC hosts
using N6 interfaces. Using ML, DAI, MAS, FL, MLF, and
MARL approaches, NIF agents at the end-to-end management
domain and MEC management domains collaborate to place
and assign adequate resources to different NFs for ensuring the
desired KPIs and SLAs. Following the specifications defined
by ETSI regarding the MEC orchestration2, the information
leveraged by NIF agents located at different MEC management
domains are summarized in Table I.

4) Core Network: In the 5G architecture, 3GPP defined a
function called Network Data Analytics Function (NWDAF).
The goal of NWDAF is to provide analytic information related
to the network. According to 3GPP TS 29.520 (v15.1.0)
this function offers two kinds of operations. The first one,
subscriptions, lets other NFs subscribe to events for a defined
network slice instance or all network slice instances, and
a threshold can also be specified. NWDAF will then send

2Multi-access Edge Computing (MEC) ETSI Industry Specification Group
(ISG), ”Multi-access Edge Computing (MEC); Framework and Reference
Architecture”

TABLE I: A subset of information at a MEC environment.

Information about
Resources of a Mobile Edge Service
Mobile Edge Subscription resources for a particular subscriber
Mobile Edge Subscription resource for a subscriber
Mobile Edge Traffic Rule resources for an application instance
Mobile Edge Traffic Rule resource
Mobile Edge DNS Rule resources for an application instance
Mobile Edge DNS Rule resource
Mobile Edge Timing Caps resource
Mobile Edge Current Time resource
Available transports

notifications to the respective NFs when the event occurs. The
second operation, analytics, lets the NFs directly ask NWDAF
to obtain current network slice instance information. In both
operations, only load level information of slice instances are
defined for now. This type of information alone is insufficient
to realize a fully automated network with distributed intelli-
gence.

In the standardized 5G architecture (i.e., both reference
point-based architecture and service-based architecture), most
of the core network information are stored in the unified data
repository (UDR). This function is located in the unified data
management (UDM). UDR represents a single point of storage
for multiple NFs. It holds data from PCF, access and mobility
management function (AMF), session management function
(SMF), network slice selection function (NSSF), and UDM.
Effectively, UDR represents a single point to acquire the
various data (i.e., information elements) of the core network
and the ongoing flow sessions.

As depicted in Fig. 2, NIF agents, located at the core net-
work management domain, leverage time-series data generated
at NWDAF, UDM, UDR, and MEC orchestrator for predicting
the variation in the resource utilization, and then accordingly
different actions would be taken. NIF agents predict the change
in the user plane by leveraging various control plane signals
at the NFs above.

5) Service Providers: Different service providers are offer-
ing various services to mobile users. Many of these service
providers provide an API for developers to extract data from
their respective platforms. Most of the APIs communicate
using JSON or XML through URL queries, mostly served
through HTTP. NIF agents leverage the provided APIs to
extract information from the service providers to ensure QoE
related to these service providers. Hereunder, we present some
standard APIs provided by two popular service providers,
namely Facebook, and Google.

Facebook: An API called ”Graph API”3 allows a developer
retrieve data related to different entities (e.g., Users,
Pages, Status, Messages, Videos, and Photos). URLs with
a set of filters are used to retrieve the desired data,
such as: https://graph.facebook.com/v3.2/〈node〉/〈edge〉
?fields=〈fields〉&access\ token=〈token〉

YouTube: Google offers an API for YouTube 4 to retrieve data
or manipulate its platform. Since we are more interested

3https://developers.facebook.com/docs/graph-api/overview
4https://developers.google.com/youtube/v3/docs/
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(a) Centralized Schema (b) Full Mesh Schema.

Fig. 3: Cross-System AI: Communication Patterns.

in the service providers’ data, we focus on the first
point. Google offers multiple sets of libraries in different
programming languages (e.g., JAVA, JavaScript, PHP,
iOS, Go) to access its API. The mean of communication
uses a JSON response by accessing REST endpoints with
different parameters to filter and obtain the needed data.

C. Domain Integration Fabric, and NIF Agents self-
Optimization and self-Collaboration

Fig. 3 depicts the frameworks’s communication patterns.
Depending on the situation, NIF agents may use different
approaches to interact among themselves. In the centralized
pattern (Fig. 3(a)), the NIF agents located at the end-to-end
management domain ensure the synchronization among the
NIF agents located at the management domains. This approach
allows a central unit to orchestrate and manage the different
NIF agents. Such global overview facilitates the integration
of models and the subsequent decision making. Complex
optimization problems can be resolved when the problem
can be split into sub-problems, whereby an intelligent agent
handles each sub-problem. By selecting suitable agents and
combining their knowledge, a solution closer to the optimum
can be expected in a relatively short time interval. In this
approach, DAI, MAS, FL, MLF, and MARL techniques can
be used to synchronize NIF agents.

In the fully-meshed pattern (Fig. 3(b)), NIF agents commu-
nicate directly among themselves. NIF agents, besides their
synchronization with the NIF agents located at the end-to-
end management domain, can also communicate directly with
each other to establish various tasks. NIF agents located in the
same management domain can be synchronized as well. In this
communication paradigm, NIF agents collaborate to enhance
their base of knowledge and accuracy. This pattern is suitable
for use cases whereby participating agents are given some au-
tonomy level and are delegated roles of taking local decisions
of interest to their respective sub-systems. Autonomous cars
and object recognition are two notable examples.

As mentioned in Section II, different AI enablers (i.e., ML,
DAI, MAS, FL, MLF, and MARL) have some limitations
when considering autonomous self-configuration of complex
tasks. For instance, FL and MARL focus more on enabling
collaborative decisions for well-specified and straightforward
tasks. Moreover, FL distributes the learning process for a
simple task with non-i.i.d datasets distributed among NIF
agents. The collaborative cross-system AI aims to leverage
ML, DAI, MAS, FL, MLF, and MARL techniques to provide
a complete framework that can handle complex tasks without
strong assumptions, such as the datasets at NIF agents are
non-i.i.d. Moreover, different mechanisms can be employed
to avoid the global model’s bias due to the asynchronization
updates of NIF agents.

Learning in parallel and distributed systems requires both
plasticity and stability. While plasticity enables integrating new
knowledge in parallel and distributed systems, the stability pre-
vents forgetting previously acquired knowledge. The stability-
plasticity dilemma is a well-known constraint in DAI. In a
collaborative distributed AI system, stability can be achieved
by favoring the experienced NIF agents. In contrast, plasticity
can be achieved by supporting new NIF agents. Similar to bias-
variance trade-off, there is a trade-off between stability and
plasticity of the model’s underfitting and overfitting. While
stability mitigates the problem of underfitting, it can harm
overfitting.

Meanwhile, plasticity, similar to the polling layers in deep
learning, reduces overfitting risks, but it can harm underfitting.
For this reason, in collaborative cross-system AI, an extensive
form of strategic game theory is leveraged for enabling a
fair trade-off between stability and plasticity. The proposed
approach aims to find a fair trade-off between generalization
and specialization to overcome the overfitting and underfitting
problems. The NIF agents’ impact on the collaboration can
be autonomously adapted to ensure load balancing between
unseen data and the consideration of new agents and new and
complex tasks. Moreover, the MLF technique can be leveraged
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to consider new and complex tasks.
To ensure the collaboration among NIF agents in different

management domains, these agents can either share their data
sources or combine their knowledge to tackle complex and
related tasks. Since each agent has its own AI model, the
combination of expertise can be seen as an aggregation of
different AI models. To achieve efficient collaboration, several
potential methods can be explored:
Majority Voting: Each agent predicts a given instance. This

prediction refers to a vote. According to the votes of other
agents, the cross-system AI can decide if the agent’s vote
can be taken into consideration or not.

Stacking ML: This method consists of using another ML
algorithm to handle a new dataset generated from the
different agents of the system.

Weighting: Depending on the type of information, the source
agent and other characteristics, a weight is assigned
to each insight received from each participating agent.
Weights can be static or dynamically determined. They
are decided based on how much influence the system
wants to attribute to each agent.

Bootstrap Aggregating: This method consists of converting
weak models to strong ones by aggregating the models’
multiple predictions to get the final prediction. This tech-
nique is mostly used on decision trees in an environment
where all agents treat the same data.

IV. USE-CASE STUDIES

As mentioned previously, NIFs will be integrated into differ-
ent management domains for enabling smart self-orchestration
and self-management of end-to-end network slices that target
various emerging use-cases. Service granularity, availability,
flexibility, and smartness provided by NIF can benefit a wide
range of use-cases that cannot all be described here. We
present some use cases and applications that could leverage
NIF for enhancing their functionalities and SLA satisfactions.

A. Dynamic Network Customization

In this scenario, the NIF agents are integrated into different
components of the network. Those NIF agents, depending on
their type, give different kinds of insights, which are gathered
by the NIF agents at the end-to-end management domain.
These agents have the necessary control on the network to
adapt it based on the received information.
Smart Slice Selection and Management: In this context,

slice instantiation and attribution to the users is performed
based on information collected from the core network,
MEC infrastructure, service provider, and user equipment
[15]. The idea is to use the NIF agents to collect,
analyze and either generate a slice blueprint (in case
of slice instantiation) or management related information
(e.g., add/remove slice VNF, change slice users). This
information gathered by NIF agents is then sent to NSSF,
which acts accordingly.

Smart Data Center Energy Optimization: The large en-
ergy consumption of the servers in a data center is a
significant concern. The servers can be continuously kept

running even if no process is running, and that is to
be ready to cope with peak hours. By leveraging the
collaborative cross-system AI framework to predict and
forecast usage peaks, the servers’ state can be changed
dynamically following a different set of policies (e.g.,
saving power, medium performance, full performance).
This can be achieved by NIF agents that forward the
results to the MEC orchestrator that manages the MEC
hosts and sets the servers’ state according to the infor-
mation received from the NIF agents.

Smart Policy Planning: Policy planning includes software
updates, data backup, and dynamic traffic steering. The
next-generation networks will be virtualized/software-
based entities. This transition to softwarization will bring
its challenges regarding software maintenance with reg-
ular updates and software upgrades to new versions that
can be incompatible with the other currently deployed
entities. Leveraging NIF to plan, identify, validate, and
rollback (in case of malfunction) software updates is a
way to address these issues.
Data backup can be crucial for critical services, and
mistakes can be disastrous if a wrong decision is made.
In case of data backup management, a naive decision will
be to back up everything, still considering the network’s
capabilities. However, this may be a costly and inefficient
process. In this vein, there is need to plan an efficient
strategy for backing up users’ data: by considering when
to do the backup operation, what to backup prioritizing
among different data, and where to place the backups.
This can be attained by leveraging a NIF that can take
various constraints into account, use different knowledge
from other NIF agents (e.g., about data type, network
conditions, cloud resource availability, mobility of users,
etc), and correlate among the different information to
make a logical and intelligent decision.

Smart MEC Application Orchestration: Intelligent man-
agement of MEC applications consists of smart MEC ap-
plication migration (between the VMs or the MEC Hosts),
duplication, pausing, releasing, or sharing application
information context to other applications. Management
decisions are carried out based on various information.
Collaborative NIFs offer the possibility for predicting
the variation in the network and industrial verticals.
Accordingly, the services migrate proactively, or service
context is serialized and moved from a MEC to another.

B. Autonomous Car

Autonomous cars can benefit from the collaborative cross-
system AI by increasing their capabilities through other cars’
combined knowledge. For example, each vehicle can be
adopted with a NIF agent with the same goal: finding the
best and shortest road to a destination. Those NIF agents
deployed on top of these cars communicate with each other
and adapt their results by weighting them accordingly. In
this scenario, both communication patterns can be adapted
to ensure the synchronization among the NIF agents. The
decisions that require global knowledge and information from
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a third party would be offloaded to a central NIF agent located
at the cloud or MEC. In this case, NIF agents, on board cars,
keep communicating with the central NIF agent for taking
the right decisions. From another side, a fully meshed pattern
can be also adapted to ensure fast synchronization among the
neighboring NIF agents. For instance, the collaboration among
the NIF agents enables efficient object detection and tracking
and would ultimately yield more accurate actions.

C. Object Recognition

Object recognition problems are resource-consuming and
require high computational power. The problem lies in a
large number of different 2D/3D images corresponding with
a moving object when the lighting changes, or the visibility
area changes. To increase the accuracy of the recognition, the
collaborative cross-system AI approach could be used. Each
NIF agent has a list of recognized objects with their respective
accuracy and uses the surrounding agents to increase the
different objects’ accuracy by leveraging various outputs of
NIF agents. In this use-case, both communication patterns
can be adapted. A centralized approach can be adopted by
offloading the heavy tasks that require more computational to
the central NIF. The remaining tasks could be shared among
the NIF agents using a fully meshed pattern.

D. Smart Homes

With the significant number of IoT devices present in smart
homes, such a scenario aligns in a distributed intelligence
paradigm. It could be seen as multiple NIF agents cooperating
to achieve a common goal. For instance, a device responsible
for regulating the indoor temperature of the house can not only
rely on outside temperature but also on the knowledge gained
from various other devices (e.g., the device that keeps track of
the vital health of the tenants and the monitoring device that
keeps records of the past events). The NIF agents, deployed
onboard the IoT devices, collaborate for enhancing the sensing
and measurement accuracy.

V. CONCLUSION

This paper leveraged the new achievements in network
automation and artificial intelligence for providing a complete
framework that enables the collaboration between diverse
management domains for enabling end-to-end network slicing.
Each network slice is self-orchestrated, self-managed, and self-
optimized to meet its desired objectives and KPIs. We have
designed our framework to be aligned with the vision of
ongoing network standardization. The proposed framework is
designed to ensure a cross AI system collaboration for making
decisions about multiple tasks in complex scenarios or unseen
data. To ensure a fair trade-off between the generalization
and the specialization, the proposed framework suggested
different techniques for securing a trade-off between stability
and plasticity.
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