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ABSTRACT Internet of Things security is attracting a growing attention from both academic and industry
communities. Indeed, IoT devices are prone to various security attacks varying from Denial of Service
(DoS) to network intrusion and data leakage. This paper presents a novel machine learning (ML) based
security framework that automatically copes with the expanding security aspects related to IoT domain.
This framework leverages both Software Defined Networking (SDN) and Network Function Virtualization
(NFV) enablers for mitigating different threats. This AI framework combines monitoring agent and AI-
based reaction agent that use ML-Models divided into network patterns analysis, along with anomaly-
based intrusion detection in IoT systems. The framework exploits the supervised learning, distributed data
mining system and neural network for achieving its goals. Experiments results demonstrate the efficiency
of the proposed scheme. In particular, the distribution of the attacks using the data mining approach is
highly successful in detecting the attacks with high performance and low cost. Regarding our anomaly-
based intrusion detection system (IDS) for IoT, we have evaluated the experiment in a real Smart building
scenario using one-class SVM. The detection accuracy of anomalies achieved 99.71%. A feasibility study
is conducted to identify the current potential solutions to be adopted and to promote the research towards
the open challenges.

INDEX TERMS Internet of Things, Security, Artificial Intelligence, SDN, NFV, Orchestration and MANO.

I. INTRODUCTION

THE disruptive acceleration of Internet of Things (IoT) is dras-
tically modifying the current ICT landscape with a massive
number of cellular IoT devices expected to be deployed in
the next few years. IoT devices are taking over a variety
of aspects of our current lives, such as health care, trans-
portation, and home environments [1]. Thanks to the mas-
sive growth in analytics and cloud computing technologies,
they are expected to be able to provide relevant contextual
data using their autonomous communication with each other
without human interaction. All of these envisioned benefits
are rapidly pushing the adoption of this technology. On the
other side of the spectrum, IoT nodes can be comprised by
malicious attackers leveraging their resource constraints and
relevant vulnerabilities. Accounting for their wide adoption,
IoT security threats can cause severe privacy problems and
economical damage. As they are becoming an essential el-

ement in our daily lives, maintaining privacy, security and
business operations/opportunities are of a very high prior-
ity. For instance, IoT devices could be used for various
purposes and can be deployed in different places including
home, health care and industrial environments. Thus, they
can carry sensitive personal data, such as user information
and daily activities. An attack against those IoT devices
could lead to sensitive information leakage and can cause an
interruption in workflows, thus compromising the quality of
the products. In order to accommodate the constraints and
heterogeneity of IoT systems, softwarized networks seem
to be the most compelling solution. Network softwarization
is a recent promising trend aiming at radically advancing
telecommunication industries by embracing cloud computing
technologies and software models in network services [2].

The main pillars behind this revolution are SDN and
NFV. On one hand, SDN introduces a new level of network
programmability by decoupling control and data plane. A
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logically centralized controller is in charge of supervising
the network state and provides rules to the network elements
for appropriately managing the traffic flows. On the other
hand, NFV leverages virtualization technologies to deploy
network elements as software instances, thus allowing an in-
creased level of flexibility and elasticity in service provision-
ing. Furthermore, NFV can enable a remarkable reduction
in CAPEX/OPEX costs by replacing dedicated expensive
hardware with commodity servers able to host software-
based network appliances. Although SDN and NFV are two
separate paradigms, their joint use can further improve the
potential security services offered by the network and meet
the broad range of increasing requirements imposed by novel
IoT applications. The explosive number of expected IoT
devices, the widespread diffusion of location-based mobile
gaming applications, the tactile Internet applications are all
significant representatives of demanding scenarios which
expose a wide range of new vulnerabilities and security
concerns. Leveraging the flexibility and scalability offered
by the integration of SDN and NFV, the telco operators will
successfully be able to enforce the relevant security policies
in the IoT domain [3]. In this fervent context, several works
have already investigated models to implement Security-as-
a- Service (SECaaS) [4] [5].

Industrial and research communities are boosting great
efforts to implement similar models within the IoT network
domain by leveraging SDN and NFV features. On the other
hand, the fast growing number of IoT attacks demands for an
adaptive framework which can deal with unknown types of
attacks using different monitoring inputs. The new services
and features introduced into the IoT system exposes new
and unseen types of vulnerabilities. In this context, machine
learning is very compelling. State of the art AI algorithms
make use of machine learning to identify attacks as well as
adapt and respond to new potential cybersecurity risks by
classifying attacks depending on their threat level. Moreover,
when deep machine learning principles are incorporated into
the system, they can actually adapt over time, giving an edge
to the network administrators over the cybercriminals [6].
Intrusion detection in IoT, unlike traditional infrastructures,
should consider not only network-systems metrics but also
processes and measurements from the physical environment.

This paper provides a complete framework that lever-
ages machine learning (ML) techniques and 5G enabling
technology SDN, NFV and IoT controllers for efficiently
and fast detecting and preventing cybersecurity attacks. The
contributions of the paper are many fold:

• A unified AI security framework that is aligned with
ETSI ZSM [7] vision by monitoring, detecting and
preventing cybersecurity threats in a closed-loop au-
tomation, autonomous and harmonized way;

• Implemention and validation of an AI security frame-
work for IoT that exploits machine learning techniques
in order to deal with, not only knowledge-based in-
trusion detection through network patterns/signatures

recognition, but also anomaly-based intrusion detection
based on deviations from the normal behavior of de-
vices, whose reported data are observed by the moni-
toring capabilities of the framework;

• Three approaches have been suggested that leverage ML
techniques for detecting cybersecurity attacks based on
the network patterns;

• The unified AI security framework is empowered with
abilities to identify new kind of cyberattacks (0-days
attacks) in IoT, which could not be detected otherwise
by means of network pattern recognition;

• Leveraging SDN/NFV-based security management fea-
tures to dynamically and efficiently mitigate the de-
tected cyberattacks, according to the AI-based contex-
tual decisions inferred by the framework;

Besides, the SDN/NFV-based security management fea-
tures of the framework permit a dynamic and efficient mitiga-
tion of the detected cyberattacks, according to the AI-based
contextual decisions inferred by the framework.

The rest of paper is organized as in the following. In Sec-
tion II, we provide a summary of related work in the litera-
ture. The framework architecture and related technologies are
described in Section III. Section IV presents the performance
evaluation results of the AI agents in the two approaches.
Finally, Section V Concludes the work and highlights the
open challenges.

II. RELATED WORKS
The IoT security is a fervent research area which attracts
a rising amount of attention from the research community.
There have been many works covering this important aspect.
For instance, authors in [8] have presented an IoT security
framework for smart infrastructures, such as smart homes and
smart buildings. It employs continuous monitoring to capture
the sensor’s operational data in order to detect abnormal
behavior in IoT domain. This data is used to identify the
sensor and compare its behavior to ”normal” behavior. If an
attack is detected, it classifies it according to the type of ab-
normality and takes relevant recovery actions, such as sensor
re-authentication, discarding the sensor’s data or changing
the network configuration. Although the results show that the
system is able to provide high levels of accuracy in terms of
detecting the attacks, the possible mitigation actions are very
limited and often causes service disruptions. Moreover, the
platform does not provide E2E (End to End) security, which
is a must have as the attacks can target any layer of the IoT
framework.

The flexibility of SDN have been leveraged in the works
[9], [10] by defining SDN-based security frameworks. The
extra functionalities offered by SDN technology enable the
integration of new security tools, such as fine grained routing
manipulations, traffic filtering and the use of secure network
channels to transfer sensitive data. While in the NFV scope,
several research papers focused on evaluating the perfor-
mance and feasibility of running virtual security appliances
on the edge using containers [11], [12] such as Intrusion
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Detection Systems (IDS) and firewalls. Although this lighter
virtualization technology showed great efficiency, it turned
out to be challenging accounting for the resource-constrained
IoT devices. Indeed, the high amount of traffic can yield
to high energy and CPU consumption, thus affecting the
device’s usability. An alternative approach to secure the IoT
systems is to use machine learning techniques. Different
solutions that leverage SDN technology and ML techniques
for enabling network intrusion detection systems have been
suggested in [13]. The work also describes the implemen-
tation challenges related to the implementation of network
intrusion detection systems.

Authors in [14] have proposed a solution that predicts
the city buses location using a deep learning approach. In
the proposed solution, Long–Short Term Memory (LSTM)
based neural network has been considered for predicting the
locations and data rate. Authors in [15] have presented a
solution that leverages block-chain for managing scalable
IoT systems. Authors in [16] have suggested a solution that
secures the communications between IoT devices and the
MEC. The proposed solution adopts a learning method to
identify candidates for service composition and delivery.
Authors in [17] have investigated the use of Artificial Neural
Networks in order to detect abnormal network traffic going
from the gateway to the edge devices [18]. In their approach,
they used temperature sensors as edge devices and a Rasp-
berry Pi as an IoT gateway. The system collects multiple data
samples from the edge devices and stores them in a database
on the gateway. Then, they split these inputs into training
and testing data. Once the neural network has been trained
using the training data, the testing data is used to evaluate
the accuracy of the model. Although the results show an
improved level of security in terms of anomaly detection,
the capability of this system was hindered by the limited
resources on the IoT gateway affecting the user experience
and the lifespan of the device negatively in the process.
An intrusion detection system running on top of connected
vehicles has been suggested in [19]. The suggested frame-
work adapts deep belief and decision tree machine learning
mechanisms for detecting different attacks.

AI can leverage Intrusion detection systems (IDS) for
IoT, thereby detecting anomalous behaviors based on met-
rics coming from both, network-systems as well as physical
measurements reported by IoT devices. Mehta et al. [20]
provide an AI-based IDS method for IoT that exploits the
relationship between a set of given time-series of sensor data
for detecting anomalies. Nonetheless, our AI framework is
intended to cope with not only anomalous-based IDS [21],
but also knowledge-based IDS, by checking continuously
signatures and patterns of previously known vulnerabilities
and attacks [22]. In this regard, most of the research work
done so far has been focused on the incident detection phase.
Our framework aims to cover also the reaction stage, once
the attack has been identified.

We strongly believe that an ideal solution would guarantee
an End-to-End security thanks to the global network vision

of the SDN controller, and a proper security policy definition
and refinement using AI. This relevant security policy would
be enforced thanks to the advanced functionalities offered
by virtual network security appliances hosted on the cloud.
Therefore, we introduce our novel AI-based security frame-
work for IoT systems.

III. PROPOSED FRAMEWORK
A. BACKGROUND ON TECHNOLOGIES
1) Software Defined Networking (SDN)
SDN is a relatively new paradigm that aims to decouple the
control plane from the data plane for increasing the network
flexibility and programmability, as well as the manageabil-
ity, allowing external application to control the network’s
behavior in an easy and efficient way. SDN offers novel
capabilities to adapt on-the-fly the network flows according
to the dynamic application requests. The three main com-
ponents of SDN-enabled network are: switches, controllers,
and communication interfaces, where the SDN controller is
a centralized entity that enforces the cognitive decisions in
the switches, maintains the state of the whole system, e.g. it
decides on the traffic routing by updating relevant flow rules
on the switches.

The adoption of SDN in IoT (SDN-enabled IoT systems)
is considered an essential element in the success and fea-
sibility of future IoT systems. Leveraging SDN through its
intelligence in routing the traffic and optimizing the network
utilization are key enabling functions to manage the massive
amounts of data flow in IoT networks and eliminate bottle-
necks [23]. This integration can be implemented at different
levels of the IoT network, such as the access (where the data
is generated), core and cloud networks (where the data is
processed and served), which enables IoT traffic management
from end-to-end.

Moreover, SDN can be also leveraged to provide advanced
security mechanisms for IoT systems. For example, traffic
isolation between different tenants, centralized security mon-
itoring using the global vision of the network and traffic
dropping at the edge, keeping the malicious traffic from
spreading all over the network.

2) Network Function Virtualization
Network Function Virtualization (NFV) refers to the adop-
tion of virtualization technologies in network environments.
Unlike traditional network equipment, NFV decouples the
software from the hardware, bringing value-added features
and notable capital and operating expenditures gains. The
ETSI (European Telecommunications Standards Institute)
has been leading the standardization of this approach, defin-
ing novel architecture that enables the aforementioned advan-
tages.

The ETSI NFV architecture identifies three main building
blocks:

1) Virtualization Infrastructure: This layer includes all
the hardware and virtualization technologies necessary
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to provide the desired resource abstractions for the
deployment of Virtualized Network Functions (VNFs).
This includes storage, compute and networking re-
sources, which are usually managed by a cloud plat-
form.

2) Virtual Network Functions: The core idea of NFV
deals with replacing dedicated hardware equipment
with software-based instances of network functions,
i.e., the VNFs. They can be deployed and managed
over multiple environments, providing scalable and
cost-effective network functions.

3) Management and Orchestration: The NFV manage-
ment and orchestration (MANO) block interacts with
both the infrastructure and VNF layers in the ETSI
NFV architecture. It is responsible for the management
of the global resource allocation that includes: instan-
tiating, configuring and monitoring VNFs.

Introducing virtualized network resources into the IoT
ecosystem brings multiple value-added features, accounting
for their heterogeneity and rapid growth. When coupled with
SDN, NFV can not only, provide advanced virtual monitoring
tools, such as Intrusion Detection Systems (IDSs) and Deep
Packet Inspectors (DPIs), but also provision, and configure
on-demand and scalable network security appliances, such
as firewalls and authentication systems, in order to cope with
the attacks detected by the monitoring agents [24], [25].
Moreover, offloading the extra processing induced by secu-
rity from these resource-constrained IoT devices to virtual
instances [26] saves energy and improves efficiency leaving
more headroom to other useful applications. The aforemen-
tioned flexibility and advanced security features of NFV
are lacking in current out-the-shelf IoT security hardware.
Although NFV is not aiming to completely replace current
IoT solutions, its complementary value added features turned
out to be very compelling and revolutionizing in the IoT
security landscape.

3) Machine Learning Technique

Machine learning (ML) is a field of artificial intelligence
that integrates a set of techniques and algorithms to provide
intelligence to computers and smart devices. ML techniques,
such as supervised learning, unsupervised learning, and rein-
forcement learning, have been widely adopted in the network
security landscape. It is employed in order to accurately
detect and define the specific security policies to enforce in
the data plane. The challenge is to fine-tune the different
parameters of relevant security protocols in order to mitigate
a certain type of attack either by labeling the network traffic
or defining access control policies. Indeed, different ML
techniques can address a variety of IoT attacks. For example,
neural networks can be used to detect network intrusion [27]
and DoS attacks and K-NN in malware detections [28].

1) Supervised Learning: In supervised algorithms, the
inner relations of the data may not be known, but the
output of the model is. Usually, the training of this

model requires a set of data to ”learn” and other to test
and evaluate the dirved model. A common example in
the security landscape is matching an attack pattern to
a set of already known attacks.

2) Unsupervised Learning: Unlike supervised learning
approach, in unsupervised learning technique, the
model is unknown, meaning that the data does not
have to be labeled. Relevant types of models try to
find a correlation between the data and classify it into
different groups.

3) Reinforcement Learning: Reinforcement learning fo-
cuses on studying the problems and techniques that try
to improve its model. It has a unique model training
method, it uses trial and error and reward functions. It
monitors the results of its output and calculates a value
called ”value function” using the reward. According to
this value, the model knows the accuracy of its decision
and adapts itself accordingly.

B. FRAMEWORK OVERVIEW

To cope with the different security problems associated with
IoT systems, we propose a security framework combining
SDN, NFV and ML, depicted in Figure 1. While Figure
1(a) shows the components and their interactions in the
proposed security framework, Figure 1(b) shows the closed-
loop automation proposed in this paper from monitoring and
detection to attack mitigation. The proposed system provides
comprehensive security by integrating the countermeasures
and enablers discussed in the previous subsections. This
framework allows the enforcement of security policies, from
their design to their deployment and maintenance.

As depicted in Figure 1(a), the framework consists of
two main layers: i) Security Orchestration Plane; i) Security
Enforcement Plane. In what follow, we will describe these
two planes, as well as their inter and intra communications
for ensuring the closed loop automation for detecting and
mitigating different threats

1) Security Enforcement Plane

The communication between the IoT devices and end-users
happens thanks to different VNFs deployed on different
clouds and edges and physical network functions (PNFs).
The communication between these network functions (i.e.,
VNFs and PNFs), IoT devices and end-users happens via
legacy network or SDN-based network. In IoT domain, we
distinguish between two types of attacks, which are internal
and external attacks. While the latter is launched at the
end-user (i.e., external) network towards the IoT domain
(i.e., internal) network, the former happens due to malicious
and intruder IoT devices. The latter generates attacks either
towards other legitimate IoT devices and/or the external
network. Mainly, the attacks would be mitigated at the level
of: i) The IoT devices by leveraging IoT controllers; ii)
The network level by leveraging SDN controllers; iii) The
cloud/MEC level by leveraging NFV orchestrator.
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(a) General Architecture of the Framework (b) Closed-loop Automation: From Detection to Mitigation

FIGURE 1. Proposed Framework Main Overview

The security properties defined by the framework should
be appropriately enforced within the IoT domain, by deploy-
ing security VNFs and configuring the connectivity via SDN
networking. The security enforcement plane is designed to
be fully compliant with SDN/NFV standards, as specified by
ETSI NFV and ONF (Open Networking Foundation) SDN
specifications, respectively. The envisaged security enforce-
ment countermeasures will involve three logical blocks as
depicted in Fig. 1(a).

VNF Block: accounts for the VNFs deployed over the
virtualization infrastructure to enforce security using differ-
ent network services. Specific attention will be addressed
to the provisioning of advanced security VNFs (such as
virtual firewall, IDS/IPS, etc.) that should be able to provide
the protection and threat countermeasures requested by the
security policies.

Control and Management Block: considers the compo-
nents required to manage both SDN and NFV environments.
To this objective, it includes the ETSI MANO stack modules
and SDN controllers. Since NFV is usually combined with
SDN to programmatically adjust the network according to the
resources and policies, tight interaction is expected between
the NFV orchestrator and the SDN controllers to enable the
deployment of appropriate security functionalities.

Infrastructure Block: comprises all the physical ma-
chines capable of providing computing, storage, and net-
working capabilities to build an Infrastructures as a Ser-
vice (IaaS) layer by leveraging appropriate virtualization
technologies. This plane also includes the network elements
responsible for traffic forwarding, following the SDN con-
troller’s rules, and a distributed set of security probes for data
collection to support the monitoring services.

Monitoring Agents: are mainly responsible for reporting
network traffic and IoT behaviors for detecting different at-
tacks. The detection mechanism, in the proposed framework,
can be either using network patterns or IoT misbehavior.

They will be aware of all the traffic flowing through the net-
work thanks to the traffic mirroring done through SDN. Each
monitoring agent sends the logs containing the description
of the relevant suspicious activities to the AI-based reaction
agent hosted in the Security Orchestration Plane.

IoT Domain: stands for the SDN-enabled network of
physical devices varying from security cameras, tempera-
ture sensors, home appliances to any other smart devices
exchanging data. Accounting for the high vulnerability of
these devices, our framework aims to enforce the security
policies in this domain in order to ensure data privacy and
integrity.

2) Security Orchestration Plane
This plane is responsible for the run-time configuration of the
security policies and their context-aware refinement based on
up-to-date monitoring data. It is an innovative layer of our
architecture and responsible for enforcing relevant security
policies into the IoT domain by making the relevant requests
to the Security Enforcement Plane. This includes instanti-
ating, configuring and monitoring different virtual security
enablers in order to cope with the current attack.

The main interactions can be seen in the diagram de-
picted in Figure 2 that summarizes the different interactions
between the component of our framework. As depicted in
Figures 1(b) and 2, a closed loop automation mechanism is
proposed in this paper starting from the monitoring agent, AI
based reaction agent to the security Orchestrator. The latter
mitigates the threats via IoT controller, SDN controller and
NFV Orchestrator, respectively.

AI-based Reaction Agent: This component is responsible
for dictating the mitigation actions to be taken by the Security
Orchestrator. As depicted in Figure 1(b) and the first block
in Figure 2, this component uses the data collected from the
network and IoT domains thanks to the monitoring agent.
This component uses a trained machine learning models
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FIGURE 2. Overview of the interactions between the components of the AI-based Security Framework for IoT Systems

based on network patterns and IoT behaviors for detecting
threats. These machine learning models will be able to dictate
the appropriate security policy template that should be sent
to the security orchestrator. As depicted in Figure 1(b) and
second block in Figure 2, the security threats are detected
based on IoT behaviors and/or network patterns. Then, the
threat level (Each level -L1, L2,L3,L4,L5- corresponds to a
pre-defined security policy), would be identified and sent to
the security orchestrator.

As depicted in Figure 1(b), AI based reaction agent
uses different Machine learning Algorithms, including J48,
Byes Net, RandomForest, Hoeffding, support vector machine
(SVM) and deep learning, for detecting different attacks
related IoT behaviors and/or network patterns. More infor-
mation about the implementation of this component would
be provided in section IV.

Security Orchestrator: This component is one part of
the closed-loop automation that is accountable for enforcing
the security policies defined by the AI Reaction Agent. It
interacts with the Control and Management Block in order
to enforce the relevant security policies using SDN and NFV
in the IoT domain. As depicted in the third block in Figure
2, the security orchestrator proceeds either by instantiating,
configuring and then monitoring virtual security appliances
or manipulating the malicious traffic using SDN or even
taking direct actions on the IoT devices themselves, such as
turning off a compromised device. The Security Orchestrator

also houses a System Model database which contains all the
information related to the data plane and enforced policies,
such as the reaction agent requests, SDN controllers and
switches, current running VNFs along with their configura-
tion and IoT device related information as well.

C. IMPLEMENTATION TOOLS

In this sub-section, we carry out an assessment study for the
potential implementation of our proposed solution. To this
aim, we provide an overview of the envisioned open source
projects that are used for enabling the suggested framework.

1) ONOS SDN Controller

ONOS (Open Network Operating System) is an open source
project that aims to create an SDN operating system for
communications and service providers. It is well known
for its high performance, scalability and high availability.
It uses standard protocols, such as OpenFlow and NetConf
in order to expose advanced traffic manipulation functions
through its applications. These applications provide a high
level of abstractions while giving detailed information about
the network, such as existing nodes, the number of packets
of a certain traffic and existing links, making application
development much simpler.
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2) ETSI Open Source MANO (OSM)
OSM is an NFV Orchestrator that was officially launched
at the World Mobile Congress (WMC) in 2016, founded by
Mirantis, Telefnica, BT, Canonical, Intel, RIFT.io, Telekom
Austria Group, and Telenor. It is compliant with the ETSI
NFV MANO reference architecture and offers support for
multi-cloud and SDN vendors support (OpenStack, AWS,
ONOS, Opendaylight..). It is comprised of three basic com-
ponents:

• The Service Orchestrator (SO): responsible for end-to-
end service orchestration and provisioning, it offers a
web interface and a catalog which holds the different
NFV descriptors.

• The Resource Orchestrator (RO): is used to provide ser-
vices over a particular IaaS provider in a given location.
It interacts directly with the VIM in order to instantiate
virtual resources

• The VNF Configuration and Abstraction (VCA): per-
forms the initial VNF configuration and constant moni-
toring using Juju Charms LXD containers.

IV. AI-BASED REACTION AGENT IMPLEMENTATION
AND PERFORMANCE EVALUATION
This section provides the experiment setup and the evalu-
ation analysis of AI based reaction agent (detailed in sub-
section III). AI based reaction agent detects the threats by:
i) Analysing the network patterns as presented in subsec-
tion IV-A. A knowledge-based intrusion detection frame-
work is proposed for detecting different network attacks;
ii) Analysing the anomaly behaviors in the IoT system as
explained in sub-section IV-B. In this subsection, the cyber-
attacks are detected based on the analysis of anomaly behav-
iors in the IoT system.

We have used supervised learning algorithms in order
to accurately classify the level of the attacks and correctly
choose the appropriate security templates. Using the relevant
inputs from the monitoring agents, the AI-based reaction
agent will make use of multiple machine learning techniques
in order to mitigate a given threat.

A. NETWORK PATTERNS ANALYSIS
The evaluation of an intrusion system is a primordial step
towards proving the efficiency of the framework. There
are several data sets widely used for this purpose, such as
DARPA [29], KDD99 [30] and DEFCON [31]. We build IDS
based on NSL KDD dataset that contains more than twenty
attacks, such as Neptune-dos, pod-dos, smurfdos, buffer-
overflow, rootkit, satan, teardrop, etc. The NSL KDD is an
improvement of the original dataset Kdd99 that suffers from
significant problems that may lead to inefficient evaluation
of an IDS. Based on a work done on [32] the new NSL
KDD dataset solved several serious problems, in which it
eliminates about 77 of redundant records. For this reason, to
design our AI-based reaction agent, we have used NSL KDD
dataset.

TABLE 1. Cost Matrix for NSL-KDD dataset [36]

DoS U2R U2L Probe Normal

DoS 0 2 2 1 2
U2R 2 0 2 2 3
U2L 2 2 0 2 4

Probe 2 2 2 0 1
Normal 2 2 2 1 0

In order to perform the evaluation of the IDS based on
NSL-KDD dataset, we use a pre-processing and visualization
data mining tool called Weka. Weka is used to perform clas-
sification of the training sample. The KDD dataset contains
125943 connection and 41 features, in which each sample
belongs to one of the following attacks: Denial of Service
Attack (DoS), User to Root Attack (U2R), Remote to Local
Attack (R2L), and Probing Attack.

The variety of attributes nature makes the learning not
possible for some machine learning algorithms. When an
attribute is continuous, it makes the model building difficult.
Hence, the preprocessing step is primordial before building
classification patterns in order to maximize the predictive
accuracy [33]. In particular, a discretization method is em-
ployed to tackle this limitation. The discretization is a data
mining technique that aims to reduce the number of values
of a continuous variable by grouping them into intervals.
In literature, there are two discretization types that can be
applied [34]:

• Static variable discretization: The discretization is per-
formed one variable independently of other variables.

• Dynamic variable discretization: All attributes (vari-
able) are simultaneously discretized.

In addition to the discretization, we also grouped the
attacks in a way to only have the main attack categories
(DDoS, Probe, U2R, R2L).

1) Performance comparison measurements: The evalua-
tion of the intrusion detection system is a fundamental
problem, and it is important to select the metrics that
can describe the strength of the IDS [35]. The per-
formance of an IDS is beyond the classification rate
separately. We evaluate our system based on model ac-
curacy, detection rate, precision and Cost Per Example
(CPE). The following metrics employed together are
essential when measuring the performances.

CPE =
1

N

5∑
i=1

5∑
j=1

CM(i, j) + C(i, j) (1)

Equation 1 represents the Cost Per Example (CPE), for
some works it is referred as Cost-Sensitive Classifica-
tion
(CSC) [37]. It is an important metric in order to find
the cost of misclassification for intrusion detection
system. Where CM is the Confusion Matrix of the
classification model, C corresponds to the Cost Matrix
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TABLE 2. Detailed Precision values for each attack

J48 Byes Net RandomForest Hoeffding Tree

DoS 99.9% 99.9% 100% 99.3%
U2R 70.0% 4.8% 82.1% 11.5%
U2L 97.5% 62.7% 99.3% 35.2%

Probe 99.4% 84.2% 99.9% 98.1%
Normal 99.8% 97.3% 99.9% 95.2%
Time(s) 35.35 6.97 74.94 5.1

Precision 99.8% 96.7% 99.9% 96.4%
FPR 0.2% 1.8% 0.1% 3.3%

Detection Rate 99.8% 95.7% 99.9% 96.8%
CPE 0.47% 6.8% 0.23% 7.46%

TABLE 3. Back-propagation evaluation metrics

DoS U2R U2L Probe Normal Model

Precision 99.1% 0% 81.6% 99.1% 98.7% 98.7%
FPR 0.5% 0% 0.1% 0.1% 1.5% 1.0%

Detection Rate 99.0% 0% 71.5% 98.9% 99.0% 98.7%
CPE - - - - - 2.78%

Time(s) - - - - - 9691.01

represented in Table 1 and N represents the total num-
ber of samples. In the following, we propose different
systems based on artificial intelligence. We evaluate
our systems based on 10-fold cross-validation using an
i5-8350U computer with 16Go RAM.

2) Preprocessing, Feature Selection and Classification:
Initially, we propose a first approach that consists of
preprocessing then classifying the whole dataset using
different algorithms (J48, Bayes Net, Random Forest,
and Hoe ding Tree). Then, we have selected the best
Algorithm that gives us better performences.

3) Back-propagation technique: In the following, we ex-
plore a technique based on a multilayer neural net-
work using a backpropagation learning algorithm. The
multilayer neural network consists of three layers. The
first layer is the input layer contains 41 inputs (data-set
features). The last layer provides the classification an-
swers (Dos, Probe, U2R, R2L, Normal) and additional
hidden layer used for the learning process.
In this technique, we consider one hidden layer and 100
neurons. These parameters are obtained by experience,
as other values of the number of hidden layer and
the number of neurons, did not seem to show any
significant improvements in terms of Mean Squared
Error (MSE).

4) Distributed classification system: In the following, we
present a distributed classification system in which we
assign each attack category (DDoD, Probe, R2L, and
U2R) to JRip algorithm. Then, the obtained models are
merged adopting AdaBoost algorithm.

5) Results discussions:
The results presented in table 2 show that the random
forest Algorithm performed well in terms of overall
accuracy and model precision. Though, it shows a
very low precision for U2R and R2L attacks. J48
detects attacks with very good accuracy and low miss-

TABLE 4. AdaBoost evaluation metrics

DoS U2R U2L Probe Normal AdaBoost

Precision 100% 76.9% 99.1% 99.9% 99.9% 99.8793%
FPR 0% 0% 0% 0% 0.2% 0.1%

Detection Rate 100% 57.7% 96.7% 99.6% 99.9% 99.9%
CPE - - - - - 0.26%

Time(s) - - - - - 193.6

TABLE 5. Results comparison with previous work

Accuracy Detection rate FPR Training Time

L-SSVM [38] 92.29% 92.2% 0.41% -
DMM [39] 97.8% 97.8% 2.5% -
TANN [40] 96.91% 97.8% 2.5% -
DBN [41] 97.45% - - 3.2 sec
RNN [42] 99.53% 97.09% 3.6% 5516 sec
DNN [43] 75.75% 75% 15% -

E-DNN [44] 92.49% 98% 14.7% -
DFF-NN [45] 98.6% 99% 1.8% 398 sec

DL [46] 98% 71% - -
SVM-DR [46] 97.61% 97.27% - -

Our Approach1 99.8% 98.8% 0.2% 35.35
Our Approach2 98.7% 98.7% 1.0% 9691.01
Our Approach3 99.9 % 98.9% 0.1 193.6

classification rate (or CPE). Nevertheless, J48 is not
efficient in terms of precision for the U2R attacks.
Hoeffding tree algorithm shows stable performance,
but it also suffers from low precision for U2R attacks.
In particular, Bayes Net algorithm shows the worst
results as it could not recognize mostly U2R attack
despite the good model accuracy.
The back-propagation system shows a slight improve-
ment comparing to the previous approaches in terms
of accuracy, precision (Table 3). However, the cost of
misclassified is a little bit high as for the processing
time.
AdaBoost (Table 4) obtained an enhanced model in
terms of detection accuracy, detection rate and the Cost
per Example (CPE).

6) Comparative Study: Table 5 shows the performance
results. Compared to the previous systems, this system
obtained an enhanced model in terms of detection
accuracy, precision, detection rate and the Cost per
Example (CPE).
We conducted a comparison with recent works based
on the accuracy, the detection rate, the false posi-
tive rate, and the CPE if provided. Recent works are
summarized in Table 5. The comparison results illus-
trate that our system based distributed JRip algorithm
and ensemble method is the best while the results of
our other systems are also promising. Those systems,
namely, the Filter-based Support Vector Machine (F-
SVM) [38], Dirichlet Mixture Model (DMM) [39], Tri-
angle Area Nearest Neighbors (TANN) [40], Deep Be-
lief Networks (DBN) [41] , Recurrent Neural Network
(RNN) [42], Deep Neural Network (DNN) [43], [45],
[46] , Ensemble-DNN [44], Support Vector Machine
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based Dimensionality Reduction [47].

B. ANOMALY-BASED INTRUSION DETECTION
This part describes the implementation and evaluation carried
out in order to demonstrate the feasibility and accuracy of our
AI framework to detect cyber-attacks based on the analysis
of anomaly behaviors (uncommon sensor data values) in IoT
system. The proposed AI framework leverages the tempo-
spatial correlation between different sensor data for detecting
the threats. Uncommon sensorized values indicate that the
IoT device reporting the values might be under attack, e.g.
infected by some malware, or being impersonated a through
man-inthe-middle. Concretely, our IA-based framework de-
tects the IoT devices malfunctioning, and enforce a reaction
countermeasure accordingly. Although it is out of the scope
of this paper, for the sake of completeness, it is worth
mentioning that our framework when deployed in the smart
building testbed scenario, enforces a mitigation plan that 1)
re-configures the vAAA (virtual authentication agent), 2)
enables a vChannelProtection to establish secure DTLs com-
munications, 3) enforces new traffic filtering rules with SDN
to drop malicious traffic, and 4) optionally turns-off and/or
flashes the IoT device. These reaction countermeasures are
being implemented and evaluated in the scope of Anastacia
EU project [26], [48], [49], and are beyond the scope of
this paper, which focuses on evaluating the machine learning
mechanisms to detect the cyber-attacks in IoT systems.

1) Data Collection: The dataset adopted in our work ob-
tained from real sensor data of four different rooms in
our smart building testbed. We observed the measure-
ments of temperature and CO2 for each room every 2
minutes for a duration of one month. The dataset is
described with the attributes (ID, Room, SensorVal-
ueCO2, SensorValue Temperature, Class (Optional))
and it contains measurements of 67876 samples con-
siderd as normal values. We have built a model per
sensor that includes co2 and temperature. Fig. 1 depicts
the distribution of sensor data per room. We notice
that the co2 values are different for each room on the
other hand, temperatures are in the same interval in all
rooms, so the same model could work for all of them.
We could also use the first room for training while the
others for testing.

2) datasets:

• Single value data-set (SV): A simple data set for
the generated values, it represents only the cap-
tured value and the time as features.

• Previous five values (P5V): This approach cap-
tures the temporal correlation between the mea-
sured sensor data. Since the temperature is con-
textual, this data set includes context of previous
values with features in different datasets from the
single value data-set [date, value]. In order to keep
things clear and limit criteria, we have used only
the room 1 dataset. This dataset includes the 5

FIGURE 3. instance distribution by sensor

previous values for each value [date, value, value
precedent , value 2nd precedent , .. , value 5th
precedent]. We have also noticed that there is a
strong correlation between these values.

• Previous different three values (PD3V): Similar
to the previous approach, this approach leverages
the time correlation between the gathered sensor
data. This approach aims to prevent the repetition
by considering only the last three different values
each time [date, value, value different precedent,
2nd different precedent, 3rd different precedent]

• Cross rooms: Since there is a correlation in the
sensing data in all the rooms, in this approach,
we have considered this correlation by combining
the room values for detecting the anomalies. By
leeveraging this dataset, we combine the rooms
values which mght improve the accuracy, cossing
the 4 rooms ends up with the data set below: [date,
room 1 , room 2, room 3, room 4, label].

3) One class-SVM model: In order to construct a model
able to well recognize anomalies in the dataset, we
target the one-class support vector machine, which was
implemented and adapted using the library of python
Scikit-learn. Our proposed anomaly-based IDS model
consists of four phases. Firstly, the dataset is prepro-
cessed and cleaned. The second step consists of data
discretization, which consists of transforming the time-
series from continuous values to discrete intervals. The
latest phase applies the learning algorithm gird search
step is applied for classification. For the temperature
dataset, we split the first room values for training and
the second one for the testing. Based on the observation
that there is a spatial correlation only for temperature
data, we omit to test the model generated of CO2 data
with another room. For this reason, we evaluate the
learning models based on the detection accuracy 33%
from the training dataset.

4) Results and comparison: The results obtained from
temperature values show that the SV and P5V perform
better than the other features combination in terms of

VOLUME 4, 2016 9



Bagaa et al.: A Machine Learning Security Framework for IoT Systems

TABLE 6. Temperture training using OC-SVM results

trining dataset/ test split 33% Room2

SV 99.71% 92.52%
P5V 99.71% 87.34%

PD3V 99.28% 86.51%
cross rooms 99.23% -

TABLE 7. CO2 training using OC-SVM results

trining dataset/ test split 33%

SV 98.86%
P5V 99.24%

PD3V 99.13%

detection accuracy where 98.86% of detection accu-
racy is achieved. However in the CO2 case p5V data
set achieved 99.24%.

V. CONCLUDING REMARKS AND OPEN RESEARCH
CHALLENGES
IoT systems are expected to revolutionize our everyday life
in the near future. Among the potential value-added features,
the provisioning of on-demand security measures represents
a breakthrough in facing the explosion of cybersecurity at-
tacks. In this paper, we have investigated the most common
threats to IoT systems. Then, we have provided a list of
promising technologies and designed a security framework to
integrate them in a comprehensive way. Indeed, we strongly
believe that the joint use of SDN, NFV and machine learning
solutions can enable a holistic security system able to enforce
the requested security policies. We have also provided a study
that proves the feasibility of our AI-based security frame-
work, which combines both, knowledge-based intrusion de-
tection and anomaly-based intrusion detection. On one hand,
regarding knowledge based detection, three different systems
used for the evaluation of framework based on NSL KDD
dataset:

1) System based classification algorithm,
2) Distributed attack rule-association based JRip algo-

rithm, and,
3) Backpropagation technique, in which we performed

several preprocessing techniques, such as the dis-
cretization. The obtained results are very promising, in
which the evaluation metrics allowed us to well evalu-
ate the framework and take in consideration the effect
of wrongly classified attacks. On the other hand, our
framework integrates an IDS for anomaly detection in
sensor data adopting One-Class SVM achieved higher
than 98% of detection accuracy for most of data set
combinations proposed.

In the following, we describe some additional research
challenges that are envisaged to be addressed by our se-
curity framework. Firstly, we are tackling the challenge
of defining standardized interfaces to ease the interactions
among the envisioned framework modules, including com-

mon languages to specify the IoT security policies needed
to react according to the AI-based decisions. Secondly, as
the IoT landscape is continuously evolving, the AI-system
will need to be autonomously reconfigured in order to deal
with additional emerging (and potentially unknown) IoT
cyber-attacks, which do not follow previous network/systems
signatures and patterns. Thirdly, another challenge deals with
machine learning methods and algorithms that can be used
by the reaction agent in order to dynamically planning the
best countermeasure(s) to enforce according to different con-
texts. Finally, we also remark that ensuring a certain level
of security involves additional resource consumption and
potential performance degradation; therefore, the trade-off
between security requirements and Quality of Service should
be deeply examined within the reaction module.
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