
1

Throughput Maximization for Backscatter
Communication in Cell-Free Symbiotic Radio

Networks with Hybrid CSR-PSR
Kechen Zheng, Senior Member, IEEE, Zefu Li, Xiaoying Liu, Senior Member, IEEE,

Jia Liu, Senior Member, IEEE, Tarik Taleb, Senior Member, IEEE, and Norio Shiratori, Life Fellow, IEEE

Abstract—With the evolution of sixth generation (6G) technolo-
gies and Internet of Things (IoT), base stations and IoT devices
are deployed densely to achieve the ultra-high data rate, resulting
in the scarcity of spectrum resource. To tackle it, we study a cell-
free symbiotic radio network (CF-SRN) that consists of the cell-
free network (CFN) and IoT network, and includes multiple ac-
cess points (APs), multiple backscatter devices (BDs), and a single
receiver. APs collaboratively transmit primary radio frequency
(RF) signals to the receiver, and BDs split the energy of primary
RF signals to perform backscatter communication, and energy
harvesting. Existing works focus on the SRN with commensal
symbiotic radio (CSR) or parasitic symbiotic radio (PSR) setup,
while we design a hybrid CSR-PSR setup to balance the tradeoff
between primary communication and backscatter communication
in the CF-SRN. Based on the design, we formulate the sum
backscatter throughput maximization problem by optimizing the
time allocation vector, beamforming vectors of APs and BDs,
and reflection coefficients of BDs, subject to the minimum sum
primary throughput constraint. Due to the coupling relationship
among high-dimensional variables, we decompose the formulated
problem into time allocation optimization (TAO) subproblem,
beamforming optimization (BO) subproblem, and reflection co-
efficient optimization (RCO) subproblem. For TAO subproblem,
we use a linear programming method to obtain the optimal
solution. For BO subproblem and RCO subproblem, we propose
a block coordinate descent-based semi-definite relaxation and
successive convex approximation (BSS) algorithm. Simulation
results validate the superiority of the BSS algorithm and hybrid
CSR-PSR setup.

Index Terms—Symbiotic radio (SR), cell-free (CF), beamform-
ing, throughput maximization.

I. INTRODUCTION

With the emergence of ultra-high-definition video and

telemedicine applications, sixth generation (6G) technologies
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and Internet of Things (IoT) are proposed to deploy base

stations and IoT devices densely and achieve ultra-high data

rate, leading to scarcity of spectrum resource [1]. The sym-

biotic radio network (SRN) consists of primary communi-

cation and backscatter communication, and the symbiotic

relationship between them is leveraged as a promising solution

for spectrum-efficient IoT communication [2]. In the SRN,

primary users (PUs) are authorized to access the licensed spec-

trum for primary communication, and share the spectrum with

backscatter devices (BDs), i.e., IoT devices, for backscatter

communication [3].

There are two typical symbiotic radio (SR) setups, i.e.,

commensal SR (CSR) setup [3]–[7], and parasitic SR (PSR)

setup [8]–[10]. In the CSR setup, the symbol rate of backscat-

ter communication is much smaller than that of primary

communication [3], [4]. The primary symbol can be viewed

as through a slowly varying channel that incorporates BD-

related channels. The primary communication may benefit

from backscatter communication by treating IoT signals as

additional multipath components [6], [7]. In the CSR setup,

Jia et al. [3] investigated a SR-assisted mobile edge computing

network for high-speed railway IoT services, and Wang et
al. [4] minimized the transmission power subject to the cellular

communication outage probability constraints and sum IoT

rate constraints. In the SRN with hybrid active-passive com-

munication, Xu et al. [5] investigated the weighted sum rate

maximization problem and energy efficiency maximization

problem. Long et al. [6] derived the achievable rates for the

primary communication and backscatter communication, and

formulated two transmit beamforming optimization problems.

Liu et al. [7] proposed a paradigm of integrated sensing

and communication for the battery-free IoT system, where

the meta-material sensors provide additional multipath gain

to assist the communication performance. In the PSR setup,

Xu et al. [8] maximized the system throughput in the SRN,

and utilized Bernstein-type inequality to transform the outage

rate constraints into deterministic forms. Zhuang et al. [9]

investigated the hybrid active-passive communication with

multi-secondary transmitters, and formulated a throughput

maximization problem. In the PSR setup, the symbol rate

of backscatter communication is the same or comparable to

that of the primary communication [10]. The receiver first

decodes the primary signal by treating the backscatter signal

as interference, and then decodes the backscatter signal after

subtracting the primary signal from the received signal [10],

[11]. Thus, the CSR setup outperforms the PSR setup in terms
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of primary communication, while the PSR setup outperforms

the CSR setup in terms of backscatter communication [12].

As a promising technique for realizing 6G technologies and

IoT network, the cell-free network (CFN) aims to address the

challenge of high data rate demands. The CFN eliminates

the concept of cell boundaries, and enables access points

(APs) to cooperatively serve users, thereby enhancing spatial

diversity and improving communication rate [13]. In CFN,

APs are randomly distributed in a given area, are connected

to a central processing unit (CPU) through fronthaul links, and

employ beamforming to configure the transmit power weights

of antennas for improving communication rate [14]. Gopal

et al. [15] proposed three vector quantization approaches for

AP placement in CFN to maximize the sum rate of APs. For

fairness considerations, Jadidi et al. [16] investigated the max-

min throughput problem in CFN. Hu et al. [17] investigated the

CFN with a stacked intelligent metasurface, and maximized

the sum rate of users by optimizing beamforming and power

allocation.

To address the challenges of high data rate demands and

spectrum scarcity in 6G technologies and IoT network, it is

a great potential to integrate CFN into SRN, i.e., cell-free

SRN (CF-SRN), which leverages macro-diversity to alleviate

the double-fading effect, thereby enhancing the symbiotic rela-

tionship between the primary communication and backscatter

communication. The CF-SRN has been studied in terms of

single-BD scenario [18]–[20] and mulit-BD scenario [21],

[22]. Dai et al. [18] explored the rate regions of primary

communication and backscatter communication in the CF-

SRN with one BD and PSR setup, and maximized the ergodic

rate of backscatter communication. Li et al. [19] studied

the CF-SRN with one BD and CSR setup, and analyzed

the spectrum efficiency under two combining schemes. Lyu

et al. [20] investigated the CF-SRN with a simultaneously

transmitting and reflecting reconfigurable intelligent surface

(STAR-RIS), and maximized the system energy efficiency

by jointly optimizing the active beamforming of APs and

reflection beamforming of the STAR-RIS. Works [18]–[20]

studied the CF-SRN with one BD where the double-fading

effect degrades the backscatter link, while works [21] and [22]

improved the passive communication rate of the CF-SRN with

multi-BD. In [21], Dai et al. studied the CF-SRN with multi-

reconfigurable intelligent surface and CSR setup, and formu-

lated a passive communication rate maximization problem. Li

et al. [22] proposed the CF-SRN with multi-user, multi-BD

and CSR setup, and investigated the viability of employing rate

splitting multiple access to alleviate interference among users.

Existing works [3]–[5], [7]–[9], [18]–[22] focus on the SRN

with single CSR or PSR setup, while the potential benefits of

integrating the advantage of CSR setup in terms of primary

communication and that of PSR setup in terms of backscatter

communication could be explored. In addition, with respect

to the hybrid CSR-active communication (AC) in [5] and the

hybrid PSR-AC in [9], we are motivated to investigate the

potential of the hybrid CSR-PSR setup and AC. Therefore

we investigate the CF-SRN with hybrid CSR-PSR setup and

AC that balances the tradeoff between primary communication

and backscatter communication from the perspective of time.

In the CF-SRN, we design a time slot structure that includes

the channel estimation (CE) phase, CSR phase, PSR phase,

and AC phase. The BDs split the energy of primary radio

frequency (RF) signals to perform backscatter communication

and energy harvesting (EH) during the CSR phase and PSR

phase, and consume the harvested energy to perform AC

during the AC phase. Adjusting the backscatter coefficients of

BDs balances the tradeoff between backscatter communication

and EH, while optimizing the beamforming of APs balances

the tradeoff between primary communication and backscatter

communication from the perspective of power. The main

contributions are summarized as follows.

• We propose a novel hybrid CSR-PSR setup for the CF-

SRN, where BDs are equipped with multi-antenna and

AC capability. We adopt a two-stage CE method to obtain

the estimated channels and CE errors. We formulate

the sum backscatter throughput maximization problem

by optimizing the time allocation vector, beamforming

vectors of the APs and BDs, and reflection coefficients of

the BDs, subject to the minimum sum primary throughput

constraint. The formulated problem with coupled high-

dimensional variables is non-convex.

• To solve it, we first use Jensen’s inequality to transform

the formulated problem that includes expectations over

random CE errors into a deterministic form, and then

propose a block coordinate descent (BCD)-based semi-

definite relaxation (SDR) and successive convex approx-

imation (SCA) algorithm, i.e., BSS algorithm. To be

specific, we propose the BCD method that decomposes

the formulated problem into time allocation optimization

(TAO) subproblem, beamforming optimization (BO) sub-

problem, and reflection coefficient optimization (RCO)

subproblem. We adopt the linear programming (LP)

method to obtain the optimal solution of TAO subprob-

lem, utilize the SDR method to equivalently transform

BO subproblem and RCO subproblem into non-convex

SDR problems, and utilize the SCA method to address

the non-convexity resulted from fractional structures.

• Simulation results validate the superiority of the proposed

BSS algorithm and hybrid CSR-PSR setup. Simulation

results show that, sum backscatter throughput in the

hybrid CSR-PSR setup is larger than that in the CSR

setup, and sum primary throughput in the hybrid CSR-

PSR setup is larger than that in the PSR setup.

The rest of this paper is organized as follows. In Section II,

we introduce the system model. In Section III, we formulate

and analyze the sum backscatter throughput maximization

problem. In Section IV, we propose the BSS algorithm to solve

the formulated problem. In Section V, we present simulation

results and discussions. Section VI concludes this paper.

The major notations in this paper are listed as follows: low-

ercase letters, such as a, represent scalars, boldface lowercase

letters, such as a, represent vectors, and boldface uppercase

letters, such as A, represent matrices. For scalar a, |a| rep-

resents the absolute value of a. For vector a, aT represents

the transpose of a, aH represents the conjugate transpose of

a, and ‖a‖ represents the Frobenius norm of a. For matrix



3

Fig. 1. System model of the CF-SRN.

TABLE I
LIST OF PARAMETERS (PARA.)

Para. Definition

M Number of APs
K Number of BDs
Q Number of antennas at each AP
L Number of antennas at each BD
ck Backscatter symbol of BDk during CSR phase
ck(n) n-th backscatter symbol of BDk during PSR phase
hm Direct link MISO channels from APm to the receiver

ĥm Estimation of hm

h̃m Estimation error of hm

Fm,k Forward-link MIMO channels from APm to BDk

gk Backward-link MISO channels from BDk to the receiver
vm,k Cascaded channels from APm via BDk to the receiver
v̂m,k Estimation of vm,k

ṽm,k Estimation error of vm,k

wC
m Transmit beamforming vector of APm during CSR phase

wP
m Transmit beamforming vector of APm during PSR phase

wA
k Transmit beamforming vector of BDk during AC phase

Pm Maximum transmit power of APm

Etotal
k Total harvested energy of BDk

RC Throughput of primary transmission during CSR phase

RC
b,k Throughput of BDk during CSR phase

RP Throughput of primary transmission during PSR phase

RP
b,k Throughput of BDk during PSR phase

αk Reflection coefficient of BDk

A, Tr(A) represents the trace of A, Rank(A) represents

the rank of A, AT represents the transpose of A, and AH

represents the conjugate transpose of A. Diag(A) represents

a diagonal matrix where the diagonal elements correspond

exactly to the main diagonal elements of A. A � 0 represents

that A is a positive semi-definite matrix. IN denotes the N×N
identity matrix. Cx×y denotes the space of x × y complex-

valued matrices. EX [·] denotes the expectation with respect

to X . CN (μ, σ2) represents the circularly symmetric complex

Gaussian (CSCG) distribution with mean μ and variance σ2.

For readability, we summarize the key parameters in Table I.

II. SYSTEM MODEL

We introduce the system model from four aspects: network

model, time slot structure, CE, and communication model.

Fig. 2. Time slot structure.

A. Network Model

As shown in Fig. 1, we study a CF-SRN that consists of the

CFN and IoT network, and includes M APs denoted by set

M = {1, . . . ,M}, K BDs denoted by set K = {1, . . . ,K},

and one single-antenna receiver. Each AP is equipped with Q
antennas, and is connected to the CPU. Each BD is equipped

with L antennas, and is connected to a sensor that collects

environmental data. Similar to [23] and [5], we consider that

each BD contains an energy harvester, an energy storage, a

backscatter transmitter, an active transmitter, and a micro-

controller. The energy harvester harvests the energy of the

ambient RF signals and stores it in the energy storage. The

backscatter transmitter performs signal modulation to transmit

backscatter signals by adjusting the impedance. The active

transmitter transmits the RF signals by consuming the har-

vested energy, and the micro-controller schedules the opera-

tion. Each BD can simultaneously perform EH and backscatter

communication by splitting the energy of RF signals. The CF-

SRN is suitable for IoT applications such as healthcare IoT

[24] and smart home scenario.

As shown in Fig. 1, the APs transmit primary RF signals to

the receiver through the direct-link channels and the cascaded

backscatter-link channels from the APs via BDs to the receiver.

The cascaded backscatter-link channels consist of the forward-

link channels from the APs to the BDs and the backward-

link channels from the BDs to the receiver. Let hm ∈ C
Q×1

represent the direct-link multiple-input single-output (MISO)

channels from APm to the receiver, Fm,k ∈ C
L×Q represent

the forward-link multiple-input multiple-output channels from

APm to BDk, and gk ∈ C
L×1 represent the backward-

link MISO channels from BDk to the receiver. The cascaded

backscatter-link channels from APm via BDk to the receiver,
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denoted by vm,k ∈ C
Q×1, are given by

vm,k = FH
m,kgk. (1)

We formulate the channel gain in the CF-SRN by both large-

scale channel gain and small-scale channel gain. The large-

scale channel gain of hm is modeled as εm = βd−γ
m,r, where

β denotes the reference channel coefficient, dm,r denotes the

distance between APm and the receiver, and γ denotes the

path loss exponent. The large-scale channel gain of Fm,k is

modeled as νm,k = βd−γ
m,k, and that of gk is modeled as

εk = βd−γ
k,r , where dm,k denotes the distance between APm

and BDk, and dk,r denotes the distance between BDk and the

receiver. The small-scale fading coefficients follow the inde-

pendent and identically distributed (i.i.d.) CSCG distribution

with mean 0 and variance 1, and we have hm ∼ CN (0,Qm),
gk ∼ CN (0,Uk), and vm,k ∼ CN (0,Qm,k), where Qm =
εmIQ, Uk = εkIL, and Qm,k = Lνm,kεkIQ are covariance

matrices of hm, gk, and vm,k, respectively.

B. Time Slot Model

As shown in Fig. 2, we consider a time slot structure for

the CF-SRN, where each time slot with equal duration T is

divided into four phases: the CE phase with duration te, the

CSR phase with duration t1, the PSR phase with duration t2,

and the AC phase with duration t3. The duration of the CE

phase is sufficiently short to be negligible, and we will discuss

the process of CE in Section II-C. The duration of the CSR

phase, that of the PSR phase, and that of the AC phase satisfy

t1 + t2 + t3 < T. (2)

During the CSR phase and PSR phase, the APs perform pri-

mary communication by collaboratively transmitting primary

RF signals to the receiver through the direct-link channels and

cascaded backscatter-link channels, and the BDs backscatter

the RF signals from the APs to the receiver while simul-

taneously performing EH. During the AC phase, when the

required throughput of the APs is satisfied, the APs remain

silent. The micro-controller of the BD switches the circuit to

the active transmitter, and the BDs perform AC by consuming

the harvested energy to transmit the environmental IoT data to

the receiver. It is noted that, the BDs considered in this paper

require the capability of adjusting the RF switching frequency

at runtime [25] and supporting AC [5], which inevitably

increases hardware complexity.

During the CSR phase, we consider the CSR setup [6] as

Tb = NTp, (3)

where N represents the integer spreading factor that satisfies

N � 1, Tb represents the symbol period of backscatter com-

munication, and Tp represents that of primary communication.

ck represents the backscatter symbol transmitted by BDk to the

receiver through the backward-link channels, and is modulated

by using phase-shift keying (PSK) modulation with mean 0
and variance 1. For n = 1, . . . , N , let s(n) be the n-th

primary symbol during one backscatter symbol period, and

s(n) ∼ CN (0, 1) holds. According to (3), the symbol period

of ck is longer than that of s(n). According to [26], when

BDs adopt PSK modulation during the CSR phase, backscatter

communication may not enhance the primary communication.

To be specific, if the phase of the BD’s reflection coefficient

is not set appropriately, backscatter communication can even

be detrimental to the primary throughput. Due to the superpo-

sition channels of APs and BDs, it is challenging to optimize

the phases of the BDs’ reflection coefficients. In the future

work, we would like to study the impact of the constraint

that the primary throughput with the assistance of backscatter

communication is larger than that of the standalone primary

communication on the throughput performance.

In primary communication, s(n) is transmitted from the

APs to the receiver through direct-link channels and cascaded

backscatter-link channels. During the CSR phase, the received

signal at the receiver, denoted by yC(n), is

yC(n) =

M∑
m=1

hH
mwC

ms(n)

+

M∑
m=1

K∑
k=1

√
αkckv

H
m,kw

C
ms(n) + z(n), (4)

where wC
m ∈ C

Q×1 denotes the beamforming vector of

APm, and αk denotes the reflection coefficient of BDk. On

the right hand side of the equality in (4), the first term

represents the accumulated direct-link signals from the APs,

the second term represents the accumulated backscatter-link

signals from the APs via BDs, and z(n) represents the additive

white Gaussian noise (AWGN) with mean 0 and variance σ2.

As the gains of the cascaded backscatter-link channels are

generally smaller than those of the direct-link channels due

to the double-path fading, the receiver applies the successive

interference cancellation (SIC) technique to decode s(n). In

practical scenarios, decoding ck at the receiver by using SIC

results in residual interferences due to imperfect cancellation,

i.e., imperfect SIC, which degrades the corresponding signal

to interference plus noise ratio (SINR) and sum backscatter

throughput. To simplify the analysis, we neglect the residual

interference caused by the imperfect SIC. By subtracting the

direct-link signals from (4), the receiver obtains intermediate

signal, denoted by yCb (n), as

yCb (n) =

M∑
m=1

K∑
k=1

√
αkckv

H
m,kw

C
ms(n) + z(n). (5)

yC
b =

[
yCb (1), . . . , y

C
b (N)

]T
represents the vector form of the

intermediate signals in one backscatter symbol period as

yC
b =

M∑
m=1

√
αkv

H
m,kw

C
msck+

M∑
m=1

K∑
i �=k

√
αiv

H
m,iw

C
msci+z, (6)

where s = [s(1), . . . , s(N)]
T

represents the primary symbol

vector, and z = [z(1), . . . , z(N)]
T

represents the noise vector.

On the right hand side of the equality in (6), the first term

represents the accumulated backscatter-link signals of BDk,

and the second term represents those of the other BDs.

During the CSR phase, we adopt a linear EH model [28],

the received power by BDk from the APs is PC
b,k =

‖∑M
m=1 Fm,kw

C
m‖2, and the total amount of the harvested
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energy, denoted by EC
k , is expressed as

EC
k = (1− αk) t1ηP

C
b,k, (7)

where η ∈ (0, 1) denotes the EH efficiency coefficient.

During the PSR phase, we consider the PSR setup, i.e., the

symbol period of the n-th primary symbol s(n) is equal to

that of ck(n), N = 1 holds [6], and the received signal at the

receiver is

yP (n) =

M∑
m=1

hH
mwP

ms(n)

+

M∑
m=1

K∑
k=1

√
αkv

H
m,kw

P
ms(n)ck(n) + z(n), (8)

where wP
m denotes the beamforming vector of APm during

the PSR phase. On the right hand side of the equality in (8),

the first term represents the accumulated direct-link signals,

and the second term represents the accumulated backscatter-

link signals. By subtracting the accumulated direct-link signals∑M
m=1 h

H
mwP

ms(n) from (8) through the SIC technique, the

receiver obtains the intermediate signal during the PSR phase,

denoted by yPb (n), as

yPb (n) =

M∑
m=1

√
αkv

H
m,kw

P
ms(n)ck(n)

+
M∑

m=1

K∑
i �=k

√
αiv

H
m,iw

P
ms(n)ci(n) + z(n). (9)

The power of the signals from APs to BDk during the PSR

phase is PP
b,k = ‖∑M

m=1 Fm,kw
P
m‖2, and the total amount of

the harvested energy, denoted by EP
k , is expressed as

EP
k = (1− αk) t2ηP

P
b,k. (10)

Based on (7) and (10), the total amount of the energy harvested

by BDk during the CSR phase and PSR phase is

Etotal
k = EC

k + EP
k . (11)

During the AC phase, the BDs transmit the environmental

IoT data to the receiver. Due to the advantages of high

spectrum efficiency and massive connectivity for IoT networks

[29], we adopt the uplink non-orthogonal multiple access

(NOMA) scheme for the communication from the BDs to

the receiver. In the uplink NOMA scheme, the SIC technique

is implemented by the receiver to decode the backward-

link signal of the BDs in descending order of channel gains

gk, k ∈ K. The backward-link signal of the BD with the

largest channel gain is decoded at first, and subtracted by

the receiver. Without loss of generality, the backward-link

channels are numbered in descending order of channel gains as

‖g1‖2 ≥ · · · ≥ ‖gK‖2. During the AC phase, the throughput

of BDk to the receiver, denoted by RA
b,k, is expressed as

RA
b,k = Bt3 log2

(
1 +

∣∣gH
k w

A
k

∣∣2∑K
i>k

∣∣gH
i w

A
i

∣∣+ σ2

)
, (12)

where B denotes the bandwidth, wA
k denotes the beamforming

vector of BDk during the AC phase. The sum throughput of

BDs during the AC phase, denoted by RA
sum, is expressed as

RA
sum = Bt3 log2

(
1 +

∑K
k=1

∣∣gH
k w

A
k

∣∣2
σ2

)
. (13)

C. The Process of CE

As the channel state information (CSI) has an important

impact on the network performance, we estimate direct-link

channels and cascaded backscatter-link channels. Due to the

advantage of avoiding mutual interference between the direct-

link channels and cascaded backscatter-link channels [19], we

adopt the two-stage CE method. During the first stage of CE,

the BDs remain silent, while the APs receive the training pilot

sequence from the receiver, and transmit the training pilot

sequence to the CPU through fronthaul links. Let ϕ1 ∈ C
τ1×1

denote the training pilot sequence during the first stage of CE,

where ϕH
1 ϕ1 = τ1 holds. The received signal at APm that

corresponds to ϕ1, denoted by Ym, is

Ym =
√
PthmϕH

1 + Zm, (14)

where Pt denotes the training power, and Zm ∈ C
Q×τ1

denotes the i.i.d. CSCG noise with mean 0 and variance σ2.

As the APs have knowledge of the training pilot sequence

ϕ1 and training power Pt, they simplify Ym in (14) by right-

multiplying both sides of (14) by
ϕ1√
P t

as

y̌m = τ1hm +
žm√
Pt

, (15)

where y̌m = Ym
ϕ1√
P t

and žm = Zmϕ1 hold, and žm ∼
CN (0, τ1σ

2IQ) denotes the CSCG noise with mean 0 and

variance τ1σ
2. Under the imperfect CSI estimation, we use

the linear minimum mean square error (LMMSE) CE [30] to

express hm as

hm = ĥm + h̃m, (16)

where ĥm denotes the estimation of hm, and h̃m denotes the

estimation error of hm. We have ĥm as

ĥm=E
[
hmy̌H

m

]
E
[
y̌my̌H

m

]−1
y̌m=

PtQm

τ1PtQm + σ2IQ
y̌m. (17)

For ease of notation, we let PtQm

τ1PtQm+σ2IQ
= Υm. According

to (16) and (17), we obtain ĥm ∼ CN (0,Γm) and h̃m ∼
CN (0,Cm), where Γm = τ1QmΥm, and Cm = Qm − Γm.

During the second stage of CE, the APs receive the up-

link training pilot sequence backscattered by BDk from the

receiver, while the other BDs remain silent, and then transmit

it to the CPU via fronthaul links. Similar to the first stage of

CE, we use the LMMSE CE model to express vm,k as

vm,k = v̂m,k + ṽm,k, (18)

where v̂m,k denotes the estimation of vm,k, and ṽm,k denotes

the estimation error of vm,k.

Let ϕ2 ∈ C
τ2×1 denote the training pilot sequence

during the second stage of CE, where ϕH
2 ϕ2 = τ2 and

PtαkQm,k

τ2PtαkQm,k+Ptτ2Cm+σ2IQ
= Ψm,k hold. Then we have

v̂m,k ∼ CN (0, ξm,k) and ṽm,k ∼ CN (0,Cm,k), where

ξm,k = τ2Qm,kΨm,k and Cm,k = Qm,k − ξm,k hold.
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D. Communication Model

Considering the estimated channels ĥm, v̂m,k, and CE

errors h̃m, ṽm,k, we formulate the throughput of APs and that

of BDs during the CSR phase and PSR phase, respectively.

According to (16) and (18), the received signal at the receiver

during the CSR phase in (4) is rewritten as

yC(n) =

M∑
m=1

(
ĥm +

K∑
k=1

√
αkckv̂m,k

)H

wC
ms(n)

+
M∑

m=1

(
h̃m+

K∑
k=1

√
αkckṽm,k

)H

wC
ms(n)+z(n). (19)

The receiver decodes the primary and backscatter symbols

according to yC(n) in (19). For the receiver, the first term

on the right hand side of the equality in (19) is the desired

signal, and the second term is viewed as the interference.

During the duration of N primary symbol periods in the

CSR setup, ck remains constant. According to (3) and (19),

s(n) can be viewed to go through a slowly varying channel∑K
k=1

√
αkckv̂m,k, and the equivalent channel for decoding

s(n) is denoted by ĥm +
∑K

k=1

√
αkckv̂m,k, which includes

the direct-link channels and the cascaded backscatter-link

channels. The ergodic capacity of this channel can be char-

acterized by averaging over all possible channel states [31].

As the CE errors h̃m and ṽm,k are random parameters [18],

we obtain throughput of APs during the CSR phase by taking

the expectations of ck, h̃m, and ṽm,k, denoted by RC , as

RC = t1BEck,h̃m,ṽm,k

[
log2(1 + γC)

]
, (20)

where

γC=

∣∣∣∑M
m=1

(
ĥm +

∑K
k=1

√
αkckv̂m,k

)H

wC
m

∣∣∣2∣∣∣∑M
m=1

(
h̃m +

∑K
k=1

√
αkckṽm,k

)H

wC
m

∣∣∣2 + σ2

(21)

represents the SINR of the receiver decoding s(n). Let C
denote the set of random backscatter symbols, and c =
[c1, . . . , cK ] represent the backscatter symbol vector of the

BDs during the CSR phase. By taking the expectation of ck
in (20), we formulate the throughput of APs with expectations

of h̃m and ṽm,k during the CSR phase as [27]

RC =
t1B

pK

∑
c∈C

Eh̃m,ṽm,k

[
log2

(
1 + γC(c)

)]
, (22)

where p denotes the number of signal states of the BDs that

adopt PSK modulation, e.g., when p = 2, the BDs adopt binary

PSK modulation.

Then we formulate the throughput of BDs during the

CSR phase. After decoding s(n), the receiver subtracts the

accumulated direct-link signals
∑M

m=1 ĥ
H
mwC

ms(n) from (19),

and then the intermediate signal in (6), can be rewritten as

yC
b =

M∑
m=1

√
αkv̂

H
m,kw

C
msck +

M∑
m=1

K∑
i �=k

√
αiv̂

H
m,iw

C
msci

+

M∑
m=1

(
h̃m +

K∑
k=1

√
αkckṽm,k

)H

wC
ms+ z. (23)

For the receiver decoding the backscatter symbols, the first

term on the right hand side of the equality in (23) is the

desired signal, the second and third terms are viewed as

the interference. In the CSR setup, according to (3), the

primary symbol s(n) is viewed as a spread-spectrum code

with length N for the backscatter symbol. Then the receiver

leverages the maximal ratio combining (MRC) to enhance

the SINR when decoding the backscatter symbols. Similar to

[22] and [32], we use the Shannon capacity to formulate the

throughput of BDk with PSK modulation. The SIC technique

is implemented by the receiver to decode the backscatter

symbols in descending order of the channel gains
∑M

m=1 v̂m,k,

k ∈ K. The throughput of BDk during the CSR phase, denoted

by RC
b,k, is expressed as

RC
b,k =

t1B

N
Eh̃m,ṽm,k

[
log2(1 + γC

b,k)
]
, (24)

where 1
N is due to (3), γC

b,k denotes the SINR of the receiver

decoding the backscatter symbols of BDk in (25), and ϑ
denotes the performance gap between the Shannon capacity

and the PSK modulation with 0 < ϑ < 1 [33]. The sum

throughput of BDs during the CSR phase, denoted by RC
sum,

is accordingly given by (26).

During the PSR phase, similar to (19), the received signal

at the receiver in (8), i.e., yP (n), is expressed as

yP (n)=

M∑
m=1

ĥH
mwP

ms(n)+

K∑
k=1

M∑
m=1

√
αkv̂

H
m,kw

P
ms(n)ck(n)

+

M∑
m=1

(
h̃m+

K∑
k=1

√
αkck(n)ṽm,k

)H

wP
ms(n)+z(n). (27)

For the receiver decoding the primary symbols, the first term

on the right hand side of the equality in (27) is the desired

signal. In the PSR setup, the throughput of APs during the

PSR phase, denoted by RP , is expressed as

RP = t2BEh̃m,ṽm,k

[
log2(1 + γP )

]
, (28)

where γP denotes the SINR of the receiver decoding the

primary symbol in (29).

Then we formulate the throughput of BDs during the PSR

phase. Similar to the decoding process during the CSR phase,

the intermediate signal in (9) is

yPb (n) =

M∑
m=1

√
αkv̂

H
m,kw

P
ms(n)ck(n)

+
K∑
i �=k

M∑
m=1

√
αiv̂

H
m,iw

P
ms(n)ci(n) + z(n)

+

M∑
m=1

(̃
hm+

K∑
k=1

√
αkck(n)ṽm,k

)H

wP
ms(n). (30)

For the receiver decoding the backscatter symbols, the first

term on the right hand side of the equality in (30) is the desired

signal, the other terms are viewed as the interference. The

SIC technique is implemented by the receiver to decode the

backscatter symbols in descending order of the channel gains∑M
m=1 v̂m,k, k ∈ K, and the throughput of BDk during the

PSR phase, denoted by RP
b,k, is expressed as

RP
b,k = t2BEh̃m,ṽm,k

[
log2(1 + γP

b,k)
]
, (31)

where γP
b,k denotes the SINR of the receiver decoding the
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γC
b,k =

ϑN
∣∣∣∑M

m=1

√
αkv̂

H
m,kw

C
m

∣∣∣2
N
∣∣∣∑M

m=1

(
h̃m +

∑K
k=1

√
αkṽm,k

)H

wC
m

∣∣∣2 +N
∑K

i>k

∣∣∣∑M
m=1

√
αiv̂H

m,iw
C
m

∣∣∣2 + σ2

. (25)

RC
sum =

t1B

N
Eh̃m,ṽm,k

[
log2

(
1 +

ϑN
∑K

k=1

∣∣∣∑M
m=1

√
αkv̂

H
m,kw

C
m

∣∣∣2
N
∣∣∣∑M

m=1

(
h̃m +

∑K
k=1

√
αkṽm,k

)H

wC
m

∣∣∣2 + σ2

)]
. (26)

γP =

∣∣∣∑M
m=1 ĥ

H
mwP

m

∣∣∣2∣∣∣∑M
m=1

(
h̃m +

∑K
k=1

√
αkṽm,k

)H

wP
m

∣∣∣2 +∑K
k=1

∣∣∣∑M
m=1

√
αkv̂H

m,kw
P
m

∣∣∣2 + σ2

. (29)

γP
b,k =

ϑ
∣∣∣∑M

m=1

√
αkv̂

H
m,kw

P
m

∣∣∣2∣∣∣∑M
m=1

(
h̃m +

∑K
k=1

√
αkṽm,k

)H

wP
m

∣∣∣2 +∑K
i>k

∣∣∣∑M
m=1

√
αiv̂H

m,iw
P
m

∣∣∣2 + σ2

. (32)

backscatter symbols of BDk in (32). The sum throughput of

BDs during the PSR phase, denoted by RP
sum, is expressed as

RP
sum = t2BEh̃m,ṽm,k

[
log2(1 + γP

sum)
]
, (33)

where γP
sum denotes the accumulated SINR of the receiver

decoding the backscatter symbols of the BDs as

γP
sum=

ϑ
∑K

k=1

∣∣∑M
m=1

√
αkv̂

H
m,kw

P
m

∣∣2∣∣∑M
m=1

(
h̃m +

∑K
k=1

√
αkṽm,k

)H

wP
m

∣∣2+σ2

. (34)

Based on (20) and (28), the sum throughput of APs during

one time slot, denoted by Rsum, is expressed as

Rsum = RC +RP . (35)

Based on (13), (26), and (33), the sum throughput of BDs

during one time slot, denoted by Rb,sum, is expressed as

Rb,sum = RC
sum +RP

sum +RA
sum. (36)

For readability, Rsum is referred to as the sum primary

throughput, and Rb,sum is referred to as the sum backscatter

throughput.

III. PROBLEM FORMULATION AND ANALYSIS

We formulate the sum backscatter throughput maximization

problem with the minimum sum primary throughput constraint

by jointly optimizing time allocation vector t, beamforming

vectors wC , wP , and wA, and reflection coefficients α as

P0 : max
t,wC ,wP ,wA,α

Rb,sum (37a)

s.t. Rsum ≥ Rmin, (37b)∥∥wC
m

∥∥2 ≤ Pm, ∀m ∈ M, (37c)∥∥wP
m

∥∥2 ≤ Pm, ∀m ∈ M, (37d)

t1P
B
cir,C + t2P

B
cir,P + t3(P

A
cir +

∥∥wA
k

∥∥2
)

≤ Etotal
k , ∀k ∈ K, (37e)

0 ≤ αk ≤ 1, ∀k ∈ K, (37f)

t1 + t2 + t3 ≤ T, t1, t2, t3 ≥ 0, (37g)

where t = [t1, t2, t3], wC = [(wC
1 )

H, . . . , (wC
M )H]H rep-

resents the beamforming vector of APs during the CSR

phase, wP = [(wP
1 )

H, . . . , (wP
M )H]H represents the beam-

forming vector of APs during the PSR phase, wA =
[(wA

1 )
H, . . . , (wA

K)H]H represents the beamforming vector of

BDs during the AC phase, and α = [α1, . . . , αK ] represents

the reflection coefficients of BDs. Rmin denotes the minimum

sum primary throughput, Pm denotes the maximum transmit

power of APm, PB
cir,C denotes the circuit power for backscatter

communication of BDs during the CSR phase, PB
cir,P denotes

the circuit power for backscatter communication of BDs during

the PSR phase, and PA
cir denotes the circuit power for AC

of BDs during the AC phase. (37b) represents the minimum

sum primary throughput constraint, (37c) and (37d) represent

the transmit power constraints, (37e) represents the energy

consumption constraint of BDs, (37f) and (37g) represent the

value ranges of α and t, respectively.

To maximize the sum backscatter throughput Rb,sum in

(37a), we obtain closed-form expressions of Rsum and Rb,sum

by taking the expectations of h̃m and ṽm,k in (20), (21), and

(26), which is challenging since both h̃m and ṽm,k are high-

dimensional random variables in the logarithmic function.

To simplify the expectation operations of h̃m and ṽm,k, we

interchange the order of expectation and logarithm operations

for h̃m and ṽm,k, i.e., taking the expectations of h̃m and

ṽm,k in the logarithmic function in (20), (21), and (26),

and then performing the logarithm operation on h̃m and

ṽm,k. By interchanging the order of expectation and logarithm

operations, we obtain lower bounds of Rsum and Rb,sum via

Jensen’s inequality as follows.

According to (22) and (26), the interference caused by CE

errors during the CSR phase, denoted by ERC , is

ERC =
∣∣∣ M∑
m=1

(
h̃m +

K∑
k=1

√
αkṽm,k

)H

wC
m

∣∣∣2. (38)

According to (28) and (33), the interference caused by CE
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R̄sum =
t1B

pK

∑
c∈C

log2

(
1 +

∣∣∑M
m=1

(
ĥm +

∑K
k=1

√
αkckv̂m,k

)H
wC

m

∣∣2∑M
m=1(w

C
m)H

(
Cm +

∑K
k=1 αkckCm,k

)
wC

m + σ2

)

+ t2B log2

(
1 +

∣∣∑M
m=1 ĥ

H
mwP

m

∣∣2∑M
m=1(w

P
m)H

(
Cm +

∑K
k=1 αkCm,k

)
wP

m +
∑K

k=1

∣∣∑M
m=1

√
αkv̂H

m,kw
P
m

∣∣2 + σ2

)
. (41)

R̄b,sum =
t1B

N
log2

(
1 +

ϑN
∑K

k=1

∣∣∑M
m=1

√
αkv̂

H
m,kw

C
m

∣∣2
N

∑M
m=1(w

C
m)H

(
Cm +

∑K
k=1 αkCm,k

)
wC

m + σ2

)

+ t2B log2

(
1 +

ϑ
∑K

k=1

∣∣∑M
m=1

√
αkv̂

H
m,kw

P
m

∣∣2∑M
m=1(w

P
m)H

(
Cm +

∑K
k=1 αkCm,k

)
wP

m+σ2

)
+ t3B log2

(
1 +

∑K
k=1

∣∣gH
k w

A
k

∣∣2
σ2

)
. (42)

errors during the PSR phase, denoted by ERP , is

ERP =
∣∣∣ M∑
m=1

(
h̃m+

K∑
k=1

√
αkṽm,k

)H

wP
m

∣∣∣2. (39)

It is easy to observe that ERC + σ2 > 0 and ERP + σ2 > 0
hold. Then according to (20), (21), and (26), Rb,sum and Rsum

are convex functions of h̃m and ṽm,k due to the fact that

log(1 + C
x ) is a convex function of x when x > 0 holds.

Jensen’s inequality shows that E [f(x)] ≥ f(E [x]) holds when

f(x) is a convex function. By applying Jensen’s inequality to

(35) and (36), we obtain the lower bound of Rb,sum, denoted

by R̄b,sum, the lower bound of Rsum, denoted by R̄sum, and

derive Eh̃m,ṽm,k
[ERC ] and Eĥm,v̂m,k

[ERP ] in Lemma 1.

Lemma 1: Given h̃m ∼ CN (0,Cm) and ṽm,k ∼
CN (0,Cm,k), we obtain

Eh̃m,ṽm,k
[ERX ] =

M∑
m=1

(wX
m)H

(
Cm +

K∑
k=1

αkCm,k

)
wX

m,

∀X ∈ {C,P}. (40)

Proof: Please refer to Appendix A.

According to Lemma 1, we obtain the closed-form expres-

sion of R̄sum in (41) and that of R̄b,sum in (42).

By taking R̄b,sum as the optimization objective and R̄sum as

the sum primary throughput, we formulate the sum backscatter

throughput maximization problem P1. The minimum sum

primary throughput constraint in P1 is stricter than that in

P0, thus the optimal solution of P1 is guaranteed to be an

approximate optimal solution of P0.

P1 : max
t,wC ,wP ,wA,α

R̄b,sum (43a)

s.t. R̄sum ≥ Rmin, (43b)

(37b)-(37g).

According to R̄sum in (41), R̄b,sum in (42) and Etotal
k in (11),

(37e), (43a), and (43b) are non-convex. Then P1 is a non-

convex optimization problem.

IV. BSS ALGORITHM

To solve P1, we propose the BSS algorithm. As there is

no coupling relationship among wC , wP , and wA in (41)

and (42), we decompose P1 into three subproblems, and

Fig. 3. The flow chart of the proposed BSS algorithm for P1.

alternately optimize the TAO subproblem P2, BO subproblem

P3, and RCO subproblem P4 by using the BCD method as

shown in Fig. 3. We utilize the CVX toolbox to obtain the

optimal solution of P2, utilize the SDR method and SCA

method to solve P3 and P4. The CPU performs the proposed

BSS algorithm to obtain the solution of P1, transmits it to

the APs via the fronthaul links, and then the APs broadcast

the beamforming vectors, reflection coefficients, and time

allocation to the BDs.

A. TAO Subproblem

With given values of wC ,wP ,wA and α in P2, we

optimize t to maximize the sum backscatter throughput as

P2 : max
t

R̄b,sum (44a)

s.t. R̄sum ≥ Rmin, (44b)

t1P
B
cir,C + t2P

B
cir,P + t3(P

A
cir +

∥∥wA
k

∥∥2
)

≤ Etotal
k , ∀k ∈ K, (44c)

t1 + t2 + t3 ≤ T, t1, t2, t3 ≥ 0. (44d)

According to (42), (44b)-(44d), P2 is a LP problem that can

be efficiently solved by using the CVX toolbox.

B. BO Subproblem

With given values of t and α in P3, we optimize wC ,wP ,
and wA to maximize R̄b,sum as

P3 : max
wC ,wP ,wA

R̄b,sum (45a)

s.t. R̄sum ≥ Rmin, (45b)
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∥∥wC
m

∥∥2 ≤ Pm, ∀m ∈ M, (45c)∥∥wP
m

∥∥2 ≤ Pm, ∀m ∈ M, (45d)

t1P
B
cir,C + t2P

B
cir,P + t3(P

A
cir +

∥∥wA
k

∥∥2
)

≤ Etotal
k , ∀k ∈ K, (45e)

According to the expression of R̄sum in (41), that of R̄b,sum

in (42), and that of Etotal
k in (11), (45a), (45b), and (45e) are

non-convex. To tackle P3, we convert it into a tractable form

by using the semi-definite programming (SDP) method.

To make P3 tractable, we define cascaded vectors as

v̂H
k = [v̂H

1,k, . . . , v̂
H
M,k], ĥH = [ĥH

1 , . . . , ĥ
H
M ], and êH(c) =

[êH1 (c), . . . , ê
H
M (c)], where êm(c) = ĥm+

∑K
k=1

√
αkckv̂m,k.

By employing the principles of the SDP method [32], we

let V̂k = v̂kv̂
H
k , Ĥ = ĥĥH, Ê(c) = ê(c)êH(c), and

Gk = gkg
H
k . Then we introduce variables ΩC = wC(wC)H,

ΩP = wP (wP )H, and ΩA
k = wA

k (w
A
k )

H. Optimizing wC,

wP, and wA
k in P3 is equivalent to optimizing ΩC , ΩP , and

ΩA
k when ΩC , ΩP , and ΩA

k satisfy properties of positive semi-

definite and rank-one, e.g., ΩC � 0 and Rank(ΩC) = 1.

Detailed conversion procedure about (45a), (45b), and (45e)

is provided as follows.

First, we equivalently convert (45a) into a convex function

by using the SDP method to tackle the terms that result in non-

convexity in (42). According to the first and second terms on

the right hand side of the equality in (42), we have

K∑
k=1

∣∣∣ M∑
m=1

√
αkv̂

H
m,kw

X
m

∣∣∣2= K∑
k=1

αk

∣∣∣v̂H
k w

X
∣∣∣2

=

K∑
k=1

αkTr(V̂kΩ
X),∀X∈{C,P}, (46)

M∑
m=1

(wX
m)H

(
Cm +

K∑
k=1

αkCm,k

)
wX

m=Tr(ΛΩX),

∀X ∈ {C,P}, (47)

where Λ = Diag(ℵ1, . . . ,ℵM ) ∈ C
MQ×MQ is a block

diagonal matrix, and ℵm = Cm +
∑K

k=1 αkCm,k holds.

According to the third term on the right hand side of the

equality in (42), we have

K∑
k=1

∣∣∣gH
k wA

k

∣∣∣2= K∑
k=1

(wA
k )

Hgkg
H
k w

A
k =

K∑
k=1

Tr(GkΩ
A
k ). (48)

Second, similar to (46)-(48), we use SDP method to tackle

the terms that result in non-convexity in (41). Based on the

first term on the right hand side of equality in (41), we have∣∣∣ M∑
m=1

(
ĥm+

K∑
k=1

√
αkckv̂m,k

)H

wC
m

∣∣∣2

=
∣∣∣êH(c)wC

∣∣∣2=(wC)Hê(c)êH(c)wC=Tr(Ê(c)ΩC), (49)

M∑
m=1

(wC
m)H

(
Cm+

K∑
k=1

αkckCm,k

)
wC

m=Tr(Λ(c)ΩC), (50)

where Λ(c) = Diag(ℵ1(c), . . . ,ℵM (c)) ∈ C
MQ×MQ, and

ℵm(c) = Cm +
∑K

k=1 αkckCm,k.

(45e) is non-convex due to accumulated quadratic terms of

wC
m in (7), wP

m in (10), and wA
k in (45e). Then we have the

following conversion procedure about (45e), and introduce a

block diagonal matrix Fk = Diag(F1,k, . . . ,FM,k). By using

the SDP method, we express Etotal
k in (37e) as

Etotal
k =η(1−αk)

(
t1

∥∥∥ M∑
m=1

Fm,kw
C
m

∥∥∥2

+t2

∥∥∥ M∑
m=1

Fm,kw
P
m

∥∥∥2)
=η(1− αk)

(
t1Tr(FkΩ

CFH
k )+t2Tr(FkΩ

PFH
k )
)
. (51)

Based on (46)-(51), P3 can be equivalently formulated as

P3.1 :

max
ΩC ,ΩP ,ΩA

t1B

N
log2

(
1 +

ϑN
∑K

k=1 αkTr(V̂kΩ
C)

NTr(ΛΩC) + σ2

)

+ t2B log2

(
1 +

ϑ
∑K

k=1 αkTr(V̂kΩ
P )

Tr(ΛΩP ) + σ2

)

+ t3B log2

(
1 +

∑K
k=1 Tr(GkΩ

A
k )

σ2

)
(52a)

s.t. t2B log2

(
1+

Tr(ĤΩP )

Tr(ΛΩP )+
∑K

k=1αkTr(V̂kΩP )+σ2

)

+
t1B

pM

pM∑
i=1

log2

(
1 +

Tr(Ê(c)ΩC)

Tr(Λ(c)ΩC) + σ2

)
≥Rmin,

(52b)

Tr(ΩX [(m− 1)Q+ 1 : mQ]) ≤ Pm,

∀m ∈ M, ∀X ∈ {C,P}, (52c)

t1P
B
cir,C + t2P

B
cir,P + t3(P

A
cir +Tr(ΩA

k ))

≤ Etotal
k , ∀k ∈ K, (52d)

ΩX � 0, ∀X ∈ {C,P}, (52e)

ΩA
k � 0, ∀k ∈ K, (52f)

Rank(ΩX) = 1, ∀X ∈ {C,P}, (52g)

Rank(ΩA
k ) = 1, ∀k ∈ K. (52h)

Specifically, a[m : m+n] represents the submatrix of a made

up of its m-th row and m-th column to (m + n)-th row and

(m+ n)-th column elements.

P3.1 is a non-convex problem due to the fractional structure

of ΩC and ΩP in (52a) and (52b), and rank-one constraints

in (52g) and (52h). To address P3.1, we adopt the SCA

method [34] to optimize the objective function in (52a) it-

eratively. Let (ΩC(l), ΩP (l), Ω
A(l)
k ), ∀k ∈ K denote a local

solution of P3.1 at the l-th iteration. The first-order Taylor

series provides a linear convex approximation of the non-

convex function, and is used to approximate the terms that

result in non-convexity in (52a) and (52b) as

log2
(
Tr(ΛΩX)+σ2

) ≤ log2
(
Tr(ΛΩX(l))+σ2

)
+

Tr(ΛΩX)+σ2

(Tr(ΛΩX(l)) + σ2)ln2
+

1

ln2
, ∀X ∈ {C,P}, (53)

log2
(
Tr(ΛΩP ) +

K∑
k=1

αkTr(V̂kΩ
P ) + σ2

)

≤ log2
(
Tr(ΛΩP (l)) +

K∑
k=1

αkTr(V̂kΩ
P (l)) + σ2

)
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P3.2 : max
ΩC ,ΩP ,ΩA

t1B

N

(
log2

(NTr(ΛΩC) + ϑN
∑K

k=1 αkTr(V̂kΩ
C) + σ2

NTr(ΛΩC(l)) + σ2

)
− NTr(ΛΩC) + σ2

(NTr(ΛΩC(l)) + σ2)ln2
+

1

ln2

)

+ t2B
(
log2

(Tr(ΛΩP ) + ϑ
∑K

k=1 αkTr(V̂kΩ
P ) + σ2

Tr(ΛΩP (l)) + σ2

)
− Tr(ΛΩP ) + σ2

(Tr(ΛΩP (l)) + σ2)ln2
+

1

ln2

)

+t3B log2

(
1 +

∑K
k=1 Tr(GkΩ

A
k )

σ2

)
(55a)

s.t.
t1B

pM

pM∑
i=1

(
log2

(Tr(Λ(c)ΩC) + Tr(Ê(c)ΩC) + σ2

Tr(Λ(c)ΩC(l)) + σ2

)
− Tr(Λ(c)ΩC) + σ2

(Tr(Λ(c)ΩC(l)) + σ2)ln2
+

1

ln2

)

+ t2B
(
log2

(Tr(ĤΩP )+Tr(ΛΩP ) +
∑K

k=1 αkTr(V̂kΩ
P ) + σ2

Tr(ΛΩP (l)) +
∑K

k=1 αkTr(V̂kΩP (l)) + σ2

)

− Tr(ΛΩP ) +
∑K

k=1 αkTr(V̂kΩ
P ) + σ2

(Tr(ΛΩP (l)) +
∑K

k=1 αkTr(V̂kΩP (l)) + σ2)ln2
+

1

ln2

)
≥ Rmin, (55b)

(52c)-(52h).

Algorithm 1 BO Algorithm for P3

Input: The maximum iteration number Imax, preset error

precision ε, t, α, Pm, and Rmin.

Output: (wC(∗),wP (∗),wA(∗)) of P3.

1: Initialization: Set iteration number l = 0, and initial

solution Φ(0) = (ΩC(0),ΩP (0),ΩA(0)).
2: repeat
3: Solve P3.2 with given Φ(l) = (ΩC(l),ΩP (l),ΩA(l)),

and obtain the approximate optimal solution of P3.2 at

the l-th iteration Φ(∗l) = (ΩC(∗l),ΩP (∗l),ΩA(∗l)).
4: Calculate R̄

(l)
b,sum under Φ(∗l) in (52a).

5: Update Φ(l+1) = Φ(∗l) and l = l + 1.

6: until l > Imax or
∣∣R̄(l+1)

b,sum − R̄
(l)
b,sum

∣∣ ≤ ε.
7: Exploit Gaussian randomization to obtain the output.

+
Tr(ΛΩP ) +

∑K
k=1 αkTr(V̂kΩ

P )+σ2

(Tr(ΛΩP (l))+
∑K

k=1αkTr(V̂kΩP (l))+σ2)ln2
+

1

ln2
. (54)

According to (53) and (54), P3.1 is transformed as P3.2.

For given local solution (ΩC(l),ΩP (l),Ω
A(l)
k ), ∀k ∈ K,

(55a), (55b), and (52c)-(52f) are convex. P3.2 is non-convex

due to rank-one constraints (52g) and (52h). According to the

SDR method, we further relax (52g) and (52h) by omitting

them, and solve P3.2 by using the CVX toolbox. Algorithm 1

summarizes the optimization of (wC ,wP ,wA) in P3.

Remark 1: By using the SCA method, an approximate

optimal solution (ΩC(∗),ΩP (∗),ΩA(∗)) of P3.1 can be ob-

tained when P3.2 iteratively converges. If ΩC(∗),ΩP (∗), and

ΩA(∗) are rank-one, (ΩC(∗),ΩP (∗),ΩA(∗)) can be equiv-

alently transformed into an approximate optimal solution

(wC(∗),wP (∗),wA(∗)) of P3 by using eigenvalue decom-

position. However, the SDR method does not always obtain

the rank-one beamforming matrix [35]. For the case that the

rank of beamforming matrix is larger than one, existing meth-

ods, such as the difference-of-convex algorithm and Gaussian

randomization [36], can be used to obtain an approximate

optimal solution. According to [35], the Gaussian randomiza-

tion achieves a π
4 -approximation of the optimal solution, and

we use the Gaussian randomization to obtain an approximate

optimal solution of P3 in Algorithm 1.

C. RCO Subproblem

With given values of t, wC , wP , and wA in P4, we

optimize α to maximize R̄b,sum as

P4 : max
α

R̄b,sum (56a)

s.t. R̄sum ≥ Rmin, (56b)

t1P
B
cir,C + t2P

B
cir,P + t3(P

A
cir +

∥∥wA
k

∥∥2
)

≤ Etotal
k , ∀k ∈ K, (56c)

0 ≤ αk ≤ 1, ∀k ∈ K. (56d)

According to the expression of R̄sum in (41) and that of

R̄b,sum in (42), (56a) and (56b) are non-convex. Similar to the

conversion procedure of P3, we convert P4 into a tractable

form by using the SDP method as follows. We equivalently

convert (56b) into a convex constraint, and tackle the terms

that result in non-convexity in (41). According to the first term

on the right hand side of the equality in (41), we have

∣∣ M∑
m=1

(
ĥm +

K∑
k=1

√
αkckv̂m,k

)H
wC

m

∣∣2
=

∣∣ĥHwC
∣∣2+ᾱTRᾱ =

∣∣ĥHwC
∣∣2+Tr(RĀ), (57)

where R =

[
ΥΥH ΥĥHwC

ĥHwCΥH 0

]
, Υ =

[
c1v

H
1 w

C , . . . , cKvH
KwC

]H ∈ C
K×1, ᾱ =

[√
α
1

]
, and

Ā = ᾱᾱT is the introduced variable. Optimizing α in P4 is

equivalent to optimizing Ā when Ā satisfies the properties

of positive semi-definite and rank-one, i.e., Ā � 0 and

Rank(Ā) = 1 hold. Based on (41), we have

M∑
m=1

(wC
m)H

(
Cm+

K∑
k=1

αkckCm,k

)
wC

m + σ2

= ᾱTΓC(c)ᾱ+ T1 = Tr(ΓC(c)Ā) + T1, (58)
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Algorithm 2 RCO Algorithm for P4

Input: Imax, ε, t, Pm, Rmin, and (wC ,wP ,wA).
Output: The approximate optimal solution α(∗) of P4.

1: Initialization: Set iteration number l = 0, and initial

solution Ā(0).

2: repeat
3: Solve P4.2 with given Ā(l), and obtain the approxi-

mate optimal solution of P4.2 at the l-th iteration Ā(∗l).
4: Calculate R̄

(l)
b,sum under Ā(∗l) in (61a).

5: Update Ā(l+1) = Ā(∗l) and l = l + 1.

6: until l > Imax or
∣∣R̄(l+1)

b,sum − R̄
(l)
b,sum

∣∣ ≤ ε.
7: Exploit Gaussian randomization to obtain the correspond-

ing rank-one vector ᾱ(∗).
8: Take the first K elements of ᾱ(∗) as the output.

where T1 = N
∑M

m=1

(
wC

m

)H
CmwC

m + σ2,

ΓX(c) = Diag(ccT)ΓX , ΓX = Diag
(
ζX1 , . . . , ζXK , 0

) ∈
C

(K+1)×(K+1), and ζXk =
∑M

m=1(w
X
m)HCm,kw

X
m, ∀X ∈

{C,P}. According to the second term on the right hand side

of the equality in (41), we have

∣∣ M∑
m=1

√
αkv̂

H
m,kw

P
m

∣∣2 = ᾱTΞP ᾱ = Tr(ΞP Ā), (59)

M∑
m=1

(wP
m)H

(
Cm +

K∑
k=1

αkCm,k

)
wP

m + σ2

= ᾱTΓP ᾱ+ T2 = Tr(ΓP Ā) + T2, (60)

where ΞP = Diag
(
θP1 , . . . , θ

P
K , 0

) ∈ C
(K+1)×(K+1), θPk =

(wP )HV̂kw
P , and T2 =

∑M
m=1

(
wP

m

)H
CmwP

m + σ2.

Similar to (57)-(60), we tackle the accumulated quadratic

terms that result in non-convexity in (42), and omit the

procedure of converting (56a) into a convex function. Then

P4 can be equivalently formulated as

P4.1 : max
Ā

t1B

N
log2

(
1 +

ϑNTr(ΞCĀ)

NTr(ΓCĀ) + T1

)

+ t2B log2

(
1 +

ϑTr(ΞP Ā)

Tr(ΓP Ā) + T2

)

+Bt3 log2

(
1 +

∑K
k=1

∣∣gH
k wA

k

∣∣2
σ2

)
(61a)

s.t.
t1B

pM

pM∑
i=1

log2

(
1 +

∣∣ĥHwC
∣∣2+Tr(RĀ)

Tr(Γ(c)CĀ) + T1

)

+ t2B log2

(
1 +

∣∣ĥHwP
∣∣2

Tr(ΓP Ā) + Tr(ΞP Ā) + T2

)
≥ Rmin, (61b)

Ā(k, k)≤1− t1P
B
cir,C+t2P

B
cir,P+t3(P

A
cir+

∥∥wA
k

∥∥2
)

T3,k
,

∀k ∈ K, (61c)

0 ≤ Ā(k, k) ≤ 1, ∀k ∈ K, (61d)

Ā(K + 1,K + 1) = 1, (61e)

Ā � 0, (61f)

Rank(Ā) = 1, (61g)

Algorithm 3 BSS Algorithm for P1

Input: Imax, ε, Pm, and Rmin.

Output: The approximate optimal solution

t(∗),wC(∗),wP (∗),wA(∗), and α(∗) of P1.

1: repeat
2: Given wC(l),wP (l),wA(l), and α(l), obtain the opti-

mal solution t(l+1) of P2 by using the CVX toolbox.

3: Given t(l+1) and α(l), obtain the approximate optimal

solution (wC(l+1),wP (l+1),wA(l+1)) of P3 according to

Algorithm 1.

4: Given t(l+1) and (wC(l+1),wP (l+1),wA(l+1)), obtain

the approximate optimal solution α(l+1) of P4 according

to Algorithm 2.

5: Calculate R̄
(l+1)
b,sum under t(l+1), wC(l+1), wP (l+1),

wA(l+1), and α(l+1) in (43a).

6: Update l = l + 1.

7: until l > Imax or
∣∣R̄(l+1)

b,sum − R̄
(l)
b,sum

∣∣ ≤ ε.

where

T3,k = η(t1‖
M∑

m=1

Fm,kw
C
m‖2 + t2‖

M∑
m=1

Fm,kw
P
m‖2). (62)

(56c) is reformulated as (61c), and Ā(k, k) denotes the ele-

ment in the k-th row and k-th column of Ā.

P4.1 is a non-convex problem due to the fractional structure

of Ā in (61a) and (61b), and rank-one constraint in (61g).

Similar to (53) and (54), we adopt the SCA method to

optimize the objective function in (61a) iteratively, and let

Ā(l) denote a local solution of P4.1 at the l-th iteration. By

using the first-order Taylor series, (61a) is approximated as

a convex function, and (61b) is approximated as a convex

constraint. Similar to P3.2 in Section IV-B, we further relax

(61g) by omitting it, and solve P4.2 by using the CVX

toolbox. For the case that the rank of the solution for P4.2
is larger than one, we use the Gaussian randomization to

obtain an approximate optimal solution according to Remark 1.

Algorithm 2 summarizes the optimization of α in P4.

To address the issue of computational complexity in the

CF-SRN, the cluster-based scheme can be applied in the

CF-SRN with large K, i.e., the BSS algorithm is executed

within each cluster, and the alternating optimization scheme

can be applied in the CF-SRN with large M , i.e., the BSS

algorithm alternately optimizes the sub-beamforming vector of

the APs in one subset. The BSS algorithm remains applicable

in the CF-SRN with multi-receiver, since the SDR method

is applicable to optimize the high-dimensional variables and

the SCA method addresses the non-convexity caused by the

inter-receiver interference. In the CF-SRN with multi-receiver,

the computational complexity and inter-receiver interference

management are primary limiting factors of the BSS algorithm,

which can be studied in the future work.

D. Convergence Discussions

According to [37], the BSS algorithm is guaranteed to con-

verge if the objective function is monotonically non-decreasing

in each iteration. It is obvious that the objective function
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P4.2 : max
Ā

t1B

N

(
log2

(
ϑNTr(ΞCĀ) +NTr(ΓCĀ) + T1

NTr(ΓCĀ(l)) + T1

)
− NTr(ΓCĀ) + T1

(NTr(ΓCĀ(l)) + T1)ln2
+

1

ln2

)

+ t2B

(
log2

(
ϑTr(ΞP Ā) + Tr(ΓP Ā) + T2

Tr(ΓP Ā(l)) + T2

)
− Tr(ΓP Ā) + T2

(Tr(ΓP Ā(l)) + T2)ln2
+

1

ln2

)

+t3B log2

(
1 +

∑K
k=1 Tr(GkΩ

A
k )

σ2

)
(63a)

s.t.
t1B

pM

pM∑
i=1

(
log2

(∣∣ĥHwC
∣∣2+Tr(RĀ) + Tr(Γ(c)CĀ) + T1

Tr(Γ(c)CĀ)(l) + T1

)
− Tr(Γ(c)CĀ) + T1

(Tr(Γ(c)CĀ)(l) + T1)ln2
+

1

ln2

)

+ t2B

(
log2

(∣∣ĥHwP
∣∣2 +Tr(ΓP Ā) + Tr(ΞP Ā) + T2

Tr(ΓP Ā(l)) + Tr(ΞP Ā(l)) + T2

)

− Tr(ΓP Ā) + Tr(ΞP Ā) + T2

(Tr(ΓP Ā(l)) + Tr(ΞP Ā(l)) + T2)ln2
+

1

ln2

)
≥ Rmin, (63b)

(61c)-(61g).

R̄b,sum in P1 is monotonically non-decreasing after solving

the TAO subproblem in line 2 of Algorithm 3. The reason is

that, the optimal solution of P2 is obtained by solving the

convex LP problem. Similarly, it is obvious that the objective

function in P1 is monotonically non-decreasing after solving

the BO and RCO subproblems in lines 3 and 4 of Algorithm 3,

respectively. The reason is that the optimal solutions of P3.2
and P4.2 are obtained by solving the convex SDP problems.

According to the above discussions, the objective function in

P1 is monotonically non-decreasing after each iteration in

Algorithm 3, and Algorithm 3 is guaranteed to converge.

E. Complexity Analysis

To facilitate the computational complexity analysis of the

proposed BSS algorithm, we first analyze the computational

complexity of each subproblem in one iteration. The TAO

subproblem P2 is solved by the CVX toolbox using the

interior-point method. According to [11], the computational

complexity of the interior-point method is OTAO(T
3.5
dim log( 1ε )),

where Tdim denotes the dimension of P2, and ε denotes the

target accuracy. For the BO subproblem P3, the computational

complexity of Algorithm 1 is dominated by solving the SDR

problem, i.e., P3.2, according to [38] as

OSDR(n
0.5
sdp(msdpn

3
sdp +m2

sdpn
2
sdp +m3

sdp) log(
1

ε
)), (64)

where nsdp denotes the dimension of the semi-definite cone

constraint, and msdp denotes the number of semi-definite

cone constraint. According to P3.2, we have nsdp = MQ
and msdp = M + 2K + 3. Besides, the computational

complexity of the Gaussian randomization is O(VM2Q2)
[39], where V denotes the number of Gaussian randomization

samples. Then the computational complexity of Algorithm 1

is OBO(Imax(M
0.5Q0.5((M + 2K + 3)M3Q3 + (M + 2K +

3)2M2Q2+(M+2K+3)3) log( 1ε )+VM2Q2)). For the RCO

subproblem P4, the computational complexity of Algorithm

2 is ORCO(Imax((K + 1)0.5((3K + 3)(K + 1)3 + (3K +
3)2(K+1)2+(3K+3)3) log( 1ε )+V (K+1)2)). According to

TABLE II
NUMERICAL PARAMETERS

Descriptions Parameters and Values
Network model K = 4 [4], L = 3 [18], M = 2, Q = 4 [39]

Channel model γ = 2.7, σ2 = −110 dBm, ϑ = −5 dB [40]

Transmission model
T = 1 s, η = 0.8, B = 10 MHz, N = 64 [39],
PB

cir,C = 200 μW [41], PB
cir,P = 600 μW [42], PA

cir =
1 mW [41], Pm = 10 W, Pt = 1 W

OTAO, OBO, and ORCO, the computational complexity of BSS

Algorithm is OBSS(Imax(OTAO +OBO +ORCO)).

V. SIMULATION RESULTS

In the simulations, APs are randomly located in a circle

centered at (0, 0) with a radius of 50 m, and BDs are randomly

located in a circle centered at (0, 0) with a radius of 5 m.

The number of BDs is set as K = 4 [4], number of BD’s

antennas is set as L = 3 [18], duration of each time slot is

set as T = 1 s, path loss exponent is set as γ = 2.7, power

of CSCG noise is set as σ2 = −110 dBm, EH efficiency

coefficient is set as η = 0.8, bandwidth is set as B = 10
MHz, spreading factor is set as N = 64 [39], performance gap

between the Shannon capacity and PSK modulation is set as

ϑ = −5 dB [40], circuit power for backscatter communication

of BDs during the CSR phase is set as PB
cir,C = 200 μW [41],

circuit power for backscatter communication of BDs during

the PSR phase is set as PB
cir,P = 600 μW [42], and circuit

power for AC of BDs during the AC phase is set as PA
cir =

1 mW [41]. Unless otherwise specified, the number of APs

is set as M = 2, number of AP’s antennas is set as Q =
4 [39], maximum transmit power of APm is set as Pm =
10 W, training power Pt is set as 1 W, and total training

pilot sequence length is set as τ1 + τ2 = 200. For readability,

the key simulation parameters are summarized in Table II,

which includes the values and corresponding sources. R̄b,sum

in the CF-SRN and the proposed BSS algorithm, we provide

six comparison schemes as follows.
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Fig. 4. Sum backscatter throughput R̄b,sum versus the number of iterations.

• Maximum ratio transmission (MRT) scheme [19]: The

beamforming vectors are obtained by MRT. To be spe-

cific, the beamforming vectors of APs are aligned with

the direct link for primary communication, i.e., wX
m =√

Pm
hm

‖hm‖ , ∀X ∈ {C,P}. We adopt MRT to obtain

{wC ,wP ,wA}, adopt the LP method to obtain t, and

adopt Algorithm 2 to obtain α.

• Particle swarm optimization (PSO) scheme: We adopt

PSO to obtain α, adopt the LP method to obtain t, and

adopt Algorithm 1 to obtain {wC ,wP ,wA}.

• Frequency division multiple access (FDMA)-BSS

scheme: FDMA scheme is adopted by BDs to transmit

the environmental data during the AC phase. We adopt

the BSS scheme to obtain {wC ,wP ,wA, t,α}
• Perfect CSI (PCSI)-BSS scheme: We consider the APs,

BDs, and receiver have global perfect CSI, and adopt the

proposed BSS scheme to obtain {wC ,wP ,wA, t,α}.

• Only CSR phase (OCP)-BSS scheme: Each time slot is

divided into the CSR phase and AC phase, and we adopt

the proposed BSS scheme to obtain {wC ,wP ,wA, t,α}.

• Only PSR phase (OPP)-BSS scheme: Each time slot is

divided into the PSR phase and AC phase, and we adopt

the proposed BSS scheme to obtain {wC ,wP ,wA, t,α}.

As shown in Fig. 4, we plot the sum backscatter throughput

R̄b,sum versus the number of iterations to evaluate the con-

vergence of the proposed BSS algorithm. We observe that

the proposed BSS scheme reaches stationary R̄b,sum within 3
iterations, which verifies the advantage of the BSS scheme in

terms of convergence. We also observe that, R̄b,sum under the

proposed BSS scheme is larger than that under the FDMA-

BSS scheme. This is due to the reason that, the proposed

BSS scheme adopts the uplink NOMA scheme for the BDs

to transmit the environmental data during the AC phase, and

considers the CSI for dynamically optimizing the beamform-

ing vectors of the BDs to alleviate interference among the

BDs, whereas the FDMA-BSS scheme overlooks the CSI

and equally allocates spectrum resource to the BDs. We

also observe that, R̄b,sum under the proposed BSS scheme is

larger than that under the MRT scheme and PSO scheme,

which verifies the superiority of the proposed Algorithm 1

and Algorithm 2 in terms of R̄b,sum. The reason is that, by

optimizing the beamforming vectors of the APs, the BSS

scheme balances the tradeoff between satisfying the minimum

sum primary throughput constraint in (44b) and maximizing

R̄b,sum, while the MRT scheme ignores the presence of BDs,

and it is easy for the PSO scheme to fall into the local optimal

solution of the high-dimensional complex problem [43].

Fig. 5 plots R̄b,sum versus training power Pt with seven

values of total training pilot sequence length τ1 + τ2. We

observe that R̄b,sum increases with Pt. This is due to the reason

that, the increase of Pt means that the APs receive stronger

pilot signals during CE phase, obtain more accurate estimation

channels based on the LMMSE model, and reduce CE errors.

More accurate CE facilitates the optimization of beamforming

vectors, thereby enhancing R̄b,sum. Smaller CE errors decrease

the values of Eh̃m,ṽm,k
[ERX ], ∀X ∈ {C,P} in (40), which

reduces the interference caused by CE errors and enhances

R̄b,sum. We also observe that R̄b,sum increases with τ1 + τ2.

This is due to the reason that, the increase of τ1 + τ2 means

that the pilot signals provide more CSI, allowing the APs to

perform more accurate CE.

Fig. 6 plots R̄b,sum under three schemes versus minimum

sum primary throughput Rmin with two values of Pm, in

order to validate the superiority of the proposed hybrid CSR-

PSR setup in terms of R̄b,sum. We observe that, the OPP-BSS

scheme and proposed BSS scheme achieve similar R̄b,sum. This

is due to the reason that, with hybrid CSR-PSR setup, the CF-

SRN under the BSS scheme dynamically optimizes the time

allocation vector, i.e., the duration of the CSR phase and that of

the PSR phase, to balance the tradeoff between satisfying (44b)

and maximizing R̄b,sum, which leads to similar R̄b,sum. We also

observe that, the CF-SRN under the OPP-BSS scheme with

Pm = 40 dBm experiences outages when Rmin > 10 Mbps.

This is due to the reason that, there are only PSR phase and AC

phase in the OPP-BSS scheme, and primary communication

suffers interference from backscatter communication during

the PSR phase. When Rmin > 10 Mbps, the CF-SRN under

the OPP-BSS scheme with Pm = 40 dBm fails to satisfy

(44b). Besides, we also observe that, R̄b,sum under the OCP-

BSS scheme is smallest. This is due to the reason that, there

are only CSR phase and AC phase in the OCP-BSS scheme.

According to (26) and (33), (3) results in that the BDs under

CSR setup achieve lower data rate than that under PSR setup.

Fig. 7 plots the time allocation t under the proposed BSS

algorithm with Pm = 40 dBm versus Rmin. We observe

that, the duration of the CSR phase t1 increases with Rmin.

The reason is that, with the increase of Rmin, the CF-SRN

allocates more time to the CSR phase to assist the primary

communication. We observe that, the duration of the PSR

phase t2 decreases with Rmin. The reason is that, the primary

communication suffers interference from backscatter commu-

nication during the PSR phase. With the increase of Rmin, the

CF-SRN allocates less time to the PSR phase to reduce the

interference to the primary communication. We also observe

that, the duration of the AC phase t3 decreases with Rmin.

The reason is that, with the increase of Rmin, the optimized

beamforming vectors of the APs provide more beamforming

gains for primary communication to satisfy the minimum sum
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Fig. 5. R̄b,sum versus training power Pt. Fig. 6. R̄b,sum under three schemes versus Rmin. Fig. 7. Time allocation t versus Rmin.

Fig. 8. Backscatter throughput in three phases versus
Rmin.

Fig. 9. R̄b,sum under five schemes versus Rmin. Fig. 10. R̄b,sum versus Pm.

primary throughput constraint, and reduce the beamforming

gains for EH performed by the BDs during the CSR phase

and PSR phase, resulting in the decrease of total harvested

energy by the BDs. Then the CF-SRN decreases the duration

of AC phase due to the limited harvested energy of BDs.

Based on the above observations and corresponding reasons,

we provide insights as follows: 1) When Rmin is small, the

CF-SRN allocates more time to the PSR phase and decreases

the duration of the CSR phase. When the duration of the

CSR phase approaches zero, the hybrid CSR-PSR is reduced

to hybrid PSR-AC [9]. 2) When Rmin is large, the CF-SRN

allocates more time to the CSR phase and decreases the

duration of the PSR phase. When duration of the PSR phase

approaches zero, the hybrid CSR-PSR is reduced to hybrid

CSR-AC [5].

Fig. 8 plots the backscatter throughput in three phases under

the proposed BSS algorithm with Pm = 40 dBm versus Rmin.

We observe that, the backscatter throughput during the PSR

phase RP
sum decreases with Rmin. The reason is that, with the

increase of Rmin, the duration of the PSR phase t2 decreases

to reduce the interference to the primary communication. We

observe that, the backscatter throughput during the CSR phase

RC
sum increases with Rmin. The reason is that, the duration

of the CSR phase t1 increases with Rmin in order to satisfy

the minimum sum primary throughput constraint. We also

observe that, the throughput of BDs during the AC phase RA
sum

decreases with Rmin. The reason is that, with the increase of

Rmin, the CF-SRN allocates less time to the AC phase due to

the decreased harvested energy of BDs.

Fig. 9 plots R̄b,sum under five schemes versus Rmin with two

values of Pm. We observe that R̄b,sum decreases with Rmin. The

reason is that, with the increase of Rmin, the optimized beam-

forming vectors of the APs provide more beamforming gains

for primary communication to satisfy (44b), while diminishing

the gains for backscatter communication. We also observe that

five schemes with Pm = 30 dBm experience outages when

Rmin > 17 Mbps. The reason is that, when Pm is small, the

CF-SRN under five schemes with limited power budget fails

to obtain a feasible solution of P1. Besides, we also observe

that R̄b,sum under five schemes with Pm = 40 dBm remain

almost unchanged when Rmin > 16 Mbps. The reason is that,

when Rmin is large, the CF-SRN under hybrid CSR-PSR setup

decreases the duration of PSR phase and increases that of

CSR phase to satisfy (44b), and the duration of the time slot

is dominated by CSR phase. Based on (3), the backscatter

symbols transmitted by BDs during CSR phase are less than

those during PSR phase, backscatter communication in CSR

phase occupies less beamforming resource for transmitting

backscatter symbols, and Rmin has smaller impact on R̄b,sum

with the decrease of the PSR phase duration.

Fig. 10 plots R̄b,sum versus Pm with two values of τ1 + τ2.

We observe that, R̄b,sum increases with Pm. This observation

is due to two reasons. 1) According to (19) and (27), the

increase of Pm means that, the APs transmit stronger RF

signals, enhancing the symbiotic relationship between the APs

and BDs, and facilitating the backscatter communication for
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Fig. 11. R̄b,sum versus number of AP’s antennasQ.

Fig. 12. R̄b,sum versus number of the APs M .

increasing R̄b,sum. 2) According to (7) and (10), Etotal
k in (11)

increases with Pm, which allows BDk to consume more energy

for AC during the AC phase, resulting in the increase of R̄b,sum

according to (13) and (36).
Figs. 11 and 12 plot R̄b,sum versus the number of AP’s

antennas Q and that of the APs M with two values of N . We

observe that R̄b,sum increases with Q and M , respectively. This

is due to the reason that, the increase of Q means that the APs

exploit more spatial diversity, and provide more beamforming

gains for the BDs to perform backscatter communication

and EH, resulting in the increase of R̄b,sum. The increase of

M means that more APs cooperatively transmit primary RF

signals to the receiver, and provide more beamforming gains

for the BDs. We also observe that, R̄b,sum with N = 64
is larger than that with N = 128, which is due to the

mathematical relationship between N and R̄b,sum in (42).

VI. CONCLUSION

In the CF-SRN with hybrid CSR-PSR setup, we formulated

the sum backscatter throughput maximization problem by

jointly optimizing the time allocation vector, beamforming

vectors of the APs and BDs, and reflection coefficients of

the BDs. To tackle the coupled relationship among high-

dimensional variables, we decomposed the formulated prob-

lem into three subproblems, and solved the three subprob-

lems alternately under the proposed BSS algorithm. Through

simulation results, we summarized the main findings as fol-

lows: 1) For the sum backscatter throughput maximization

problem with multiple coupled reflection coefficient variables,

the approximate optimal solution can be obtained through the

matrix transformation, SDR method, and SCA method. 2) The

hybrid CSR-PSR setup outperforms the CSR setup in terms of

R̄b,sum, and outperforms the PSR setup in terms of Rmin. We

provided insights as follows: 1) The PSR phase is beneficial

for the CF-SRN to achieve the sum backscatter throughput.

When Rmin is small, the CF-SRN increases the duration of

the PSR phase to maximize the sum backscatter throughput.

2) The CSR phase is beneficial for the CF-SRN to achieve

the sum primary throughput. When Rmin is large, the CF-

SRN increases the duration of the CSR phase to satisfy the

minimum sum primary throughput constraint. Future works

include the PSK phase optimization, inter-receiver interference

management in the multi-receiver scenario, and comparison

between the CF-SRN and cellular SRN.

APPENDIX A

PROOF OF LEMMA 1

We calculate Eh̃m,ṽm,k
[ERC ] as
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)
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m, (65)

where (a) follows the fact that given a ∈ C
J×1, |a|2 = aHa

holds. Specifically, J = 1 in (a) holds. For m ∈ M and

k ∈ K, (b) in (65) follows the fact that h̃m and ṽm,k are in-

dependent, and both h̃m and ṽm,k are i.i.d. random variables.

Then we have E[h̃mṽm,k] = 0, E[h̃mh̃l] = 0 (m �= l), and

E[ṽm,kṽl,i] = 0 (m �= l or k �= i). (c) in (65) follows the fact

that h̃m ∼ CN (0,Cm) and ṽm,k ∼ CN (0,Cm,k). Then we

have E[h̃mh̃H
m] = Cm and E[ṽm,kṽ

H
m,k] = Cm,k.

Similar to (65), we calculate Eh̃m,ṽm,k
[ERP ] as

Eh̃m,ṽm,k
[ERP ]=

M∑
m=1

(wP
m)H

(
Cm+

K∑
k=1

αkCm,k

)
wP

m. (66)
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