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Abstract

Edge computing is swiftly gaining traction and is being standardised by the European Telecommunications Standards Institute (ETSI) as Multi-
access Edge Computing (MEC). Simultaneously, oneM2M has been actively developing standards for dynamic data management and IoT services
at the edge, particularly for applications that require real-time support and security. Integrating MEC and oneM2M offers a unique opportunity to
maximize their individual strengths. Therefore, this article proposes a framework that integrates MEC and oneM2M standard platforms for IoT
applications, demonstrating how the synergy of these architectures can leverage the geographically distributed computing resources at base stations,
enabling efficient deployment and added value for time-sensitive IoT applications. In addition, this study offers a concept of potential interworking
models between oneM2M and the MEC architectures. The adoption of these standard architectures can enable various IoT edge services, such as
smart city mobility and real-time analytics functions, by leveraging the oneM2M common service layer instantiated on the MEC host.
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1. Introduction

In the rapidly advancing digital era, the Internet of Things (IoT) and
edge computing have emerged as leading technological trends, garner-
ing increasing interest across various industries. The combined poten-
tial of these two technologies to bring computational capabilities closer
to data sources, or edge nodes, is poised to reshape future communi-
cation systems [1]. However, the growing demand for edge computing
and IoT technologies often encounters an impediment: a lack of stan-
dardised interworking between the two.

The advent of IoT standardization, such as oneM2M (a global IoT
standards initiative), has heralded enabling diverse applications across
a wide range of services. However, the traditional IoT platforms on the
cloud struggle with latency, especially for real-time services. This de-
lay, caused by the back-and-forth data transmission to the cloud, under-
scores the importance of edge computing as a solution. Also, integrating
these standardized IoT platforms with edge computing has remained a
challenge.

While edge computing enhances processing efficiency, existing ap-
proaches often suffer from fragmented solutions and lack of seamless
interoperability with standardized IoT platforms. Previous works have
primarily focused on theoretical or simulation-based models, which
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are insufficient for real-time, latency-sensitive applications. Moreover,
dynamic resource offloading to edge nodes, crucial for ensuring low
latency, has not been addressed comprehensively in practical deploy-
ments. Hence, there is a growing discussion in the industry advo-
cating for IoT cloud services to be executed in edge computing en-
vironments [2]. This shift could significantly reduce system latency.
Compared to previous works, which either rely on simulations or lack
standard-based methodologies, our study bridges this gap by demon-
strating practical feasibility and enhanced performance through edge-
cloud synergy.

In this article, we explore the integration and deployment strategies
of standardised edge computing and IoT platforms, specifically focus-
ing on oneM2M and Multi-access Edge Computing (MEC) developed
by the European Telecommunications Standards Institute (ETSI). We
selected these two platforms owing to their robust standardisation and
growing prominence in their respective domains [3]. Our approach,
combining oneM2M with MEC, addresses this gap by providing a stan-
dardized, interoperable platform that leverages the strengths of both
technologies. This integration facilitates lower latency, greater data pro-
cessing efficiency, and improved scalability, surpassing the capabilities
of traditional edge computing models. By focusing on this synergy, we
propose a unique solution that significantly enhances IoT applications’
responsiveness and efficiency.

First, we conducted a comprehensive review and analysis of the exist-
ing standard technologies related to IoT and edge computing, perform-
ing a gap analysis to identify and address the disparities and limitations
in the current landscape. Our objective is to pinpoint methods that en-
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able a harmonious collaboration between these platforms, addressing
existing challenges and promoting broader deployment. We assess a
lightweight iteration of edge computing within the oneM2M system, il-
lustrating the potential of merging edge computing and IoT to enhance
applications across different sectors. Ultimately, it is crucial to estab-
lish standardised techniques for IoT-focused edge computing to ensure
consistency, reliability, and efficiency in deployment. This integrated
approach can maximise the capabilities of both edge computing and
IoT, laying the groundwork for more agile and efficient applications in
diverse industries.

In summary, the main contributions of this study are as follows:

1. In-Depth Analysis of current standards: Provide comprehensive
analysis and gap analysis of existing standard technologies in IoT
and edge computing, providing a foundation for further research
and development based on real-world standard applications.

2. Innovative Deployment Mechanism based on actual standards:
Develop and introduce a novel mechanism for deploying standard-
ized IoT services within edge computing environments, ensuring
seamless interoperability based on actual interworking scenarios
rather than hypothetical models.

3. Robust performance evaluation with real data: Showcase the capa-
bilities of a newly developed, lightweight IoT server optimized for
edge computing through comprehensive performance evaluations
and experimental results using actual experimental data.

The remainder of this paper is organised as follows. Section 2 delves
into edge computing technologies and surveys the trends in various
standardization efforts, including the oneM2M system, MEC, and the
3rd Generation Partnership Project (3GPP) edge computing. Section 3
introduces specific use cases that are applicable in both the IoT and edge
computing landscapes. Section 4 provides a detailed discussion on the
architecture of IoT and edge computing as well as the interoperability
architecture of standardisations. Section 5 elaborates on the integrated
deployment strategies and procedural intricacies for edge computing,
explaining various interworking options in detail. Section 6 presents
the evaluation results concerning performance, using a lightweight IoT
server in an edge computing environment. Finally, we conclude the
article in Section 7.

2. Technical Standards for Edge Computing

Numerous standardisation bodies in the domain of edge computing
have significantly contributed to its advancements in this field. As edge
computing continues to evolve, standards are expected to adapt and
grow to meet emerging technological advancements. In this section, we
explore the current standard trends and potential related to edge com-
puting.

2.1. oneM2M with edge computing

oneM2M is a global standards initiative developing technical spec-
ifications for a common IoT and machine-to-machine (M2M) service
layer [4]. The oneM2M IoT service layer platform constitutes a critical
set of standards aimed at facilitating communication and interoperabil-
ity among a diverse array of IoT devices and applications. Established
by multiple international standardisation bodies, oneM2M addresses the
need for a universal IoT service layer that can be seamlessly embedded
within a variety of hardware and software solutions. Such a capability
can ensure uninterrupted connectivity and interoperability among IoT
devices and applications.

A key attribute of oneM2M is its role as an enabler for cloud-based
IoT service platforms, enabling it to interface with a wide range of IoT
devices/networks to provide seamless interoperability, irrespective of
the underlying technologies or communication protocols. Additionally,
oneM2M offers an essential framework for bolstering security and pri-
vacy management in IoT applications. The scope of the oneM2M is ex-
panding to include edge computing technologies. This expansion aims

to reduce the load on data centers and core networks and improve com-
munication latency through localised data acquisition, processing, and
storage. Notably, oneM2M has already defined edge computing use
cases, requirements and architectural design in its Release 4 specifica-
tions [5].

Despite oneM2M expanding its activities related to edge computing,
technological development in this field is still in its infancy. Therefore,
further research is required to strengthen the integration of oneM2M
and edge computing technologies.

2.2. ETSI ISG MEC

The ETSI Industry Specification Group for Multi-access Edge Com-
puting (ISG MEC) has established an array of standards for edge com-
puting of mobile networks. MEC provides an IT service environment
and cloud-computing capabilities at the edge of the network, within
proximity to mobile subscribers. MEC technology aims at reducing la-
tency, providing high bandwidth, improving the real-time performance
of applications, and enabling efficient service delivery [6, 7, 8]. Its
ability to support high-frequency data transfer makes it an ideal choice
for applications such as IoT, augmented/virtual reality (AR/VR), au-
tonomous vehicles, and 5G services.

MEC has evolved through several phases of development, each with
its focus [9, 10]. Phase 1 provided the groundwork, setting up architec-
tures and application programming interfaces (APIs) for managing and
enabling applications in edge data centers. Phase 2 expanded the scope
to "multi-access" edge computing, incorporating other networks such
as Wi-Fi and Fixed Access, and beginning to address vertical market
needs. Phase 3 extended traditional cloud and Network Functions Virtu-
alisation (NFV) approaches to accommodate the heterogeneity of MEC,
introducing the MEC IoT API and exploring MEC deployments in vari-
ous enterprises. Several studies have explored the potential of MEC. For
instance, [11] proposed a novel architecture for the efficient deployment
of services in MEC environments. MEC has also been considered for
enabling ultra-reliable low-latency communication in 5G networks [12].

However, the research and standardisation work on IoT requires to
be further strengthened to unlock the true potential of this technology.
Standardised research and protocols are required to ensure that MEC
can integrate seamlessly and operate effectively with technologies such
as IoT. In particular, it is important to develop scalable architectures
and frameworks to ensure interoperability between different devices and
platforms, effectively address security and data protection issues, and
support a variety of IoT services.

Therefore, the research and development activities of ETSI ISG
MEC must be further strengthened through close integration and col-
laboration with IoT, enabling a robust and standardised MEC platform
to effectively address all future use cases and applications. This stan-
dardized approach will be a key element in ensuring that MEC and IoT
integrate and interact with each other while ensuring reliable and effi-
cient service delivery across industries.

2.3. 3GPP and Others

3GPP, a global body for mobile communication standards, covers
edge computing due to its ties to 5G. Notably, "5G System; System Ar-
chitecture (TS 23.501)" details edge computing support via user plane
separation and network slicing, while "5G System; Procedure descrip-
tions (TS 23.502)" outlines its practical implementation [13].

The OpenFog Consortium, now under the Industrial Internet Con-
sortium (IIC), introduced Fog Computing to tackle edge computing de-
ployment challenges. It extends cloud principles to the network’s edge,
reducing latency and boosting efficiency. The approach supports diverse
applications, fosters industry standardization, and addresses issues like
bandwidth and latency.

EdgeX Foundry, by the Linux Foundation, offers a common IoT edge
computing framework. This open-source initiative provides a versatile
platform for designing and launching diverse industrial solutions. It en-
sures device and application interoperability through APIs and nurtures
an ecosystem of compatible components.
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Table 1

Comparison of ETSI MEC, oneM2M, and Our Work

Features ETSI MEC oneM2M Our Work

Standards-based Integration Partial (MEC-specific) IoT-focused only Full MEC-oneM2M integration
Interworking Architecture Defined APIs but limited Focus on IoT Cloud Real-world interworking
Edge Service Offloading Limited offloading Not supported for edge Fully supported
Latency Optimization Localized at MEC nodes High latency at cloud Cloud-edge synergy results
Performance Evaluation Conceptual/Simulations Theoretical focus Extensive real-world data

In [14], the authors introduced an interworking between MEC and
the IoT. While positioning the IoT platform within the MEC architec-
ture shares similarities, the actual data processing and handling do not
occur at the edge, preventing the realization of the full benefits. Fur-
thermore, considerations regarding the migration of the IoT platform
and the continuity of services have not been addressed, rendering it
challenging to predict the extent of benefits that can be derived from
utilizing edge computing.

The [15] introduces the concept of offloading in the context of the
IoT utilizing MEC. The study primarily focuses on the performance of
algorithms, overlooking the practical applicability of the proposed pro-
cedures and platforms based on simulations and proprietary solutions.
This approach limits the usability of these concepts in real-world envi-
ronments that adhere to universal standards. Additionally, the research
does not address considerations such as the migration of tasks during
object movement or the instantiation of the IoT platform, further con-
straining its applicability in dynamic and standard-based settings.

In summary, the research and development related to service provi-
sion utilizing the IoT and MEC, has been a notable deficiency in studies
grounded in standard-based approaches. Additionally, research involv-
ing tangible implementations remains underdeveloped.

Table 1 highlights the differences and novel contributions of this
work. Compared to ETSI MEC and oneM2M, this study fully integrates
MEC and oneM2M platforms, enabling seamless edge service offload-
ing and real-world interworking. This integrated approach addresses the
limitations of existing solutions and offers a robust framework for real-
time, low-latency IoT applications in edge computing environments.

Unlike prior research that often relies on hypothetical models or
simulation-based approaches, our study employs a standard-based
methodology leveraging both oneM2M and ETSI MEC standards to
demonstrate practical edge computing applications. While ETSI MEC
provides localized edge capabilities and oneM2M focuses primarily on
IoT cloud solutions, a gap exists in achieving full interworking between
these platforms for efficient edge service delivery.

3. Use Cases for Edge Computing

In this section, we explore some use cases that exemplify the syner-
gistic potential of IoT and edge computing.

3.1. Automotives

Fig. 1a illustrates a scenario where a cloud IoT server delegates tasks
and resources to edge computing capabilities for executing a vulnera-
ble road user (VRU) detection service, which uses accurate positioning
information shared by VRUs (e.g., pedestrians and cyclists) via their
mobile devices to determine their positions on the road. When a host
vehicle (HV) registered with an offloading service enters a zone covered
by an edge node, such as a roadside unit, the offloading process begins,
shifting the VRU detection tasks and resources associated with the HV
to the edge node. In this process, the IoT cloud signals the gateway to
perform resource offloading, enabling the gateway to retrieve all rele-
vant resources and services related to the HV. Due to its proximity to
the HV, the edge gateway can promptly dispatch a warning notification
to the HV upon detecting a VRU on the road.

Specifically, these technologies can pre-emptively identify VRUs in
real time because the capabilities originally associated with the cloud
are now being available at the edge. Particularly advantageous is that
the peripheral information from the HV can be processed directly at the
edge nodes, eliminating the need for data transmission to and from a
cloud-based IoT platform. This enables significantly faster data pro-
cessing and command delivery compared to the traditional cloud-based
IoT services. The concept of offloading within oneM2M enables the
IN-CSE, a centralized IoT server platform, to migrate relevant resources
and tasks to a target Edge MN-CSE node. Consequently, the MN-CSE
node can directly cater to the needs of nearby IoT end devices with the
offloaded service.

3.2. Smart Factories

Smart factory environments employ programmable logic controllers,
which generate substantial volumes of data through the continuous
monitoring of production lines. Particularly, in a standard smart fac-
tory environment, a diverse range of machines—including robots and
monitoring equipment—produce substantial volumes of data, which are
impractical to transfer to the cloud. Notably, functions such as real-
time defect monitoring necessitate swift data processing and minimal
response times. Edge computing can aid in minimising latency by lo-
cally processing these data. By making and implementing decisions that
affect individual assembly lines or workstations at their respective loca-
tions, operational efficiency can be enhanced (Fig. 1b. Furthermore,
local data processing minimises privacy risks and reduces reliance on
central clouds.

Interworking between Cloud IoT and edge platforms enhances smart
factory capabilities. oneM2M and similar IoT platforms ensure interop-
erability among diverse devices and systems, enabling dynamic task and
resource allocation between edge and cloud computing, thereby opti-
mising speed while reducing latency. This interoperability ensures har-
monious function between machines from different manufacturers. For
predictive maintenance, machine learning forecasts potential machine
failures, preventing unscheduled downtime and distributing analytical
tasks between edge devices and centralised resources for quicker detec-
tion and response, with enhanced geospatial specificity.

(a) (b)

Fig. 1. Scenario overview of use cases: (a) VRU collision detection utilizing
IoT and edge computing, and (b) robots and machines in a smart factory are
controlled in real-time through edge computing and IoT platforms.
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Fig. 2. Simplified oneM2M and MEC reference architectures: (a) oneM2M ref-
erence architecture connecting the cloud, gateway, edge, and devices to enable
IoT services, and (b) ETSI MEC platform architecture interconnecting IoT de-
vices and cloud IoT platforms.

4. Standardized IoT and Edge Platforms

In this section, we first analyse the architectures of the ETSI ISG MEC
and oneM2M, which are leading global standards for edge computing
and IoT, respectively. Next, we explore how these two architectures
can be synergistically deployed to enable an efficient and interoperable
implementation of common IoT services within edge computing envi-
ronments.

4.1. oneM2M Architecture

The oneM2M consolidates all components within the IoT solution
stack, establishing a distributed software/middleware layer that serves
as a bridge between applications and the fundamental communication
networking hardware/software [16]. It can be incorporated into vari-
ous IoT devices, gateways, and cloud servers. As shown in Fig. 2a, the
architecture of oneM2M is designed for flexibility and universal appli-
cability. It comprises the following key logical entities:

1. Application Entity (AE): This entity encompasses the application-
specific logic, for instance, software operating on an IoT device
such as a temperature sensor or connected car.

2. Common Service Entity (CSE): This entity is responsible for de-
livering common services required by the AEs. It can handle tasks

like data management, device management, and security services.
It can be not only located in various places, including an IoT de-
vice, a gateway, or a network server but also be an MEC applica-
tion.

3. Network Services Entity (NSE): The NSE offers services to the
CSEs beyond just data transport. It may include network resources
such as DNS services or NTP servers.

In the oneM2M standard for IoT device management and communi-
cation, these logical entities can be deployed in various types of nodes
to play distinct roles within the architecture. Application Service Nodes
(ASNs) host application services and instances are responsible for han-
dling application-level data. They can interact with other ASNs or
Middle Nodes (MNs). Application Dedicated Nodes (ADNs) are spe-
cialised nodes tailored for specific applications or services, usually with
a more limited scope than that of ASNs. MNs host CSEs and facilitate
communication between ASNs and Infrastructure Nodes (INs), playing
a crucial role in routing and service discovery. Especially, MNs can
be deployed not only in gateways but also in edge nodes. This enables
them to substitute for some of the functions, data, and services of the
cloud IoT platform, providing these directly to devices. Furthermore, by
pre-processing data collected from numerous IoT devices and then de-
livering it to the cloud IoT platform, the MN plays a crucial role in edge
computing by reducing factors such as the size of the transmitted data.
IN, which is oneM2M terminology for the cloud IoT platform, provides
common services and functionalities to support IoT applications. These
services and functionalities may include registry, discovery, data man-
agement, security, and communication (among other things). INs can
be deployed at various locations based on the requirements of the sys-
tem and the specific use. They can be located in cloud servers to provide
centralised services. INs and MNs can be deployed at the edge of the
network.

4.2. MEC Architecture

The MEC architecture, a simplified network architectural concept illus-
trated in Fig. 2b, introduces cloud computing capabilities at the edge of
a mobile network. The fundamental components of the MEC architec-
ture are the following:

1. Host: This represents the edge server tasked with running the
MEC applications and providing it with the required resources.

2. Platform: The MEC Platform is in charge of managing applica-
tion lifecycles, endowing them with crucial capabilities such as
radio network information and supervising their interaction with
the network.

3. Applications: These refer to the applications that operate on the
MEC Host and exploit the capabilities of the MEC Platform. MEC
applications can vary from content caching and delivery to IoT
applications and mission-critical services.

4. System Level Management: This component is accountable for
managing MEC system resources, services, and application rules.

5. Virtualisation Infrastructure: This provides the hardware and vir-
tualisation layer on which the MEC applications, platform, and
host operate.

The MEC architecture promotes a collaborative ecosystem among
telecom operators, service providers, vendors, and third-party develop-
ers. By relocating processing capabilities to the network edge, MEC en-
ables real-time, high-bandwidth, low-latency applications and services
to be situated closer to the end-user, thereby generating countless op-
portunities for service and application innovation.

To support IoT services, ETSI MEC has outlined a series of IoT-
specific APIs that facilitate the deployment and operation of IoT devices
in need of additional support within an MEC environment. This addi-
tional support may be necessitated by various factors, such as security
constraints or limited power, computing, and communication capabil-
ities. As shown in Fig. 2b, the introduced MEC architecture offers a
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framework for integrating heterogeneous IoT platforms into the MEC
system and exposes IoT APIs to enable the configuration of the vari-
ous system components. ETSI MEC aims to host multiple IoT services
across different platforms and, therefore, defines functions such as the
discovery of IoT platforms, provisioning of IoT devices, and the routing
of messages between devices and platforms.

4.3. Synergised oneM2M-MEC Interworking Architecture

In Section 4.2, we described the architecture of the ETSI MEC sys-
tem, where MEC applications can both consume and produce services.
These services are then made available by the MEC platform to other
applications. In this context, building on the oneM2M architecture de-
picted in Section 4.1, the following mapping of oneM2M entities with
ETSI MEC entities can be considered:

1. The oneM2M MN, acting as an instance of oneM2M IN specifi-
cally designed for edge computing, can function as an MEC ser-
vice and/or as a service-producing MEC App instance. This ser-
vice can handle oneM2M common service functions and data of-
floaded from the cloud-based oneM2M platform. Furthermore,
this oneM2M MEC service can be exposed by the MEC platform
for connection to consumer IoT applications.

2. oneM2M IoT devices equipped with 3GPP capabilities can inter-
face with the MEC platform as MEC App.

In essence, architectural interworking between oneM2M and ETSI
MEC is achieved by accommodating the oneM2M MN instance for
edge computing within the MEC platform. From the perspective of the
ETSI MEC system, these instances act as specific MEC services and
applications. The oneM2M IoT cloud platform can trigger the instanti-
ation of its data and service functions to a target MEC platform. This
is particularly useful when serving IoT applications and devices located
close to that target MEC platform. Future work can focus on exploring
specific integration points to enhance the synergy between these two
systems, potentially including specialized mechanisms for application
onboarding, instantiation, additional MEC service APIs, and discovery
of MEC platforms.

Fig. 3 provides a conceptual interworking architecture, where the
oneM2M edge instance is accommodated in the MEC platform as an
MEC IoT service. This oneM2M MN in the MEC host performs the
necessary IoT service functions offloaded from the cloud-based IoT
platform to support its subscribed IoT devices and services. The MEC
platform enables these oneM2M IoT devices to communicate with their
corresponding IoT platform services within the MEC host. There-
fore, the MEC platform should facilitate IoT platform discovery, de-
vice provisioning, and message transport configuration. Architecturally,
oneM2M and ETSI MEC are already significantly compatible, enabling
joint deployments to support end-to-end IoT services.

In summary, building upon the individual strengths of oneM2M and
MEC, we propose an interworking architecture that aligns oneM2M’s
distributed middleware layer with MEC’s edge computing capabilities.
This architecture (Fig. 3) allows for dynamic offloading of IoT services
from the cloud to the edge. We introduce specialized algorithms and
protocols to facilitate seamless data exchange and service migration be-
tween cloud-based oneM2M instances and MEC-hosted edge nodes.
This integration not only reduces latency but also enhances data pro-
cessing efficiency, making it particularly suitable for real-time IoT ap-
plications.

5. Deployment Scenarios and Interworking Architecture between

oneM2M and ETSI MEC

In this section, present various deployment scenarios demonstrating the
practical implementation of our integrated oneM2M-MEC architecture.
Several deployment options are available for this integration, each car-
rying distinct technical and business impacts. Each scenario is char-
acterized by unique deployment configurations, ranging from cloud-
dominated setups to edge-centric models. We provide mathematical

models to calculate the IoT service provisioning time in each scenario,
considering factors like processing time at the cloud and edge and data
transmission times.

5.1. Deployment Scenarios

Edge computing offers various deployment options for integrating
these platforms, each carrying distinct technical and business impacts.
These scenarios envision a wide range of deployment configurations,
blending cloud and edge elements to optimize IoT service delivery. The
deployment scenarios discussed in this section assume seamless inter-
working between the oneM2M and MEC platforms, enabling IoT de-
vices to benefit from IoT edge computing support via both systems.
Furthermore, an equation is provided for each option to calculate the
IoT service provisioning time, which refers to the duration from the
initiation of IoT services for users or devices to the point where these
services are fully operational.

We introduce a novel approach for computing IoT service provision-
ing time in each scenario, incorporating variables such as processing
times at cloud and edge, and data transmission durations. Tpoc repre-
sents the time for processing and service provisioning in the cloud plat-
form, whereas Tpme and Tpoe denote the processing time expended by
the MEC and oneM2M edge platforms at the edge nodes, respectively.
Because Tpoc in the cloud deals with storing and processing large vol-
umes of data, it naturally consumes more time compared with Tpme and
Tpoe, which handle processing for smaller data sets, thereby requiring
relatively less time for data and service processing. Tdce, Tdee and Tded

symbolise the message transmission time between the cloud and edge,
between edge nodes, and between edge nodes and devices, respectively.
Given the deployment structures of the cloud, edge, and devices, Tdce

generally has the highest value, whereas Tdee and Tded have compara-
tively shorter message transmission times. Fig. 4 depicts four different
deployment scenarios of integrating oneM2M and MEC platforms.

For Option (A), which deploys the oneM2M IoT platform on the
cloud and MEC at the edge, the IoT platform resides mainly on the
cloud side. This represents a widely used deployment that utilises
cloud-based IoT platforms alongside edge computing. Although this
setup gains some edge computing advantages through the network and
processing, it does not leverage the full benefits of a 100% edge com-
puting environment, as the cloud remains the ultimate data storage and
management point. The IoT service provisioning time for Option (A)
can be calculated as follows:

Ttotal_a = Tpoc + Tdce + Tpme + Tded (1)

This option requires processing at both the cloud (oneM2M) and the
edge (MEC), incorporating data travel times between the cloud, edge,
and device. Factors such as network congestion, distance, and others
that affect data transmission time must be considered. Consequently,
Option (A) must consider the processing time for cloud, Tpoc, unlike the
other options.

Option (B) requires deploying oneM2M and MEC as edge nodes at
different physical locations. Unlike Option A, in this setup, all data and
information exchanges occur locally. Even though oneM2M and MEC
serve different entities, this arrangement is viable in the emerging edge
computing market. Similar to the previous option, the provisioning time
in this case can be expressed as follows:

Ttotal_b = Tpoe + Tdee + Tpme + Tded (2)

Given that all data and information exchanges are localised, Tpoc is
not a factor, because the processing occurs at the edge. Both oneM2M
and MEC conduct processes locally at the edge, with travel time be-
tween the two edge locations and from the edge to the device being
vital. Travel time is dependent on the distance between the edge or
cloud and the device. Consideration should also be given to the net-
work infrastructure and the proximity between various physical edge
locations.
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Fig. 4. Four deployment scenarios integrating oneM2M and MEC platforms to
support IoT services using edge computing.

Option (C) positions both oneM2M and MEC platforms on the same
physical edge node. This configuration can sharply improve service by
minimising extraneous data and information exchanges. A service level
agreement is necessary between the platform providers, and both plat-
forms must support dynamic deployments to various edge nodes. The
time for service provisioning (Ttotal_c) for this option is the summation
of Tpoe, Tpme and Tded.

Option (D) is a tightly coupled scenario where oneM2M and MEC
platforms are physically linked via APIs. This facilitates seamless inter-
operation between the platforms. In this setup, oneM2M functions as an
MEC application, fully harnessing all capabilities provided by the MEC
platform. The MEC platform can offer data sources, processing, and
multi-access networking by hosting oneM2M as an integrated appli-
cation. Standard activities ensuring interoperability between oneM2M
and MEC are essential for this option. The service provisioning time
(Ttotal_d) for this option is also the summation of Tpoe, Tpme and Tded

similar to Option (C).
Eventually, Options B, C, and D facilitate oneM2M’s processing

within an edge computing environment, hence Tpoc is not relevant for
these options. When offloading occurs, consideration of Tpoc becomes
unnecessary. Instead, these options rely on Tpoe, representing the pro-
cessing time at the edge, which substitutes for Tpoc. Owing to the
closely-knit nature of Options C and D, a specific function represent-
ing the interaction time between oneM2M and MEC via APIs is nec-
essary. Options C and D are similar in terms of service provisioning
time because both the oneM2M edge and MEC platform are located
on the same edge node. In Option D, the oneM2M edge incorporates
additional features that enable it to utilise standard APIs provided by

MEC, fostering a closely coupled relationship between the two plat-
forms. With this deployment, the oneM2M edge can leverage network
status and quality of service functions through MEC, thereby effectively
reducing the service provisioning time with more advanced edge com-
puting functionalities compared with that of Option C. Consequently,
we can draw the following conclusion:

Ttotal_a > Ttotal_b > Ttotal_c ↭ Ttotal_d (3)

5.2. Interworking between oneM2M and MEC

To facilitate IoT services through interworking between oneM2M
and MEC, enhancements to both these standards are imperative. The
oneM2M requires improvements to enable the dynamic installation of
oneM2M instances on edge nodes operating within the MEC platform.
This is crucial for supporting edge computing. This integration involves
several enhancements to both standards, focusing on dynamic interac-
tion and utilization of platform capabilities.

oneM2M Enhancements: oneM2M enhancements to use MEC in-
clude capability exchange with the MEC platform, edge platform dis-
covery, deployment of oneM2M edge instances, and platform and data
migration.

• Dynamic Installation: A mechanism for dynamically installing
oneM2M instances on edge nodes within the MEC platform. This
includes protocols for real-time deployment and management of
oneM2M services directly on edge nodes.

• API Utilization: Our approach leverages MEC-provided APIs to
enhance oneM2M functionalities, enabling effective communica-
tion and data exchange between oneM2M entities and the MEC
platform.

MEC Enhancements: MEC enhancements to support oneM2M edge
instances involve capability exchange with the IoT platform, IoT plat-
form discovery, message routing and transportation, IoT platform and
device registrations, and platform and data migration.

• Hosting oneM2M Instances: MEC to support hosting of oneM2M
edge instances, including protocols for instance management and
resource allocation.

• Functionality Support: Enhancements are made for oneM2M edge
instance discovery, message routing, and service migration within
the MEC environment, ensuring seamless interworking and effi-
cient service delivery.

As depicted in Fig. 5, the oneM2M cloud platform can perform
edge computing through interworking with MEC. Initially, to effec-
tively utilise various IoT support functions provided by MEC, enhance-
ments to some existing Common Service Functions (CSFs) and the in-
troduction of additional CSFs for MEC (i.e., MEC CSF) are required.
The oneM2M cloud platform creates a oneM2M edge instance for edge
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Fig. 5. Interworking architecture between oneM2M and MEC supports the de-
ployment of oneM2M edge instances to the MEC platform for IoT edge comput-
ing. This architecture facilitates IoT service continuity through oneM2M edge
instance migration services.

computing, incorporating parts of its data and service functions, and
performs a discovery process for an edge facility capable of hosting
it. During this process, a capability exchange is performed to select an
MEC facility suitable for the created oneM2M edge instance from the
discovered facilities. Next, the selected MEC platform and oneM2M
cloud platform engage in Data & Service offloading through the MEC
CSF, facilitating the deployment and activation of the oneM2M edge in-
stance on the target MEC platform. This procedure ensures the efficient
operation of services and allocation of resources to the oneM2M edge
instance without compromising the MEC system performance or that
of other running applications. This procedure ensures that messages re-
ceived or transmitted from these devices are routed accordingly. With
resources allocated and oneM2M devices provisioned to the MEC plat-
form, seamless interworking between the MEC system and oneM2M
edge instance is supported, ensuring high-quality service delivery to the
end-user. This interworking coordinates processes and services across
both platforms, effectively sharing and exchanging information to opti-
mise their collective operation.

Interworking between oneM2M and MEC supports not only static
services but also those requiring mobility such as vehicles, unmanned
aerial vehicles (UAV), and delivery robots. When such devices are
mobile, the initially deployed oneM2M edge instance must move cor-
respondingly to ensure uninterrupted service delivery. In essence,
oneM2M MEC interworking must support service mobility, achievable
through oneM2M edge instance migration services. The MEC platform,
upon detecting device movement, prepares for the migration of the
oneM2M edge instance to a neighboring MEC platform. The oneM2M
edge instance synchronises with the oneM2M cloud platform for migra-
tion purposes, conducting synchronisation regarding services and data
executed and stored locally at the edge, and then transmitting informa-
tion regarding the target MEC facility. The oneM2M cloud platform
offloads the updated oneM2M edge instance to target the MEC facil-
ity through a provisioning process to complete the migration prepara-
tions. Subsequently, the target devices then connect to the new adjacent
MEC and receive services through the migrated oneM2M edge instance.
Next, the oneM2M cloud platform finalises the platform migration pro-
cedure by deleting the now redundant oneM2M edge instance from the
previous MEC platform.

Through these enhancements and the proposed interworking archi-
tecture, we achieve a robust, efficient, and versatile framework for IoT
services in edge computing, surpassing traditional cloud-centric mod-
els. This integrated approach paves the way for advanced IoT applica-
tions, leveraging the combined strengths of oneM2M and MEC. Also,
our architecture offers a robust solution for future-proof IoT service de-
ployment, addressing challenges like latency, bandwidth, and scalabil-
ity.

6. Edge Computing Deployment and Performance Evaluation

As discussed in Section 5.1, the placement of cloud IoT, edge IoT, and
MEC platforms in relation to edge computing deployment plays a cru-
cial role in determining performance. This section presents the experi-
ments on performance disparities incurred in executing services related
to IoT edge computing, based on various deployment options of the
oneM2M cloud IoT platform and the data it processes.

6.1. IoT Platforms for Edge Computing

In this experiment, the focus was on verifying the performance
improvements achievable through edge computing under conditions
closely resembling a real-life environment. IoT platforms necessitate
a cloud platform designed for IoT and an edge IoT platform opera-
ble on edge nodes. There are various open-source IoT platforms de-
veloped for cloud use, based on the oneM2M standard, notably Mo-
bius (a JavaScript-based platform developed by the Korea Electronics
Technology Institute) and OM2M (a Java-based platform developed by
LAAS-CNRS and distributed and managed through the Eclipse Foun-
dation) [17, 18]. In this experiment, Mobius, which has been used in
large-scale smart city projects in both Korea and Europe, was selected
as the cloud-based IoT platform.

Existing open-source oneM2M platforms typically implement most
functions defined by oneM2M and employ databases to store and man-
age substantial volumes of data. Operating these platforms on resource-
constrained edge nodes can be challenging. Consequently, a separate
oneM2M-based IoT platform (referred to as tinyIoT), operable on edge
nodes, was developed using the C language for this experiment. The
tinyIoT platform is a oneM2M-based IoT platform optimised for light-
weight deployment on edge nodes. To process data and efficiently pro-
vide services from edge nodes proximate to IoT devices and applica-
tions, it is imperative to exclude unnecessary functions and enable rapid
data processing through direct memory manipulation and hardware con-
trol. The core functions and logic of the tinyIoT server were crafted
using pure C language, and they exclusively used C language-based
open-source components. This included SQLite2 for database manage-
ment, cJSON3 for JSON parsing, lightHTTP4 for the HTTP server, and
wolfMQTT5 for the MQTT client. In this experiment, the developed
tinyIoT was configured to provide IoT services on edge nodes, handling
partial data and features from the Mobius cloud IoT platform.

6.2. Deployment Setting and Performance Evaluation

As noted in Section 5.1, the performance of IoT edge computing
significantly depends on the proximity of the edge IoT nodes to the ap-
plications receiving the services. This experiment aimed to demonstrate
this empirically. First, the basic performances of a cloud IoT platform
and an IoT platform operating at the edge facility were examined, fol-
lowed by an experiment to investigate how service provision time var-
ied based on location. The IoT services were assumed to be operating in
Seoul, South Korea, whereas the cloud oneM2M IoT platforms provid-
ing the services were run on Google Cloud Platform (GCP) located in
Iowa and San Paulo. Each cloud IoT platform was allocated four virtual
CPUs and 32 GB RAM memory from GCP. Iowa in the United States
and San Paulo in Brazil are, respectively, 6,424 miles and 11,397 miles
away from Seoul, South Korea. The tinyIoT edge IoT platform was
located in Seoul and operated on hardware equivalent to Raspberry Pi
4 Model B, with a Quad-core Cortex-A72 (ARM v8) 64-bit SoC and 8
GB of LPDDR4-3200 SDRAM. For the performance evaluation of IoT
edge computing, it was presupposed that a substantial amount of data
and services were already operating on both the cloud IoT and edge
IoT platforms. Specifically, the experiment assumed that the cloud IoT
platform stored ten times more data than that of the edge IoT platform.

2https://www.sqlite.org
3https://github.com/DaveGamble/cJSON
4https://www.lighttpd.net
5https://github.com/wolfSSL/wolfMQTT
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(a) (b) (c)

Fig. 6. Experimental results. (a) End-user latency for IoT service request processing: impact of the geographical location of IoT service platforms (cloud and edge)
and increased number of supported IoT applications, (b) Impact of the geographical location of IoT edge platforms and increased number of supported edges, and
(c) performance evaluation of cloud and edge IoT platforms in executing application and data DISCOVERY requests.

6.2.1. Evaluation based on geography cloud configuration

Fig. 6a presents the results of an experiment conducted to examine
the impact of geographical distance on IoT services and to observe the
performance benefits obtainable through IoT edge computing. In this
experiment, three IoT platforms (two cloud platforms and one edge plat-
form) were configured to receive 120 sensor measurements per second
each. The round trip time (RTT) for processing these requests was mea-
sured and used as the end-user latency. During this process, the number
of applications managed within the platform was increased incremen-
tally to observe the performance variations in IoT services correspond-
ing to the increase in applications.

The experiment was designed to compare two scenarios: one involv-
ing a single device sending 120 measurements for processing, and an-
other involving 12 devices, each sending 10 measurements for process-
ing. As illustrated in Fig. 6a, for cloud IoT platforms, the geographical
distance from the service provision location proved to be the most sig-
nificant factor affecting performance, irrespective of the number of sup-
ported applications. Because cloud platforms possess sufficient comput-
ing power and memory for data processing, an increase in the number
of managed applications did not significantly impact end-user latency.
In contrast, the tinyIoT edge platform exhibited performance benefits
owing to its proximity to the service provision location when managing
eight or fewer applications. However, when the number of applications
increased to 10 or more (thereby requiring more computing power and
memory), the end-user latency surpassed the processing time of cloud
computing located in Iowa, USA. This indicates that to maximise the
advantages of edge computing, the number of data and services being
processed and managed at the edge node must be maintained at a certain
level or below.

In addition to the geographical distance of cloud servers, the latency
between two devices (device-to-device distance) can also contribute sig-
nificantly to overall performance. Further investigation is required to
analyze how these distances influence latency, particularly in edge com-
puting environments.

6.2.2. Evaluation based on geography edge configuration and in-

creased number of edges

Fig. 6b examines how the geographical positioning of IoT edge plat-
forms and the scale of edge deployments influence the performance of
IoT services. It is crucial to analyze how the increase in the number of
edge nodes, each supporting multiple IoT applications, affects the over-
all system latency and data processing efficiency. In this experiment,
each edge is connected to three devices, each transmitting 120 sensor
measurements. For example, the result with only one edge received 360
measurements, and the three edges received 1080 measurements.

In Fig. 6b, we measure and compare the response times of IoT ser-
vices when varying the number of edge nodes from a minimal deploy-
ment in Figure 6a into a more extensive setup. This is crucial for under-
standing the scalability of the edge computing model, especially when

considering the deployment in expansive geographical areas or scenar-
ios with dense IoT device distributions.

Fig. 6b demonstrate the scalability and robustness of the edge com-
puting model in handling increased loads, with a particular focus on
how effectively the oneM2M-MEC interworking architecture with the
tinyIoT server manages the growing demand without significantly com-
promising service quality. This insight is essential for planning and de-
ploying IoT services in diverse environments, ensuring that the edge
computing infrastructure can adapt to various scales and densities of
IoT applications.

6.2.3. Evaluation based on resource discovery

Discovery operation, alongside IoT data measurement, is a principal
task supported by IoT platforms. Fig. 6c depicts the RTT for process-
ing of discovery requests on both edge and cloud platforms, which is
a key metric for assessing end-user latency. The amount of data stored
on each platform significantly influences the respective service perfor-
mance during the discovery request processing phase.

The oneM2M platform stores both application-related data (denoted
as Container - CNT) and distinct data generated by applications (re-
ferred to as contentInstance - CIN) in the form of resources. Dur-
ing the experiment, both cloud and edge platforms stored an equivalent
number of CNTs; however, the cloud platform maintained ten times the
number of CIN resources that on the edge platform. Under these con-
ditions, the experiment measured the time taken to receive responses to
specific resource discovery requests. The oneM2M discovery requests
are exemplified below:

• CNT discovery:
"Discover Container resource with filtering including filter usage
(fu) 1, discovery resource type (ty) is 3 which means container
resource, filter operation (fo) 1, 20 of result limit (lim), created
before (crb) 20230908T053623, cnt label (lbl), offset (ofst) 0, and
101 of stateTag smaller (sts) which means every container is in-
cluded in the scope (each container has 100 contentInstance)."
GET /TinyIoT?fu=1&ty=3&fo=1&lim=20&ofst=0

&crb=20230908T053623&lbl=cnt&sts=101 HTTP/1.1

• CIN discovery:
"Discover contentInstance resource with filtering including
discovery resource type (ty) is 4 which means contentIn-
stance resource, 20 of result limit (lim), created before (crb)
20230908T053623, and offset (ofst) 0"
GET /TinyIoT?fu=1&ty=4&fo=1&lim=20&ofst=0

&crb=20230908T053623 HTTP/1.1

Fig. 6c suggests that the edge IoT platform exhibited superior dis-
covery performance compared with that of the cloud platform — be-
tween 25 to 30 times more efficient for individual data discovery re-
quests and approximately five times more efficient for application dis-
covery requests. The experiment also monitored the processing speed of
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discovery requests while progressively increasing resources (1k/10k to
1.5k/15k and eventually 2k/20k) stored on both platforms. An increase
in stored data on both cloud and edge platforms caused an increase in
end-user latency owing to the increased search space.

Fig. 6c also shows divergent outcomes in the discovery of resources
such as Containers (CNT) and ContentInstances (CIN) across edge and
cloud IoT platforms. Especially, the Mobius cloud IoT platform and
the tinyIoT edge platform, utilized in the experiments, were developed
by different manufacturers but referenced the same standards, specifi-
cally oneM2M. Typically, as observed with tinyIoT, discovery should
be faster for a smaller number of resource types like CNT. However, the
cloud platform exhibits quicker discovery times for CIN due to internal
logic designed to reduce response times for frequently searched appli-
cations. Consequently, Fig. 6c demonstrates that even when adhering
to the same standards, variations in internal implementation logic can
result in performance discrepancies.

In conclusion, implementing edge computing for IoT services de-
livery markedly enhances performance in terms of data storage, man-
agement, and retrieval in comparison with traditional cloud computing
approaches. With the incorporation of additional considerations such
as network status, access network-specific quality of service, and cur-
rent processing capabilities through oneM2M-MEC interworking, edge
computing is poised to offer even more performance gains, surpassing
those observed in this experiment.

7. Conclusion

Conventional IoT platforms provide various functionalities necessary
for delivering IoT services from the cloud. However, they are not suit-
able for services requiring real-time responses or rapid data processing
owing to significant delays occurring while communicating with remote
cloud servers for IoT service support. Therefore, active research is un-
derway to offer ultra-low-latency IoT services by reducing network load
resulting from traffic increases through the application of edge comput-
ing technology.

oneM2M, which develops international standards for the IoT, has de-
veloped standards for functionalities to enable the design of an edge
oneM2M platform (originally intended to operate from the cloud) to
support edge computing. This development includes the capability to
move some functions and data from the cloud to edge nodes for remote
service provision and the ability to dynamically install the oneM2M
platform. This study explored various approaches to providing inter-
working between oneM2M and MEC platforms and examined the per-
formance improvements achievable through these approaches via di-
verse experiments.

By devising a methodology grounded in real-world standards and
demonstrating through experiments the tangible benefits of such an ap-
proach—achieving up to a 20-fold improvement in RTT for specific
discovery scenarios—our work underscores the critical advantage of
standard-based interworking between oneM2M and MEC platforms.
This synergy not only enhances resource efficiency but also significantly
reduces energy consumption and operational costs, marking a substan-
tial leap toward more responsive and efficient IoT services.

Further studies are required to refine these integration processes and
fully understand and exploit the potential of this technological fusion.
It is also necessary to explore and address potential security and privacy
issues that could emerge from deploying these edge computing systems.
Edge nodes, due to their distributed and often less physically secure na-
ture, are susceptible to unauthorized access and data tampering. Ad-
ditionally, processing sensitive data at the edge increases privacy risks,
such as unintended data exposure or misuse. These concerns highlight
the need for robust encryption protocols, secure authentication mech-
anisms, and privacy-preserving techniques like federated learning and
homomorphic encryption.

In future work, we plan to address these challenges by implement-
ing and evaluating advanced security measures to further strengthen the

resilience of edge computing systems. This will ensure that our pro-
posed framework not only improves performance but also adheres to
stringent security and privacy requirements necessary for real-world de-
ployments. Furthermore, as real-world applications and deployments of
these technologies increase, we anticipate new challenges and opportu-
nities that could lead to further improvements and innovations.
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