
Self-Sustaining Multiple Access with Continual
Deep Reinforcement Learning for Dynamic

Metaverse Applications
Hamidreza Mazandarani, Masoud Shokrnezhad1, Tarik Taleb1, and Richard Li2

1Oulu University, Oulu, Finland; 2Futurewei Technologies, USA
hr.mazandarani@ieee.org; {masoud.shokrnezhad, tarik.taleb}@oulu.fi; richard.li@futurewei.com

Abstract—The Metaverse is a new paradigm that aims to
create a virtual environment consisting of numerous worlds,
each of which will offer a different set of services. To deal with
such a dynamic and complex scenario, considering the stringent
quality of service requirements aimed at the 6th generation of
communication systems (6G), one potential approach is to adopt
self-sustaining strategies, which can be realized by employing
Adaptive Artificial Intelligence (Adaptive AI) where models are
continually re-trained with new data and conditions. One aspect
of self-sustainability is the management of multiple access to
the frequency spectrum. Although several innovative methods
have been proposed to address this challenge, mostly using
Deep Reinforcement Learning (DRL), the problem of adapting
agents to a non-stationary environment has not yet been precisely
addressed. This paper fills in the gap in the current literature
by investigating the problem of multiple access in multi-channel
environments to maximize the throughput of the intelligent agent
when the number of active User Equipments (UEs) may fluctuate
over time. To solve the problem, a Double Deep Q-Learning
(DDQL) technique empowered by Continual Learning (CL) is
proposed to overcome the non-stationary situation, while the en-
vironment is unknown. Numerical simulations demonstrate that,
compared to other well-known methods, the CL-DDQL algorithm
achieves significantly higher throughputs with a considerably
shorter convergence time in highly dynamic scenarios.

Index Terms—Metaverse, 6G, Self-Sustainability, Non-
Stationary, Multiple Access, Media Access Control (MAC),
Adaptive AI, Continual Learning (CL), Deep Reinforcement
Learning (DRL), Double Deep Q-Learning (DDQL).

I. INTRODUCTION

The Metaverse is regarded as an advanced stage and the
long-term vision of digital transformation that promises the
creation of a 3-dimensional online virtual environment similar
to the physical world [1]. This paradigm is expected to succeed
the Internet in revolutionizing novel ecosystems of service
provisioning in all walks of life (e.g., in extended reality,
teleportation, unmanned mobility, and e-commerce), bringing
even more challenges to the development of future wireless
networks, which are already aimed at providing microsecond-
level latency, bounded jitter, multi-gigabit-level throughput,
extremely high reliability, and extremely low energy con-
sumption [2]. Given that the Metaverse environment will be
comprised of a variety of worlds, each of which will provide
different types of services, such quality standards need to be
maintained in light of the fact that the Metaverse environment
is constantly subject to change.

To face such highly dynamic environments where effective
decisions must be made on a microsecond basis, various
new paradigms have been introduced [3], [4]. As a potential
strategy, one such paradigm is to employ mechanisms aiming
to deliver ”self-sustainability” as one of the driving factors
toward the 6th generation of wireless communication systems
(6G) [5]. A self-sustaining network maintains its efficiency
and effectiveness despite variable conditions. Unsurprisingly,
a solution that fits well with the concept of self-sustaining
networks is Adaptive Artificial Intelligence (Adaptive AI),
where the mindset of once-in-a-lifetime train models has been
transformed into a new mindset in which models are contin-
ually re-trained with new data and conditions. It is expected
that Adaptive AI will be one of the most important enablers
to facilitate the provision of emerging services, including
Metaverse applications [5], and Gartner refers to it as one
of the strategic technology trends in 2023 [6].

Controlling multiple access to the frequency spectrum is
one of the aspects of the self-sustaining feature that exists in
6G. In this scenario, a set of ever-fluctuating User Equipments
(UEs) compete with one another for access to one or multiple
frequency channels. Because these UEs are mobile and can
be moved constantly from one access point to another at high
speeds and frequencies, the number and type of them that have
data to transmit over the frequency spectrum may vary over
time. In addition, the traffic pattern might shift, either within
a single UE from one moment to the next or across multiple
UEs in terms of the active services seeking connection. The
conditions of channels can change as well, influenced by a
wide variety of noise sources and other environmental circum-
stances. Therefore, in order to realize future self-sustaining
wireless networks, adaptive multiple access algorithms are
essential.

In recent years, Deep Reinforcement Learning (DRL) has
been leveraged for adaptive multiple access to the frequency
spectrum. For instance, Yu et al. [7] adopted DRL to design
a Media Access Control (MAC) protocol without assuming
the protocol of other coexisting UEs. They considered a
heterogeneous environment with a slotted uplink channel. The
same authors extended their work to non-uniform scenarios, in
which channel sensing requires one time slot but information
packet transmission requires multiple time slots [8]. Jadoon
et al. [9] utilized DRL to optimize both throughput and



packet age. Their research is compatible with machine-type
communications on the assumption that the UEs are not
saturated. Doshi et al. [10] formulated the coexistence of
multiple base stations over a shared channel, optimizing the
signal-to-interference-plus-noise ratio of UEs. Besides, Guo
et al. [11] developed a solution for multi-agent scenarios to
support delay-sensitive requests.

Although innovative techniques have thus far been pro-
posed, the problem of adapting agents to a non-stationary
environment has not been addressed. Since DRL cannot
reuse previously learned knowledge, adapting to every change
could be time-consuming, depending on the distance between
context transitions. Therefore, the aforementioned approaches
cannot be used in Metaverse scenarios considering their highly
dynamic nature. This paper fills in the gap in the current
literature by investigating the problem of multiple access in
non-stationary, multi-channel, unknown environments in order
to maximize the throughput of the intelligent agent by avoiding
collisions with incumbent users. The non-stationarity is caused
by intermittent changes in the set of active UEs. To solve
the problem, a Double Deep Q-Learning (DDQL) technique
empowered by Continual Learning (CL) is proposed, exploit-
ing prior knowledge acquired throughout the agent’s lifetime.
Although a number of tools have been proposed to overcome
non-stationary situations [12], CL is the approach concerned
with the adaptation of DRL-based agents [13].

The remainder of this paper is organized as follows: Section
II introduces the background of DRL and CL. The system
model and proposed approach are presented in Section III. Fi-
nally, numerical results are illustrated and analyzed in Section
IV, followed by concluding remarks in Section V.

II. BACKGROUND

A. Double Deep Q-Learning (DDQL)

In Reinforcement Learning (RL), as a subset of machine
learning techniques, an agent learns through trial and error how
to optimize a given decision-making problem. The designer
of the system specifies the reward function regarding the
predefined design goals, and by learning and following the op-
timal strategy, the agent will maximize cumulative discounted
rewards starting from any initial state. Q-Learning is probably
the most recognized among the different algorithms introduced
for model-free RL problems [14]. Each state-action pair is
assigned a numeric value in Q-Learning, known as the Q value,
and this value is gradually updated by the following equation,
which is the weighted average of the old value and the new
information, that is

Q(sτ , aτ ) += σ[Y QL
τ −Q(sτ , aτ )], (1)

where sτ and aτ are the agent’s state and action at time slot
τ respectively, σ is a scalar step size, and Y QL

τ is the target,
defined by

Y QL
τ = rτ+1 + γ maxa∈AQ(sτ+1, a), (2)

Environment

Evaluation
Network

Target
Network

Experience 
Memory

𝑎
(𝜃, 𝑎, 𝛽, 𝜃!)

Update Function

(𝜃, 𝑎, 𝜃!)

𝜃! 𝛽

Every 𝑡 steps
Reset 𝑾" with 𝑾

)𝑄𝑄, 𝑎!
Backward 

Propagation
DD

Q
L 

Ag
en

t Environment
Evaluation
Network

Target
Network

Experience 
Memory

𝑎

(𝑠#, 𝑎, 𝑟#$%, 𝑠#$%)

Update Function

(𝑠#, 𝑎, 𝑠#$%)

𝑠#$% 𝑟#$%

Every 𝑡 steps
Reset 𝑾" with 𝑾

)𝑄𝑄, 𝑎!
Backward 

Propagation DDQ
L Agent

Fig. 1. DDQL agent.

where rτ+1 is the reward at time slot τ + 1, γ ∈ [0, 1] is a
discount factor that balances the importance of immediate and
future rewards, and A is the set of actions.

Since the majority of worthwhile problems are too large to
discover all possible combinations of states and actions and
learn all state-action values, Double Deep Q-Learning (DDQL)
is a ground-breaking alternative to approximate them, wherein
1) Deep Neural Networks (DNNs) are used to approximate
Q values, and 2) the selection and evaluation of actions
are decoupled [15]. In DDQL, the state is provided as the
input, and the Q function of all possible actions, denoted by
Q(s, .;W), is generated as the output, where W is the set of
DNN parameters. The target of DDQL is as follows:

Y DDQL
τ = rτ+1 + γ Q̂(sτ+1, a

′,W−
τ ), (3)

and the update function of W is

Wτ+1 = Wτ + σ[Y DQL
τ −Q(sτ , aτ ;Wτ )]∇Wτ

·Q(sτ , aτ ;Wτ ), (4)

where a′ = argmaxa∈AQ(sτ+1, a,Wτ ). In this model, W
represents the set of weights for the main (or evaluation) Q and
is updated in each step, whereas W− is for the target Q̂ and is
replaced with the weights of the main network every t steps.
In other words, Q̂ remains a periodic copy of Q. The DDQL
agent is represented in Fig. 1. To improve the efficiency, the
observed transitions are stored in a memory bank known as
the experience memory, and the neural network is updated by
randomly sampling from this pool.

B. Continual Learning (CL)

In real-world settings, especially in the ever-changing Meta-
verse ecosystem, it is anticipated that the probability transition
function or reward function will change over the lifetime
of the agent. This non-stationarity necessitates a distinction
between training and testing periods. Recent advances in
DRL have demonstrated impressive efficiency in a variety of
tasks, but they frequently pivot around an agent that focuses
on mastering a narrow task of interest. Besides, after any
significant change, RL agents frequently require additional
training to adapt to the new environment, and even after this
training, they lack the ability to generalize to new variations,
even for simple problems. Therefore, dynamic environments
necessitate novel learning mechanisms distinct from other



types of learning (such as meta or multi-task learning). CL
is concerned with the adaptation of the RL agent to the
evolution of these environments over time [13]. In CL, the
system containsM contexts (or tasks) Tm sequentially, where
m ∈ {1, 2, ...,M}.

While catastrophic forgetting (i.e., losing performance on
old tasks after learning new tasks) is a critical issue that
CL seeks to address, interference is another issue that has
yet to be handled. Interference occurs when two tasks have
incompatible (or even contradictory) optimal actions for the
same observation. To effectively manage these challenges,
Kessler et al. [16] proposed an algorithm, named OWL.
This algorithm 1) employs a single network with a shared
feature extractor but multiple heads, parameterized by linear
layers to fit individual tasks; and 2) flushes the experience
replay buffer prior to beginning learning for a new task.
At the time of testing, task selection is approached as a
multi-armed bandit problem in order to adaptively choose the
optimal policy. Additionally, the authors employed the Elastic
Weight Consolidation (EWC) mechanism to prevent forgetting
between tasks. This algorithm slows down learning on specific
weights based on their significance to previously observed
tasks. The OWL algorithm is the foundation of our method,
which is described in the following section.

III. PROPOSED APPROACH

A. System Model

We consider a single small cell covered by a Small Base
Station (SBS) with n ∈ {0, . . . ,N} User Equipments (UEs)
competing over C time-slotted channels (see Fig. 2). Except
for one (i.e., the CL-DDQL agent, or simply the agent),
all UEs periodically transmit their packets using the Time-
Division Multiple Access (TDMA) protocol. For example, a
headset may transmit visual recordings to its control center
every second. The environment is non-stationary due to the
fluctuating number of active TDMA users. Changes in the
number of active Metaverse users can be attributed to a variety
of factors, including users’ mobility and bandwidth-saving
strategies. In the headset example, if the user is inactive, data
may be transmitted every 10 seconds. A context (or task) is
defined as a collection of active UEs with unique identifiers
on specific channels (e.g., UE 0 on channel 1 and UE 1 on
channel 2 would constitute a simple context). Consequently,
context transitions occur when a UE enters or leaves a channel.
It is assumed that the agent is informed of the arrivals and
departures of other UEs via SBS. However, the agent is
unaware of the transmission profiles, so it must learn to coexist
with these UEs.

The agent’s transmissions are independent of SBS to avoid
unnecessary signaling overhead in scheduling grant decoding.
However, it relies on the SBS’s ACK signals issued at the end
of each packet transmission (or channel sensing) to indicate
successful transmission (or channel idleness). The transmis-
sion of control messages is assumed to occur over a separate,
collision-free channel. Similar to Yu et al. [8], we assume
UEs with variable-length packets, where k ∈ {1, ...,K}

TD
M

A

Small Base Station (SBS)

The Agent

DDQL Agent (Fig. 1)

Q Value Approximator (Fig. 3) 

Continual Learning Mechanism
Co

nt
ex

t

CL
-D

DQ
L 

M
ec

ha
ni

sm
 

DDQL Agent

Context 
Management

Observation

Action

Fig. 2. System model.

represents the packet length, as this is more practical than
fixed-size packets [7]. Unlike Yu et al. [8], however, our
approach takes multiple channels into account, making it even
more applicable in high-bandwidth Metaverse environments.
To coexist successfully with other UEs, the objective function
of the agent is to maximize its throughput by utilizing idle
time slots in the channels.

B. Agent Customization

The first step in exploiting an RL agent for a particular
problem is to define the agent’s action, reward, and state
space. We define the action space as set A = {a : (k, c)|k ∈
{1, ...,K}, c ∈ {1, ..., C}}, where a : (0, c) points to sensing
channel c for one time-slot, and a : (k > 0, c) denotes the
transmission of a packet with length k on channel c. Since the
agent is designed to maximize its throughput, the reward is
equal to the length of successfully transmitted packets. In the
case of sensing channel c, the observation set would be O =
{Busy, Idle}, whereas it would be O = {Success, Collision}
in the case of packet transmission. The state of the agent
is the sequence of the most recent H (observation, packet
length, channel) tuples. To further enhance the Q function,
we employ the dueling mechanism in the DDQL agent’s
evaluation network (Fig. 1). Two estimators are utilized in
this mechanism: one for the state value function and one for
the state-dependent action advantage function. The primary
advantage is the ability to generalize learning across actions
without modifying the learning algorithm, which improves
policy evaluation in the presence of numerous actions with
similar values.

The evaluation network mechanism of the DDQL agent is
detailed in Fig. 3. In this module, the state is fed to a Long
Short-Term Memory (LSTM) feature extractor in order to
discover patterns that are consistent across all contexts. After-
wards, two sequences (or streams) of fully interconnected lay-
ers are utilized. The streams are designed to provide separate
estimates of the state value function and the state-dependent
action advantage function, denoted V and V ′, respectively. The
two streams are combined to produce Q values as the final step.
Additionally, to update the Q function, the target function in



Feature 
Extraction 

Layers

Advantage
Layer

Value
Layer

O
ut

pu
t

La
ye

r

Head Layers

Q
 V

al
ue

s

History of
Observations

Common for all Tasks Separate for each task

Environment
Evaluation
Network

Target
Network

Experience 
Memory

𝑎

(𝑠!, 𝑎, 𝑟, 𝑠!"#)

Update Function

(𝑠!, 𝑎, 𝑠!"#)

𝑠!"# 𝑟

Every 𝑡 steps
Reset 𝑾$ with 𝑾

)𝑄𝑄, 𝑎%
Backward 

Propagation DDQ
L Agent

(𝑠!, 𝑎, 𝑠!"#)

LSTM 
Feature 

Extractor

𝑉(𝑠!)

𝑉% 𝑠!, 0,1

𝑉% 𝑠!, 𝐾, 1

𝑉% 𝑠!, 0, 𝐶

𝑉% 𝑠!, 𝐾, 𝐶

Aggregation
Layer

𝑄, 𝑎%

Separate for each task Common for all Tasks

Ev
al

ua
tio

n 
N

et
w

or
k

𝐾 + 1

𝐶

Fig. 3. Evaluation network of DDQL (Fig. 1)

(3) must be transformed due to the non-uniformity of action
lengths:

Y ⋆
τ =

(1− γdτ )

(1− γ) dτ
rτ+1 + γdτ Q̂(sτ+1, a

′,W−
τ ), (5)

where dτ is the length of the action. For actions of length one
(sensing the channel or sending a single time slot packet), (3)
and (5) are obviously equivalent. However, future time slots
are discounted for larger packages.

C. CL Mechanism

To accommodate the non-stationary nature of the envi-
ronment, the proposed DDQL agent should be modified to
remember previously learned contexts and rerun the training
procedure for new contexts. In order to accomplish this, a CL
mechanism is proposed and detailed in Algorithm. 1. In this
algorithm, T represents the lifetime of the agent, whereas ϵ′

and ϵ̃ are small positive integers used to control the ϵ-greedy
mechanism. Through each step, if the agent is informed of
a new context (ϕ) by SBS, it saves the current experience
memory and weights before examining the recorded contexts
(Ω). If ϕ has been viewed previously, its experience memory
and weights are loaded again. Otherwise, these parameters and
ϵ reset after step 1. Following this, the reward and observation
are collected and used to update the weights via the experience
memory. Note that the action in each iteration is chosen by
the ϵ-greedy policy that follows the evaluation function of the
corresponding agent with probability (1 − ϵ) and chooses a
random action with probability ϵ. During the training process,
the probability decreases linearly from ϵ to ϵ̃.

IV. EVALUATION

Within this section, a numerical analysis into the effec-
tiveness of the proposed CL-DDQL method is conducted.
The hyper-parameters and configurations are listed in Table
I. In order to test the efficacy of our strategy, we carried
out a series of experiments on a computer running a 64-bit
operating system that was equipped with 16 NVIDIA Tesla

Algorithm 1: CL-DDQL
Input: T , ϵ′, and ϵ̃

1 Ω← ∅, W ← 0, W− ← 0, ϵ← 1, memory ← {}
2 for each τ in [0 : T ] do
3 if new context ϕ is announced then
4 save the current context memory and weights
5 if ϕ /∈ Ω then
6 Ω← Ω ∪ {ϕ}
7 reset W ,W−,memory, and ϵ
8 else if ϕ ∈ Ω then
9 reload W ,W−, and memory of ϕ

10 ζ ← generate a random number from [0 : 1]
11 if ζ > ϵ then
12 (k, c)← argmaxa∈AQ(sτ , a,W)
13 else
14 select a random (k, c) from A
15 transmit the packet, and get Oτ and rτ+1

16 calulate sτ+1

17 memory ← memory ∪ {(sτ , (k, c), rτ+1, sτ+1)}
18 choose a sample form memory, and train the agent
19 if ϵ > ϵ̃ then
20 ϵ← ϵ− ϵ′

V100 Graphics Processing Units (GPUs) and 10 gigabytes
of Non-Volatile Memory express (NVMe) storage. PyTorch
was utilized to effectively implement both the evaluation and
target networks. In each experiment, comparisons are made
between the CL-DDQL, DDQL, and Random algorithms.
The only difference between DDQL and CL-DDQL is that
the CL-DDQL agent has a context management mechanism,
whereas the DDQL algorithm lacks remembrance, so each
announced context appears to be new to it. Finally, the Random
agent transmits a packet that has a random length over a
random channel. This will be accomplished without any prior
knowledge or any specific adjustments being made to the
configuration.

To compare algorithms, we use three metrics: normalized
agent throughput, collision rate, and convergence time. The
normalized agent throughput is computed by summing the
length of the packets successfully transmitted over the last
1000 time slots (excluding headers) and dividing it by the
maximum achievable throughput sum within the same window.
The collision rate is the ratio of collision observations to
total observations in the last 1000 time slots. Time between
the occurrence of a context change and when the agent’s
throughput reaches a steady state is the convergence time. All
metrics are averaged over 10 simulation rounds. In the first
scenario, we establish fixed context transition points and fixed
context specifications in order to better illustrate the efficacy
of our strategy. Then, in the second scenario, we evaluate
our scheme in a more realistic setting by assuming stochastic
transition points and context specifications.



TABLE I
TRAINING CONFIGURATION.

Parameter Value
Maximum packet length (K) 10 time slots

Packet header size 0.5 time slot
State size (H) 20 experiences

Capacity of experience memory 1000 experiences
Batch size 32

Learning rate 0.001
Exploration parameters ϵ̃, ϵ′ 0, 0.005

Approximator model LSTM with 64 units +
fully connected with 32 units

Training frequency Each time slot
Target network update frequency Every 20 steps

TABLE II
SCENARIO 1: UE PROFILES.

UE ID Profile (k, τ, f, c) Period
1 (3, 0, 8, 0) [0: T /4] and [3T /4: T ]
2 (4, 3, 8, 1) [0: T /4] and [3T /4: T ]
3 (4, 0, 9, 0) [T /4: T /2]
4 (2, 4, 9, 1) [T /4: T /2]
5 (4, 0, 9, 1) [T /2: 3T /4]
6 (2, 4, 9, 0) [T /2: 3T /4]

A. Scenario 1: Fixed Change Points

In this scenario, it is assumed that context transitions occur
at specific times, as outlined in Table II. (k, τ, f, c) identifies a
TDMA UE that transmits a packet of size k beginning on the
τ -th time slot of each frame of size f on channel c. Clearly, the
first and final quarters of the simulation take place in the same
context; therefore, the CL-DDQL agent should utilize its prior
knowledge of the first context when encountering it again.
Fig. 4 verifies that the CL-DDQL agent possesses the required
backward transfer capability for non-stationary environments.
In addition, the agent utilizes its forward transfer capability
when confronted with novel contexts. Despite the fact that
the second and third contexts are distinct from the first, the
pre-trained feature extractor enables the CL-DDQL algorithm
to converge significantly more quickly than the conventional
DDQL algorithm. In addition, the figures reveal that DDQL
has greater variations in all metrics, which is highly unde-
sirable in wireless networks. Evidently, Random, the method
with the lowest complexity, is also inefficient.

B. Scenario 2: Stochastic Change Points

In this scenario, context shifts occur intermittently. When
a UE arrives on a channel, it remains active at a rate of
1/β according to an exponential distribution. After its depar-
ture, a new UE will replace it. The new UE has a novel (i.e.,
previously unseen) profile with probability P and a repetitive
profile with probability 1 − P . In our simulations, we set P
to 0.5. Moreover, the parameters of UE profiles are sampled
from a set of distributions, namely {U1,4,U4,8,U8,12,U1,C}
respectively, where U represents the Uniform distribution. Two
experiments are defined by hyper-parameters C (number of
channels) and β (mean duration of UE existence in the

network). In the first experiment, the number of channels is
set to 2, but β varies from 20 to 100 percent of simulation
time (and so the duration of contexts varies). In the second
experiment, β remains constant while the number of channels
ranges from 1 to 5.

As Fig. 5 demonstrates, the more frequent the context
transitions (lower values for β), the more continual learn-
ing improves the performance. This is due to the increased
likelihood of encountering repetitive contexts. In addition,
the performance of CL-DDQL is hardly impacted by an
increase in the rate at which contexts are transited, mak-
ing it suitable for the highly dynamic environments of the
Metaverse. Nonetheless, both algorithms perform better in
environments with less variability. For the second experiment,
Fig. 6 illustrates that as the number of channels increases, the
CL-DDQL algorithm becomes marginally more advantageous
than DDQL. Notwithstanding, the performance of the two
algorithms is not significantly impacted by the number of
channels, leading us to conclude that while a greater number
of channels provides more idle time slots for the agent, it also
increases problem dimensions and thus the number of novel
contexts to be explored.

V. CONCLUSION

In this paper, the multi-channel multiple access problem
was investigated while taking into account a non-stationary
scenario in which the number of active UEs might shift over
the course of time. The primary objective was to achieve
maximum throughput while avoiding collisions with existing
users. Initially, we introduced DRL and CL as two Adaptive AI
mechanisms that could aid in the realization of self-sustaining
networks. Afterward, a DDQL-based agent that is empowered
by CL is designed. This agent is in charge of making decisions
regarding spectrum access, such as adjusting a channel and
modifying the length of the packet that needs to be transmitted.
The effectiveness of the suggested agent was proved by the
numerical results. Compared to other well-known methods,
the CL-DDQL algorithm was shown to achieve significantly
higher throughputs with a considerably shorter convergence
time in highly dynamic unknown environments.

As a potential future work, we intend to tackle the problem
by incorporating non-stationary channels with varying state
probability distribution functions. In addition, we plan to
enhance the CL-enabled DDQL-based method for accessing
the spectrum for semantically-aware scenarios in which trans-
mitting a subset of active UEs is sufficient to construct the
parallel near-real-world experience, which could be a game-
changer for bringing the Metaverse into existence by filtering
out redundant data and maximizing the utilization of scarce
communication resources.

ACKNOWLEDGMENT

This research work is partially supported by the Euro-
pean Unions Horizon 2020 Research and Innovation Program
through the Charity project under Grant No. 101016509, the
Academy of Finland 6G Flagship program under Grant No.



N
rm

. T
hr

ou
gh

pu
t

Co
lli

sio
n 

Ra
te

Fig. 4. Normalized throughput and collision rate vs. time slots for CL-DDQL, DDQL, and Random

N
rm

. T
hr

ou
gh

pu
t

Co
lli

sio
n 

Ra
te

Co
nv

er
ge

nc
e 

Ti
m

e

0
0.2
0.4
0.6
0.8
1

0
0.05
0.10
0.15
0.20
0.25

0

50

100

150

20 40 60 80 100

20 40 60 80 100

20 40 60 80 100
Average Active Time of UEs (% Simulation Time)

Fig. 5. Normalized throughput, collision rate, and convergence time vs. the
average active time of UEs for CL-DDQL, DDQL, and Random. The results
are the all-time average of the values.

N
rm

. T
hr

ou
gh

pu
t

Co
lli

sio
n 

Ra
te

Co
nv

er
ge

nc
e 

Ti
m

e

0
0.2
0.4
0.6
0.8
1

0
0.05
0.10
0.15
0.20
0.25

0

50

100

150

1 2 3 4 5

Number of Channels

1 2 3 4 5

1 2 3 4 5

Fig. 6. Normalized throughput, collision rate, and convergence time vs. the
number of channels for CL-DDQL, DDQL, and Random. The results are the
all-time average of the values.

346208, and the Academy of Finland IDEA-MILL project
under Grant No. 352428.

REFERENCES

[1] F. Tang, X. Chen, M. Zhao, and N. Kato, “The Roadmap of Com-
munication and Networking in 6G for the Metaverse,” IEEE Wireless
Communications, pp. 1–15, 2022.

[2] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi,
“Toward 6G Networks: Use Cases and Technologies,” IEEE Commu-
nications Magazine, vol. 58, no. 3, pp. 55–61, Mar. 2020.

[3] M. Shokrnezhad and T. Taleb, “Near-optimal cloud-network integrated
resource allocation for latency-sensitive b5g,” in IEEE Global Commu-
nications Conference (GLOBECOM). IEEE, 2022, pp. 4498–4503.

[4] M. Shokrnezhad, S. Khorsandi, and T. Taleb, “A scalable communication
model to realize integrated access and backhaul (iab) in 5g,” in 2023
IEEE International Conference on Communications (ICC): Wireless
Communications Symposium. IEEE, 2023.

[5] C. D. Alwis, A. Kalla, Q.-V. Pham, P. Kumar, K. Dev, W.-J. Hwang,
and M. Liyanage, “Survey on 6G Frontiers: Trends, Applications,
Requirements, Technologies and Future Research,” IEEE Open Journal
of the Communications Society, vol. 2, pp. 836–886, 2021.

[6] D. Groombridge, “Gartner Top 10 Strategic Technology Trends for
2023,” Tech. Rep.

[7] Y. Yu, T. Wang, and S. C. Liew, “Deep-Reinforcement Learning Mul-
tiple Access for Heterogeneous Wireless Networks,” IEEE Journal on
Selected Areas in Communications, vol. 37, no. 6, pp. 1277–1290, Jun.
2019.

[8] Y. Yu, S. C. Liew, and T. Wang, “Non-Uniform Time-Step Deep Q-
Network for Carrier-Sense Multiple Access in Heterogeneous Wireless
Networks,” IEEE Transactions on Mobile Computing, vol. 20, no. 9, pp.
2848–2861, Sep. 2021.

[9] M. A. Jadoon, A. Pastore, M. Navarro, and F. Perez-Cruz, “Deep
Reinforcement Learning for Random Access in Machine-Type Com-
munication,” in 2022 IEEE Wireless Communications and Networking
Conference (WCNC), Apr. 2022, pp. 2553–2558, iSSN: 1558-2612.

[10] A. Doshi, S. Yerramalli, L. Ferrari, T. Yoo, and J. G. Andrews, “A Deep
Reinforcement Learning Framework for Contention-Based Spectrum
Sharing,” IEEE Journal on Selected Areas in Communications, vol. 39,
no. 8, pp. 2526–2540, Aug. 2021.

[11] Z. Guo, Z. Chen, P. Liu, J. Luo, X. Yang, and X. Sun, “Multi-Agent
Reinforcement Learning-Based Distributed Channel Access for Next
Generation Wireless Networks,” IEEE Journal on Selected Areas in
Communications, vol. 40, no. 5, pp. 1587–1599, May 2022.

[12] S. Padakandla, “A Survey of Reinforcement Learning Algorithms for
Dynamically Varying Environments,” ACM Computing Surveys, vol. 54,
no. 6, pp. 127:1–127:25, Jul. 2021.

[13] K. Khetarpal, M. Riemer, I. Rish, and D. Precup, “Towards Continual
Reinforcement Learning: A Review and Perspectives,” Nov. 2022,
arXiv:2012.13490 [cs].

[14] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3, pp. 279–292, May 1992.

[15] H. v. Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-Learning,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 30, no. 1, Mar. 2016, number: 1.

[16] S. Kessler, J. Parker-Holder, P. Ball, S. Zohren, and S. J. Roberts, “Same
State, Different Task: Continual Reinforcement Learning without Inter-
ference,” Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 36, no. 7, pp. 7143–7151, Jun. 2022, number: 7.


