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Abstract— Services are increasingly provided by cloud com-
puting systems. Such services are often accessed while on the 
move. If the distance between the user and the service is getting 
large, quality-of-experience, in particular for interactive services, 
deteriorates. To counter this, the provisioning location of the 
service should be as close to the user as possible. This paper 
describes the concept of follow-me cloud, according to which 
services are migrating in unison with the user’s movements. The 
key components required for such integrated user mobili-
ty/service mobility management are introduced and mappings to 
an OpenFlow-based implementation are described.  

I. INTRODUCTION 
OBILE operators are facing the challenging task of ac-
commodating huge mobile traffic volumes, far beyond 

their original network capacities. Operators are thus investi-
gating cost-effective methods for accommodating such huge 
mobile network traffic with minimal investment into their 
infrastructure. Most important solutions pertain to Selective IP 
Traffic Offload (SIPTO) as close to the Radio Access Network 
(RAN) as possible [1]. The key enabler of efficient SIPTO is to 
place data gateways close to the RAN, essentially leading to a 
relatively decentralized mobile network deployment [2]. 

Looking at the other end of the service chain, a strong trend 
towards using cloud technology to provide services can be 
observed. Clouds are a preferred method for service provi-
sioning as with the cloud model, creators of services do not 
need to care about setting up and managing the service provi-
sioning hardware and software, but they can rather focus on 
their main business of producing compelling applications and 
services for their users.  

Along with their great success and promising market, cloud 
providers are moving towards distributed data center archi-
tectures by building increasing numbers of regional data cen-
ters [3][4]. The reasons for this trend are manifold and include 
different regulatory regimes, resilience, load balancing, and 
response times. The combined result is an enhanced Quality of 
Experience for users by ensuring short average response times, 
low error rates, and short downtimes.  

Ideally, traffic offload close to the RAN and distributed 
cloud data centers should go hand-in-hand. Indeed, traffic 
between an application and its back-end service shall be ex-
tracted from the backhaul network at the earliest possible point 
and shall be sent to the data center closest to the break-out 
point. Unfortunately, the back-end service may not be neces-
sarily hosted at the data center closest to the user. Even if the 
service is initially provided from the optimal data center; 
“optimality” changes over time with the movements of the user 
and the load situation on the data center and the network. For 
operators to gain the most benefits from traffic offload without 
impacting the QoE of their customers, mobile services must 
migrate together with user movements, changing workloads, 
and potentially other criteria.  

This paper deals with how to improve quality of experience 
by introducing a new user/service mobility management 
scheme called “follow-me cloud”. Follow-me cloud allows 

services to migrate in unison with users’ movements. Services 
are therefore always provided from data center locations that 
are optimal for the current locations of the users and the current 
conditions of the network. As a by-product, bandwidth demand 
on the back-bone of the mobile network is reduced as traffic is 
kept locally as much as possible. Another advantage of the 
follow-me cloud technology is that migration of services is 
seamless and transparent to users. On-going sessions between 
users and services are not interrupted and connections do not 
need to be reestablished, even if users and/or servers (i.e., 
hosting services) change location. The paper describes the 
components needed to enable the follow-me cloud capability, 
in particular the detection of user movements, the decision 
logic for migrating services and the method for making mi-
gration seamless. An OpenFlow-based implementation is 
described. The problems that were encountered and their 
solutions are detailed. A solution that achieves the objectives 
of the follow-me cloud concept without the usage of any 
software defined networking (SDN) technologies (e.g., Open-
Flow) is described in [19].  

The remainder of this paper is structured as follows. Section 
II gives an overview on some related research work. The 
proposed follow-me cloud concept is described in Section III. 
An OpenFlow-based implementation of the follow-me cloud 
concept is described and evaluated in Section IV. The paper 
concludes in Section V.  

II. RELATED WORK 
Movement of services in the form of code, data, state, and 

virtual machines is a well-investigated topic with a large body 
of research work. This paper does not propose new migration 
technologies; it rather builds on existing technologies in the 
area of virtual machine migration.  

In the context of the Evolved Packet System (EPS) [5], its 
richness of accesses has led to different interesting 3GPP study 
items whereby a User Equipment (UE) is allowed to have 
simultaneous accesses to different networks using different 
access technologies [6]. In [7], the 3GPP System Architecture 
group investigated different possibilities for dynamic IP flow 
mobility between 3GPP and non-3GPP accesses. The study 
proposed allowing a UE, equipped with multiple network 
interfaces, to establish multiple PDN connections to different 
Access Point Names (APNs) via different access systems and 
to selectively transfer PDN connections between the accesses 
with the restriction that multiple PDN connections to the same 
APN shall be kept in one access. In [8], a solution is proposed 
enabling a UE to know how and when to establish a new 
optimized PDN connection for launching new IP sessions to a 
particular APN, without compromising the on-going (old) 
PDN connections to the same APN. In [9], a solution is pro-
posed to support SIPTO. In this solution, the user plane of a 
mobile network is assumed to be decentralized and the objec-
tive is to enable a per-flow offload of certain IP traffic as near 
to the edge of the operator network as possible. This is 
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achieved with the involvement of the mobile network’s Do-
main Name Server (DNS) that informs a UE of the gateway to 
connect to for establishing a particular flow and that is upon 
making a DNS resolution request. Most of these flow mobility 
and session mobility mechanisms work under the assumption 
that IP addresses of users do not change when the session is 
active, or do change but when the UEs are in idle mode so users 
will not notice any service disruption.  

Generally speaking, migration of an IP service, due to 
movement of the receiving user followed by change in his IP 
address, would result in the breakdown of the session and the 
need to reestablish a new one. This is intuitively due to the fact 
that IP addresses are in practice used for identifying both an 
endpoint and a network location. This overloading causes 
sessions to break when the location changes, but sessions 
continue. Session identifiers should therefore be separated 
from location identifiers. Methods for such separation have 
been devised before. DNS realizes such a separation, but it was 
not designed to provide constant updates of current location. It 
is rather used only once at session establishment time. The 
Locator/Identifier Separation Protocol (LISP) [10] makes such 
separation explicit, but does not natively support endpoint 
mobility. Serval [11] caters for user and service mobility and 
provides identifier/location separation by introducing an addi-
tional layer in the networking stack. It makes use of service 
identifiers which require changes to applications using the 
system. To avoid the breakdown of an IP session between two 
peers when the IP address of any of the two peers changes 
during the course of a session, Network Address Translation 
(NAT) can be also used. In the context of mobile networks, the 
support of NATing would require changes to nodes of the 
mobile network operator and also many operators are not in 
favor of NAT mainly with the foreseen expansion of IPv6.  

In the Host Identity Protocol (HIP) [12], "Host" and "Loca-
tion" identifications are separated. The location is bound to an 
IP address which can be changing. In short, IP address is used 
for routing packets to current location. However, the host 
identification is created by public/private key infrastructure 
and HIP associations should be maintained by end-points. The 
HIP associations are used for preserving transport connections 
upon movement. That is done by a special HIP control message 
"HIP re-address". Further, it may also involve a server where 
end-points can update their location information that can later 
be retrieved by clients. In comparison to HIP, the present work 
identifies an IP session with the help of OpenFlow rules, whose 
scalability represents the main challenge. Indeed, there are 
various dimensions for scalability, including the number of 
flows, the flow set-up rate, number of packets and the band-
width of the control channel. Some ideas have been proposed 
to deal with this issue. DevoFlow [13] reduces the number of 
control packets by moving some of the flow creation work 
from controllers to switches. In [14], the scalability of Open-
Flow rules in a follow-me cloud scenario is assessed and an 
approach to distribute control plane functions is proposed to 
enhance the system scalability. In [19], the authors describe 
how the objectives of the follow-me cloud concept can be 

achieved with no usage of any SDN technologies, conse-
quently avoiding any associated scalability issue. Changes to 
3GPP standards, including those relevant to the nodes and 
interfaces of the EPS architecture or the underlying protocols, 
are also avoided.  

Regarding the placement of services depending on user lo-
cation, a plethora of research work has been conducted in the 
recent literature. In particular, the demonstrator described in 
[15] shows how services can be placed according to infor-
mation retrieved from an ALTO (Application-Layer Traffic 
Optimization) network server. This work can be used to find 
optimal service locations, but it is orthogonal to the migration 
hiding mechanism described herein.   

III. FOLLOW-ME CLOUD CONCEPT 
The basic idea behind the follow-me cloud concept is that 

services, provided by a cloud, are following users throughout 
their journey. As soon as a user moves and thereby changes his 
attachment point to the network, the optimal data center for 
providing the services being received by the user is determined. 
If the optimal data center is different from the currently used 
one, a decision is made for or against moving the service to the 
optimal location. As a result, the services follow the user 
throughout his movements. The follow-me cloud concept can 
be realized by different technologies. These technologies 
depend on the envisioned scenario and the underlying envi-
ronment.  

In order to realize the follow-me cloud concept, a number of 
functions need to be realized. From the description above, the 
main functions can be derived directly: i) detection of user 
movements, ii) selection of optimal service location, and iii) 
service migration. All three functions need to be present, 
independently of the underlying technologies. 

A. Movement Detection 
Detection of movement is used as a trigger for the following 

steps in the follow-me process. Most technologies have some 
inherent means of detecting changes of location. This is due to 
the fact that a (large enough) change in location is followed by 
a change in the network attachment point. Such change can be 
detected either directly or indirectly. A direct observation can 
be done by looking at the network attachment point. Indirect 
movement detection can be done by looking at the identifier 
used by the user equipment (UE) for transmitting data (e.g., IP 
address). As such identifiers are usually location dependent, a 
change of this identifier commonly signifies a change in loca-
tion.  

B. Location Selection 
As soon as movement of the user has been detected, the opti-
mal service provisioning location has to be calculated. In 
general, we assume the existence of a number of data centers 
that can provide the service a user is currently accessing. 
Among those data centers, the “best” one needs to be selected; 
and that is in terms of network-related parameters (e.g., latency 
and available bandwidth), parameters affecting Quality of 
Service (QoS) such as server utilization and server throughput, 
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and business-related parameters (e.g., network/server/storage 
costs, bulk discounts, and preferred providers). If the optimal 
location is deemed the same as the current location of service 
provisioning, nothing further needs to be done. In case the 
determined optimal location differs from the current location, 
service migration needs to be considered. To decide whether 
migration is appropriate or not, the costs of shifting the service 
from its current location to the new, optimal location need to be 
taken into account. The costs primarily consist of bandwidth 
costs needed for transferring the service. Many services consist 
of multiple cooperating pieces. For example, a remote desktop 
application may consist of the running operating system (OS), 
the OS image, and the user’s stored data. All three parts can be 
located in different places. When migrating the desktop ap-
plication, all three parts might be transferred to the destination. 
Alternatively, only parts of the application might be moved, for 
example, only the running OS and its image, while the user’s 
data stays at its original location. Therefore, in the case of 
distributed services, a decision on which parts of the applica-
tion to move needs to be made. Also, there might be different 
optimal locations for different parts of the application, e.g. data 
centers with cheap, large storage for data; and those with 
strong processing capabilities for calculations.  

C. Service Migration 
Once it has been decided to change the location of service 

provisioning to a different data center, the service (or parts of 
it) needs to be moved. Service movement in clouds is possible 
in multiple ways. A number of basic approaches can be dis-
tinguished, depending on whether a software-as-a-service 
(SaaS), platform-as-a-service (PaaS), or infrastruc-
ture-as-a-service (IaaS) model is used for providing a particu-
lar service. Services provided by a SaaS system can be moved 
to a different fulfillment place by sending the state and asso-
ciated data to the destination location. As the software 
providing the services is available in all SaaS fulfillment 
locations, it is enough to only make service state and data 
available to the software at the destination location. To migrate 
services provided on top of a PaaS system, service state and 
data need to be transferred just as in the SaaS case. But as the 
cloud provider only provides the platform, not the service code 
itself, the code realizing the service needs to be transferred to 
the destination data center as well. In an IaaS environment, 
services are provided by virtual machines (VMs). A VM 
encapsulates code, data, and state of the service it provides. For 
service migration, the virtual machine with all three constitu-
ents needs to be migrated. Common hypervisors support such 
migration, usually in both a cold migration mode (with the 
service being unavailable during migration) and a live migra-
tion mode (with service access being possible while the VM is 
moving). Migration is similar to services on top of PaaS sys-
tems, but the complete OS and supporting platform need to be 
shipped to the destination as part of the migrating VM. 

Although service migration is possible in all three models, it 
suffers from the same problem in all three cases: different data 
centers own different ranges of IP addresses. As soon as a 
service moves to a different data center, it also changes its IP 

address. As a result, all connections to its clients break down 
and need to be reestablished. Service provisioning is therefore 
not seamless when service migration happens. The remainder 
of this paper describes how service migration can be enabled 
without disrupting the service due to changes in the IP ad-
dresses of end-users.  

IV. OPENFLOW-BASED IMPLEMENTATION 
The Follow-Me Cloud concept and the functions described 

in the previous section can be realized with different technol-
ogies. They can be also realized with no usage of any SDN 
technologies [19]. In order to show the breadth of possible 
technologies and the particular problems that arise in those 
domains, an OpenFlow-based implementation is described 
hereunder. For a Markov chain-based analytical model of the 
FMC concept, the interested reader is referred to [20]. 

A. Experimental Setup 

 
Fig. 1. OpenFlow-based follow-me cloud setup. 

Fig. 1 shows the overall experimental setup which consists of 
data centers hosting VMs, client network based on WLANs, 
routers and a NOX based follow-me cloud (FMC) controller 
that are all connected to ports of an NEC IP-8800 OpenFlow 
switch. For the sake of simplicity, each datacenter in the cloud 
is modeled by a VMWare ESXi hypervisor. Each ESXi host is 
equipped with two 1Gbps network cards for forwarding the 
management and OpenFlow traffic over the network. A virtual 
network topology is defined inside the ESXi host by two 
vSwitches (soft-switch) where each physical NIC is connected 
with each soft-switch instance. The ESXi host manages the 
VM resources that run the standard Windows XP OS. Further, 
each VM is configured with two virtual NICs (vNIC) that are 
connected with the virtual network through the soft-switches. 
One vNIC carries the management traffic [16] and the other 
NIC carries the OpenFlow traffic. The storage space is shared 
between the two datacenters and is accessed by the standard 
iSCSI protocol. The datacenters are remotely managed by the 
VMWare vCenter software. Further, the client network con-
sists of two WLANs. Given the client and data center networks, 
a router entity is used for correctly forwarding traffic among 
different network segments. For the sake of simplicity, the 
router acts as the first hop for traffic originating from client and 
data center networks. Further, the Linux router runs DHCP 
servers and Linux Traffic Control (TC) for controlling the path 
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characteristics (e.g., delay and congestion) between the two 
network segments. From the physical OpenFlow switch per-
spectives, four virtual switches (VLAN) are used for separately 
carrying the traffic of the two data centers and the client net-
work. The FMC controller manages the forwarding behavior 
on the four VLAN’s and also monitors the path characteristics 
between a data center and the client network and that is for 
resource management optimizations. For live VM migration, 
the VMotion® [17] cloud infrastructure technology from 
VMware is used. VMotion® traffic is mapped on the man-
agement network whereas all active communication between 
the VM and remote users are managed by the OpenFlow 
network.  

B. The OpenFlow based NOX Controller 
Fig. 2 shows the architecture of the OpenFlow-based FMC 
controller that has been developed in NOX. For validating the 
FMC concept, the controller entity is assumed to be aware of i) 
the virtual switch instances and their data path identifiers on 
the physical OpenFlow switch, ii) the VM identifiers [18] 
(namely the IP and MAC addresses), iii) the location and IP 
addresses of each default gateway in the test bed,  iv) the 
OpenFlow switch ports identifiers at which the data center, 
router and client networks are connected, v) the IP address 
ranges managed by each DHCP server both for client and 
datacenter networks, and vi) the locations of distributed data 
centers that can either be part of the operator network or could 
be autonomous domains. In addition to a database, the Open-
Flow-based FMC controller consists of seven components, 
each playing a particular role described hereunder.  

  
Fig. 2. The FMC controller architecture.  

1) Location Manager 
For correctly installing forwarding rules into the OpenFlow 
switch, each client and VM is linked to a home location. This is 
based on the IP address allocation and gateway settings con-
figured in the VM. The configuration settings may be changed 
by the administrator during the service time and the database is 
accordingly updated. Such configuration also holds for clients 
in the client network. Given the home location is known to the 
controller, if any traffic from a particular client or VM appears 
on a different network than its home location, the Location 
Manager updates the status for that entity to be in a Visited 
Network/Location. Hence, the Location Manager keeps always 
track of current location of clients and VMs in home and 
visited networks. 

2) Location Mapper 
Given the home and visited locations of both client and VMs 
are known to the FMC controller, the Location Mapper module 
optimizes the path characteristics by selecting the appropriate 

data center location for the VM. Such control logic can be 
mapped on the geographical location of the data centers, path 
characteristics metrics based on average delay, load or even 
congestion situations between the client and datacenter net-
works. For evaluation, proprietary API for vCenter® is used at 
the controller for triggering VM migration across datacenters.  

3) Mobility Detector 
The actual VM migration is carried out by the cloud infra-
structure software. For proof of concept, VMotion® technol-
ogy is employed. However, orthogonal to the underlying 
technology, the FMC controller shall be able to detect when a 
VM has been actually moved to a new location. For evaluation, 
the Mobility Detector function keeps track of the flow entries 
installed in each OpenFlow virtual switch instance pertaining 
to home and visited locations. The OpenFlow rules for home 
locations are pro-actively installed in the switch. However for 
visited network, no such rule is installed. When traffic for a 
newly migrated VM hits the OpenFlow switch of a visited 
network, it must result into no match for that flow table in the 
switch. Afterwards, the packet should be forwarded to the 
controller which compares the location information with 
IP/MAC addresses to ascertain that VM has been indeed 
moved to the visited network.  

4) ARP Packet Processing 
VMs and clients are configured with default gateway settings. 
Initially, ARP (Address Resolution Protocol) caches are as-
sumed to be empty at both endpoints and the router involved in 
the setup. There is no ARP specific forwarding rule installed in 
any of the virtual switches. Instead, each ARP packet, both 
request and response types, is explicitly forwarded to the FMC 
controller. As depicted in Fig. 3, upon reception of an ARP 
request from a virtual machine, the controller answers with an 
appropriate response. The response is constructed using the 
controller’s knowledge of the layer-2 information of the at-
tached end-points, including the gateway. The controller uses 
the PACKET_OUT OpenFlow command instructing the 
switch to send the ARP reply on the switch instance/port on 
which the original request was received. The necessary state 
(i.e., data path identifier, input port, source MAC and IP ad-
dress) for constructing the reply message is taken from the 
original ARP request packet that has been forwarded to the 
controller. On the end-host, once the ARP reply arrives, the 
ARP cache is updated. In contrast, the ARP cache at the router 
is still stale because the controller replied on behalf of the 
router. Subsequently, when an IP packet arrives at the router 
for that particular end point, it also generates an ARP request 
which is again forwarded to the controller. In the current setup, 
the controller simply forwards all ARP requests from the router 
to the end points on the same subnet. However, it would also be 
possible to let the controller reply to these requests as in the 
previous case for a similar effect. 

5) Packet Manipulator 
Given a VM can either move from the home network to a 
visited network and vice versa, a key functional requirement 
from the controller perspectives is to preserve all ongoing user 
sessions while the VM is migrated. This implies that no con-
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figuration change (e.g., IP address and gateway configurations) 
is allowed on the VM. Further, the IP address ranges managed 
by datacenters can be overlapping and the first hop setting may 
not be consistent across subnet boundaries. Hence, a Packet 
Manipulator module is introduced at the controller for creating 
a “virtual tunnel” within the visited network segment. The 
“virtual tunnel” operates by re-writing the IP address field 
within the packet IP header for each outgoing packet from the 
VM to outer network. The original IP header is restored for the 
packet when the last hop in the visited network segment is 
reached. The same technique is applied for all the incoming 
traffic to the VM. This is achieved by modifying the set of 
OpenFlow rules installed in the visited network. 

 
Fig. 3. Handling of ARP packets by FMC Controller. 

6) DHCP Handling 
The client network consists of two WLANs and the IP address 
ranges are managed by two DHCP (Dynamic Host Configura-
tion Protocol) servers. The client location is dynamic and 
beyond operator control. However, based on client’s location, 
the optimal location of VM can be decided. Therefore, a DHCP 
server is also implemented in the NOX controller and specific 
rules are installed in the switch such that all DHCP traffic 
should traverse the controller entity. The amount of DHCP 
traffic is small. DHCP overhead is therefore deemed to be 
negligible. Fig. 4 portrays the flow of messages exchanged 
among client, FMC controller and DHCP server till a connec-
tion is established/restored between the client and an adequate 
data center, based on their locations. Of particular interest, Step 
10 in the figure shows that the client machine successfully 
acquired a new IP address and based on the current client 
location the decision for VM migration can be made.  

C. System Execution and Performance Evaluation 
In the remainder of this section, we evaluate the performance 
of the follow-me cloud setup, as depicted in Fig. 1. Further 
results based on an analytical model of FMC are available in 
[20]. In this setup, we configure the queue parameters for each 
virtual interface using the Linux Traffic Control modules on 
the Linux machine. Without any purposes in mind, the com-
munication delays between a client network and its optimal 
data center and between a client network and its “sub-optimal” 
data center are set to 1ms and 50ms, respectively.  Fig. 4 shows 
the ping latency between the client and its corresponding VM 
hosted in the data center and that is considering two scenarios, 
namely when follow-me cloud is used to enable VM migration 

and when it is not used. When the follow-me cloud is not used, 
the ping latency remains equal to 50ms. The initial 150ms high 
latency is mainly attributable to OpenFlow rules when the new 
traffic arrives at the controller. In contrast, when the follow-me 
cloud is used, the ping latency drops to 1ms and that is around 
32 s after the start of the experiment. This is mainly due to the 
fact that the VM was dynamically shifted to the optimal data 
center following the movement of the client. It shall be noted 
that during the VM migration, few ping losses were noticed.  

 
Fig. 4. Intercepting DHCP Packets for Location Mapper. 

 

 
Fig. 5. Client ping latency with and without FMC. 

One major use case of follow-me cloud is its implementation in 
mobile networks. As such networks have traditionally large 
user bases, scalability of follow me cloud up to many millions 
of users is a must. The introduced follow-me cloud imple-
mentation uses OpenFlow to enable movement of services 
following that of users. As every moving end-point needs 
certain OpenFlow rules to map between identifier and locator 
of the end-point, the size of the rule set depends on the number 
of moving end-points. With millions of users and services, the 
rule set is beyond the capabilities of current OpenFlow-enabled 
switches. But the build-up of networks from multiple switches 
inherently provides a distribution of end-points to switches and 
therefore a distribution of OpenFlow rules. The set of rules 
pertaining to a particular switch is therefore a fraction of the 
overall rule set. Our analysis shows that the number of rules 
per switch is within the limits of currently available hardware 
[14]. Together with the OpenFlow rules on individual switch-
es, the management of the rules at the follow-me cloud con-
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troller is an issue for scalability, as the controller has to manage 
the rules of multiple switches. For large networks, it is essential 
to realize a distributed controller in order to deal with the large 
size of the rule set. Distribution can happen across two di-
mensions, namely network scope and controller role. The 
network scope refers to assigning certain parts of a network to 
a particular controller. By narrowing the scope of the assigned 
network slice, the number of rules managed by a single con-
troller shrinks. In addition, the follow-me cloud system dis-
tinguishes three different roles for a controller: home, foreign, 
and correspondent. Different sets of rules and knowledge are 
required for the different roles. By separating these three roles, 
a separate controller can be assigned to each of these roles even 
further reducing the number of rules managed by a single 
controller. A more detailed assessment of the scalability of our 
follow-me cloud controller can be found in [14], opening up 
new challenges for the community of OpenFlow researchers.  

V. CONCLUSIONS AND FUTURE WORK 
Cloud computing and mobility have been two major trends 

of the last few years and are expected to grow in importance 
over the coming years. Together they will be an important part 
of the future computing and communications infrastructure. 
The follow-me cloud concept introduced in this paper com-
bines the two trends and shows how they can interact and bring 
benefits to mobile users by allowing service access from data 
centers optimal to the current location of users. The article 
showed the feasibility and viability of the follow-me cloud, 
describing an OpenFlow-based implementation. The described 
architecture shows how mobility management systems from 
different domains such as wireless networks and server virtu-
alization can work together to realize new capabilities that are 
not possible when looking at just a single domain.  

Service composition has been a topic of discourse in the 
computing domain for quite some time and we expect the 
federation of management systems spanning multiple func-
tional and/or administrative domains to become increasingly 
important for providing new and improved services in an 
automated fashion. This paper showed how such a federation 
between functional (network and compute) domains as well as 
administrative (different operators of data centers and network 
segments) domains could join efforts to provide high quality 
mobile services. 

The paper outlines a possible implementation of the fol-
low-me concept that is based on VMware cloud infrastructure 
technology. A possible extension to this work is to enable such 
functionality in an open source cloud IaaS platform such as 
Openstack that supports defacto-standard networking1 API’s 
for manipulating the tenant based virtualized networks. Given 
that VM’s could be deployed across distributed data centers, 
another possible direction are to explore inter data center 
connectivity for managing resources across the data centers 
under an umbrella of a single logical controller entity. Simi-
larly, for live VM migration the VM management traffic 
should be tunneled from the source to destination data centers 
either through shared storage or exploiting live block migra-
 

1 Neutron: wiki.openstack.org/wiki/Neutron  

tion. For the user plane traffic, OpenFlow controllers in both 
domains should co-ordinate for managing the ongoing session 
on behalf of the migrated VM. Finally, this functionality 
should be exposed to higher layer applications in the form of 
specific API’s for VM placement and migration along with 
user location in the network. 
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