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Abstract
The past few years have witnessed a remark-

able rise in interest in driver-less cars; and naturally, 
in parallel, the demand for an accurate and reliable 
object localization and mapping system is higher 
than ever. Such a system would have to provide its 
subscribers with precise information within close 
range. There have been many previous research 
works that have explored the different possible 
approaches to implement such a highly dynamic 
mapping system in an intelligent transportation sys-
tem setting, but few have discussed its applicability 
toward enabling other 5G verticals and services. In 
this article we start by describing the concept of 
dynamic maps. We then introduce the approach 
we took when creating a spatio-temporal dynam-
ic maps system by presenting its architecture and 
different components. After that, we propose dif-
ferent scenarios where this fairly new and modern 
technology can be adapted to serve other 5G ser-
vices, in particular, that of UAV geofencing, and 
finally, we test the object detection module and 
discuss the results.

Introduction
The concept of dynamic maps stems originally 
from the foundation of cooperative intelligent 
transport systems (C-ITS), which requires that all 
automated vehicles be connected and aware of 
their surroundings, and have access to static and 
dynamic geographical traffic data.

To better understand where dynamic maps are 
coming from, we need to explore how an intel-
ligent transportation system (ITS) is built. An ITS 
seeks to ensure sustainable transportation, and 
guarantees convenience and mobility to its service 
users. It is structurally built on four layers [1].

Physical Layer: It contains all the components 
that come together to form a transportation envi-
ronment, including pedestrians, vehicles, and infra-
structure. A component of the physical layer is 
identified as an agent that is aware of its surround-
ings, and can alter its behavior and communicate 
with other agents.

Communication Layer: It ensures real-time 
communications between the physical layer ele-
ments. Many research works revolve around this 
ITS layer [2, 3]. These communications can be cat-
egorized as follows:
•	 Fixed point-vehicle communications: between 

vehicles and infrastructures
•	 Fixed point-fixed point communications: 

between infrastructures
•	 Vehicle-vehicle communications: between vehi-

cles
Operation Layer: It collects traffic data from 

road components and stores it to later redistrib-
ute to the physical layer of the concerned vehicles 
through services that are embedded in the service 
layer.

Service Layer: It is where the services that are 
used by traffic agents are deployed.

Several projects and research works have 
shown great interest in the concept of dynamic 
maps, and in attempting to deploy this technolo-
gy to enable automated driving, one of the main 
challenges they have been faced with is the time-
ly and accurate positioning of traffic agents. This 
challenge, however, is the key enabler of dynamic 
maps. By analogy to this idea of a highly dynam-
ic precise mapping system of road components, 
we can reflect on the core functions of unmanned 
aerial vehicle (UAV) geofencing.

Geofencing is a virtual barrier that geographi-
cally traces the different zones in which a certain 
agent can move into and within. It was adapted for 
unmanned aircraft from cattle monitoring, where 
livestock have GPS collars that are programmed 
with map boundaries and send alerts if they leave 
these predefined zones. The idea is that, similar to 
driver-less cars, UAVs would be connected and 
have access to a mapping system that traces these 
virtual boundaries for them. These dynamic-map- 
enabled UAVs can be applied to agriculture by giv-
ing farmers a bird’s-eye view of their fields, and can 
go as far as being used for crop dusting and spray-
ing. In fact, in 2015, the Federal Aviation Adminis-
tration approved Yamaha RMAX as the first drone 
carrying tanks of fertilizers and pesticides to spray 
crops; it weighed over 25 kg.

The remainder of this article respects the follow-
ing structure. The following section covers the state 
of the art of the local dynamic map (LDM). Then we 
describe the architecture and different components 
of our LDM system and introduce in more detail 
our approach to satisfying one of the key enabling 
functions of dynamic maps: the real-time detection 
and classification of objects captured by the LDM’s 
subscribers. Then we discuss the applicability of the 
LDM to better enable other fifth generation (5G) 
verticals beyond driver-less cars. To this end, we start 
by describing some use cases of the LDM in auto-
mated driving and then move on to propose some 
of its use cases for UAV geofencing. Then we pres-
ent the experiments we have performed on the real-
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time object detection system we have implemented. 
These experiments showcase the system’s perfor-
mance with different resources and inputs. The final 
section concludes with possible future works.

Related Work
Despite its implementation remaining a thing of 
the future, the concept of dynamic maps has 
actually been around for nearly a decade. It start-
ed with the SAFESPOT project in 2010, before 
being standardized a few years later, then gaining 
traction after Japan’s 3D maps project. Before 
we delve into what dynamic maps are and what 
they can be used for, we first cover some of the 
research work that has been done on the subject 
over the years.

SAFESPOT Project: SAFESPOT is a research 
project co-funded by the European Commission 
Information Society Technologies. It creates a 
dynamic network where vehicles and road infra-
structure communicate to increase an ITS station’s 
level of awareness of its surroundings, and prevent 
accidents and maximize safety in an automated 
driving setting [4]. It introduces a definition of the 
LDM structure and its Object Model within work 
project 7.3.1 [5].

The first standard came in 2011 in the Europe-
an Telecommunications Standards Institute (ETSI) 
TR 102 863 (V1.1.1) report [6]. It defined the LDM 
as a “conceptual data store” situated within an ITS 
station, and contains topography, location, and sta-
tus data that covers the area surrounding it and 
the other ITS stations contained within it. The sec-
ond ETSI report, the ETSI EN 302 895 (V1.1.0) final 
draft [7] came in 2014 as an extension to the first 
one detailing the processes of the LDM applica-
tion programming interface’s (API’s) functions, in 
particular, those of the management interface, and 
introducing LDM data objects. The International 
Standards Organization (ISO) standards ISO/TS 
17931:2013 [8] and ISO/TS 18750:2015 [9] also 
defined an architecture of the LDM similar to that 
of the ETSI standard.

In 2013, Netten et al. introduced DynaMap 
as an implementation of aan LDM for infrastruc-
ture ITS stations [10]. Instead of serving as a data 
store that is accessible through SQL queries, they 
implemented an information system where data is 
maintained and processed in memory by different 
types of components. Shimada et al. also made an 
LDM implementation in 2015. They based it on the 
specifications defined by the SAFESPOT project 
[11]. They used OpenStreetMap as their source of 
map data. Then they evaluated the performance 
of this LDM implementation while varying the 
number of cars, and the computer environment 
where the application is embedded. In 2016, Japan 
launched a 3D maps project under the support 
of the Japanese government’s Strategic Innova-
tion Promotion Program Innovation of Automated 
Driving for Universal Services (SIP-adus). The proj-
ect aimed to create high-definition 3D maps in an 
effort to equip autonomous vehicles with a dynam-
ic mapping system and have them on the road by 
2020. This concept is similar to what Xu et al. did 
in 2017 [12]. They proposed a system that created 
a  point cloud map using stereo cameras instead 
of LIDAR equipment. Also in 2017, Ravankar et al. 
took a different approach. They proposed a system 
that uses the concept of dynamic maps, combines 

it with vehicle-to-everything (V2X) communications 
in order to create a network between robots that 
enables them to travel through a map and avoid 
obstacles using the data exchanged through the 
network [13]. In fact, these networks play a crucial 
role in enabling automated driving. It was within 
this scope that Zhang et al. introduced their work 
in 2018 to demonstrate that vehicular communi-
cation networks (VCNs) can improve the onboard 
sensing functions of vehicles [14]. They argued 
that this enables them to minimize a vehicle’s blind 
spots and did a case study to showcase how VCNs 
can help with traffic jams.

Our article introduces a system that maps out 
objects in a vehicle’s vicinity not only by location 
but by timestamp as well. It provides its subscribers 
a spatio-temporal view of their map, and enables 
them to access an environment state that could 
have occurred at a previous timestamp.

Dynamic Maps Architecture
Concept and Layers

The LDM has four layers containing different types 
of data that range from static to highly dynamic. 
They are as follows:
•	 Permanent static: Static information provided 

by geographic information systems (GIS) and 
map providers. It includes intersections, points 
of interest (POIs), and roads.

•	 Transient static: This layer contains information 
like lane data, static ITS stations, traffic data, 
and landmarks.

•	 Transient dynamic: In this layer we have the 
semi-dynamic data like road, weather, and traf-
fic conditions or light signal phases.

•	 Highly dynamic: This indicates data like vehi-
cles’ locations and pedestrians’ positions and 
trajectories.

LDM Implementation: System Architecture
Dynamic maps are mainly envisioned to serve 
the autonomous driving vertical. This highly intel-
ligent service allows no room for error. Thus, in 
order for an ITS station to rely fully on the data 
provided by an LDM server to make system con-
trol decisions, the latency by which this data is 
generated and transmitted needs to be minimal. 
To this end, we created a live streaming service 
that would receive real-time feeds from vehicles, 
process them to detect the objects, draw boxes 
around the detected objects, and stream back the 
new frames.

As we can observe in Fig. 1, our system archi-
tecture is distributed on three servers, each provid-
ing specific services.

The Streaming Server: This server is dedicated 
to receiving and broadcasting live streams from 
and to end users (i.e., vehicles). It has two separate 
instances. The first one receives the streams from a 
token authenticated vehicle, verifies its token, then 
triggers the object detection service. The second 
instance receives the generated video frames with 
the bounding box detections and streams it to the 
other vehicles.

The Object Detection Server: This is a GPU 
server. It hosts the object detection service. It 
receives the video frames from the streaming serv-
er instance 1 and runs the object detection. While 
the object detection is running, the service draws 
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the bounding boxes of the detections on the video 
frames, and streams these back in real time. In 
parallel to this process, the object storage service 
sends the detected objects to the LDM API server 
to store them in the database.

The LDM API Server: It hosts three different 
modules:
•	 Authentication module: This module allows the 

users to subscribe to the system, and identify 
themselves through a token that is sent with 
most of the requests that go through the system.

•	 Device tracking module: This module tracks the 
streaming vehicles’ locations and keeps them 
up to date in a real-time database. This module 
is also used to provide a real-time map of the 

streaming devices’ locations.
•	 Data management module: This module con-

nects to the relational database and manages its 
records. It also provides the LDM user interface 
with data for two types of maps. The first is an 
object map, where traffic agents are mapped 
out not only by location, but by timestamp as 
well. This enables the end user to access a map 
state from a previous timestamp and view the 
recorded objects. The second map presents 
the real-time locations of the streaming vehi-
cles and their status (Live/Offline). The user can 
choose to view a live stream with the detected 
objects as it is recorded, or view an older saved 
stream from a previous timestamp.

Real-Time Object Detection: Process Overview
As previously explained, we use two different 
RTMP servers: one that receives the streams and 
triggers the object detection service, and anoth-
er that receives the edited video frames with the 
detected objects and streams them back to the 
end user (Fig. 2).

Once the object detection service receives the 
video streams, it processes them frame by frame, 
extracts the object features, and classifies them 
using a pre-trained model. The object detection 
service uses Tensorflow-GPU with OpenCV. The 
detection is done using the SqueezeDet open 
source model [15]. After detecting the classified 
objects, the service draws boxes around them, and 
specifies their classes and the accuracy percentage 
of each detection. It then transmits the new video 
feed to the other RTMP server, which will in turn 
serve it to the end user.

Applicability
When looking at the functions offered by the LDM, 
we can’t help but draw the link between what this 
technology has to offer and what UAV geofencing 
requires as system functions. But to understand 
how we made the connection between a concept 
that is mainly applied to serve autonomous driving, 
and UAV geofencing, we first go over an example 
of an LDM use case within an ITS.

FIGURE 1. System architecture.

FIGURE 2. Process of the real-time detection and streaming.
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Automated Driving
An autonomous vehicle is defined in a way that 
it would be able to recognize and locate objects 
in its environment, and analyze the collected data 
to be able to steer and navigate with little to no 
human assistance [16, 17]. A driver-less car is 
equipped with many detection tools that enable it 
to sense its surroundings. For our implementation 
we focus on the data collected through the cam-
eras, but other research works have paid closer 
interest in other detection tools, such as LiDAR 
equipment [18].

In Fig. 3 we showcase an example of dynamic 
maps’ application in an automated driving con-
text. As shown, the blue vehicle obscures an area 
in the red vehicle’s line of vision. This area is big 
enough to hide the cyclist. In an LDM setting, both 
vehicles are subscribed to the LDM; the blue vehi-
cle detects the cyclist, then sends a request to the 
LDM API. The Information Management module 
then stores the location of the cyclist in the LDM 
data store. The red vehicle is constantly updating 
its location through the application interface of the 
LDM. Once it enters the close vicinity of the cyclist, 
an event is triggered, and the information access 
module notifies it of the crossing cyclist to engage 
the control system for collision avoidance.

UAV Geofencing
Similar to the way the LDM has been deployed 
to enable automated driving, the services that this 
technology provides can be adapted to enable 
other 5G verticals.

We envision a mobile edge-cloud-based map-
ping system, where UAVs would have access to 
semi-static information like no-fly zones and highly 
dynamic information like other aircraft’s accurate 
positions. The UAVs situated within a certain vicini-
ty would have a dedicated mobile edge-computing 
(MEC) server that would enable them to commu-
nicate their locations with short latencies. Different 
MEC servers could also be connected to a central 
cloud that would allow these UAVs to map out 
zones even outside their vicinity and fly out of it if 
needed (Fig. 4).

In an agricultural setting, farmers could upload 
data that traces the mid-air virtual barriers of a field  
on a map. This data would then be accessible to 
the UAVs that would be used for crop-spraying by 
flying over the pre-specified areas. This technology 
would also enable other farming functions like cat-
tle monitoring. If deployed, an LDM could be the 
solution to the collision avoidance problem and 
would enable many other UAVs use cases, such 
as surveillance and communication recovery [19].

Experiment and Results
In order to make an informed decision on wheth-
er or not this system can be used in a dynamic 
map setting, we tested its performance with differ-
ent instance flavors and different video qualities, 
and recorded the results.

System Performance with  
Different Server Instance Types

We started off by testing the system with differ-
ent object detection server instances that vary 
in memory and processing power. Since we are 
using Tensorflow-GPU for the detection with 
CUDA, we needed a computer with an NVIDIA 
graphic card, so we hosted our services on AWS 
EC2 p2 and p3 instances. Table 1 describes the 
specifications of each instance on which we test-
ed the system.

We ran the object detection service on the  
same video on the aforementioned instance types, 
and measured the average detection latency by 
frame.

We define two measurements:
•	 Detection time: time of extraction of features 

from the video frame
•	 Filtering time: time of classification of the object 

using the pre-trained model
We then recorded the results presented in Fig. 

5a. We noted that there was not a big difference in 
the classification time between the three instances, 
with the p3.8xlarge instance giving the best per-
formance due to its high computational power, 
and with the p2.xlarge instance giving the highest 
average latency with less than a 2 ms difference. 
However, for the feature extraction time (i.e., the 
detection time), we recorded a bigger latency 
on the p3.2xlarge instance than on the p2.xlarge 
instance, despite it being more powerful in terms 
of system resources. The p3.8xlarge instance had 

FIGURE 3. Automated driving use case for dynam-
ic maps.

FIGURE 4. UAVs’ VCN architecture.

TABLE 1. Server flavors.

Instance GPUs
GPU 
memory

vCPUs
Main 
memory

p2.xlarge 1 12 GiB 4 61 GiB

p3.2xlarge 1 16 GiB 8 61 GiB

p3.8xlarge 4 64 GiB 32 244 GiB
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the lowest latency of detection with close to a mil-
lisecond of a difference from that of the p2.xlarge 
instance.

Amazon’s p2 instances use NVIDIA’s GK210 
GPUs, whereas the p3 instances use the Tesla 
V100. Some of the p3 instances also support 
NVLINK, which enables the GPUs to share inter-
mediate results at high speeds. In our case, only 
the p3.8xlarge instance supported NVLINK. We 
concluded that the optimal instance for our use 
case was the p2.xlarge, even though the p3.8xlarge 
gave the best performance, given that the differ-
ence in latency wasn’t big enough to be worth the 
upgrade unless the system is deployed in a set-
ting where the server deals with a big number of 
requests per second.

System Performance with Different Video Qualities
We ran the object detection process on the same 
video with different qualities. Then we measured 
the average latency of feature extraction and clas-
sification by video frame and recorded the num-
ber of detected objects for each video quality.

From Fig. 5b, we remarked that the detection 
has the lowest latency with the 1080p quality, 
whereas the latency of detection for the 480p and 
720p videos were somewhat the same. In order to 
form a better understanding of why we obtained 
these results, we chose a random video chunk of 
just under 3 s and recorded the following measure-

ments frame by frame:
•	 True positives (TP): Number of correct detec-

tions
•	 False positives (FP): Number of incorrect detec-

tions
•	 False negatives (FN): Number of missed objects

We recorded the results for the three video 
qualities (Fig. 6). We observe that the system has 
the worst performance in terms of accuracy with 
480p. However, it performs somewhat the same 
with 1080p and 720p. In fact, to better portray 
these results we calculated the precision and recall 
of the system for the whole video for each quality 
as defined:

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

The recall represents the true positive rate. We 
present the results in Table 2. We can see that the 
system has both better precision and recall with 
720p than with 1080p. This is due to the fact that 
the quality of the images in the datasets used for 
training generally have lower quality. However 
one drawback to this is that with 720p, the sys-
tem recorded slightly more false positives than with 
1080p. This is due to the blurry frames where the 
neural network detects objects in frame coordi-
nates where there are no objects from our classes.

We also recorded the system resource usage 
when running the experiments (Fig. 7), and 
observed that the program consumed the high-
est amount of server resources with 1080p, even 
though it recorded almost the same precision and 
recall with 1080p as with 720p. However, the pro-
gram was faster at finishing the whole detection 
process with 1080p than with any other quality. It 
took the longest time with the 720p, since this is 
when we detected the highest number of objects.

To conclude, after testing the system in different 
settings, we can observe that with all resources and 
inputs the average latency of the object detection 
process per frame remains under 100 ms, which 
is an acceptable result given that the new video 
feeds in which the detection results appear are 
streamed back frame by frame. Thus, the latency 
is minimal, and any noticeable delay can only be 
attributed to the streaming process rather than the 
object detection.

Conclusions
The concept of dynamic maps has gained a lot of 
traction in recent years, which only goes to show 
how powerful a tool it can be if deployed success-
fully. But its main challenges remain those of an 
accurate object detection and positioning system 
with minimal latency. In this article we introduce a 
system that satisfies part of the LDM and focuses on 
the latency challenge by measuring it with different 
inputs and system resources in order to determine 
the perfect setting for optimal performance.

In future works, we will test the latency of the 
streaming process and try to minimize it. We will 
also shift our focus to the positioning services, and 
test their accuracy and latency. The implementa-
tion we have done within this research work is a 
small part of a bigger system that serves multiple 
other functions. One of the other services that this 
system should be able to provide is object track-

FIGURE 5. Average detection and filtering latencies in different settings: a) 
latency with different instance types; b) latency with different video quali-
ties.

(a)

(b)
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ing and identification through video frames and 
streams from different sources. To be able to apply 
our current system in an automated driving or a 
UAV geofencing setting, we will have to imple-
ment a service that identifies the detected objects 
and ensures that no duplicates are stored in the 
LDM data store.
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FIGURE 6. Number of positive and negative detections with different video qualities.

TABLE 2. Precision and recall measurements.

Video qualities 480p 720p 1080p

Precision 0,51 0,74 0,73

Recall 0,07 0,88 0,86

FIGURE 7. System resource usage with different video qualities. 
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