
QoE-aware Elasticity Support in Cloud-Native 5G Systems

Sunny Dutta1, Tarik Taleb1 Adlen Ksentini2

1Aalto University 2Rennes University
sunny.dutta@aalto.fi, talebtarik@ieee.org adlen.ksentini@irisa.fr

Abstract – Typically, maintaining static pool of cloud resources
to meet peak requirements with good service quality makes the
cloud infrastructure costly. To cope with this, this paper pro-
poses an approach that enables a cloud-infrastructure to au-
tomatically and dynamically scale-up or scale-down resources
of a virtualized environment aiming for efficient resource uti-
lization and improved quality of experience (QoE) of the of-
fered services. The QoE-aware approach ensures a truly elastic
infrastructure, capable of handling sudden load surges while
reducing resource and management costs. The paper also dis-
cusses the applicability of the proposed approach within the
ETSI NFV MANO framework for cloud-based 5G mobile sys-
tems.

I. INTRODUCTION

After Long Term Evolution (LTE) and IMT-advanced systems,
the next major phase of mobile telecom industry is the 5th generation
mobile networks (5G), also referred to as beyond 2020 mobile
communications system [1]. With the ability to handle high bit rates
in peak conditions, higher spectrum efficiency, better coverage, and
support of potential numbers of diverse connectable devices, 5G
systems are required to be cost-efficient, flexibly deployable, elastic,
and above all programmable. The crucial issue in sustainability of
the mobile operators in terms of 5G resides in the provisioning of
high-data rate connectivity to an ever-growing mobile data traffic.
Another issue pertains to the system scalability and reliability as it
should be agile and elastic to accommodate huge amount of mobile
applications. However, the shortfall in supporting high demands for
diverse applications from various devices is mostly due to the highly
centralized core networks and the usage of custom hardware com-
ponents, which were not designed with elasticity in mind. Another
challenge of 5G consists in supporting applications and services
with an acceptable and consistent level of quality of experience
(QoE) anywhere anytime. However, to accommodate the high
dynamicity of mobile traffic and to ensure ultra-low latency and
high QoE for delay-critical interactive services, operators are forced
to overprovision components considering peak hours and keeping
them unused during off-peak periods; a fact that effectively wastes
resources in terms of energy, processing, and network.

The solution to the above limitations consists in the convergence
of mobile networks and cloud, and the adoption of the network
function virtualization (NFV) concept [2]. In a virtualized infra-
structure, CPU, memory, storage, and networking are provided in
abstract slices to a set of virtual machines (VMs). During the de-
ployment phase, a Cloud Service Provider (CSP) typically offers a
static set of available hardware configuration blocks (i.e., “flavors”
in the context of Openstack – a unique combination of disk space,
memory capacity and CPU) to a Virtual Network Function (VNF)
provider (VNFP). The blocks are chosen to perfectly match the
functional/operational requirements of the respective VNF. This
enables operators create and deploy network components in ac-

cordance to their needs without involving dedicated hardware
components. Whilst this could sound as a perfect solution, adopting
static flavors despite the fluctuating nature of mobile traffic may
result in poor performance as resources could be underutilize or
overprovisioned. To tackle this issue, true elasticity of VNFs should
be attained. For this purpose, the overall cloud orchestrator should
be aware of the changing demands of users and the real-time con-
ditions of the underlying resources. It should also dynamically
reflect that in scaling up when there is a need for more resources or
in scaling down to save resources and achieve cost-efficiency. The
overall objective of this paper is to define a remedy to the above
limitations by devising an approach that has the intelligence to
understand the requirements based on varying nature of traffic and
to automatically scale up/down the system. The approach considers
the system’s CPU/ RAM usage and QoE of end-users in the decision
of elasticity and performs scalability in a cognitive manner making
the system self-organized.

The remainder of this paper is organized as follows. Section II
presents the state of the art. Section III describes our proposed
scheme showcasing its technical benefits. Section IV describes the
experiment setup and discusses the obtained results. The paper
concludes in Section V.

II. STATE OF THE ART

The success of cloud-based mobile core networks highly hinges on
an efficient lifecycle management of VNFs including VNF place-
ment, instantiation, migration and scaling. Regarding the latter, it is
important to decide the amount of resources to allocate for a VNF,
parameters to consider for scaling and when to enforce the scaling
operation.

Various research work have been carried out dealing with the
resource allocation problem and VM management to achieve cost
savings and that is from better utilization of computing resources
while avoiding overload situations. In [3], cloud resource allocation
is considered alongside VM’s placement and migration based on
VM’s CPU, memory, storage, network bandwidth along with re-
source contention. There have been also numerous research work on
dynamic resource provisioning using feedback control mechanism
on the infrastructure level performance metrics. In [4], the trigger
for scaling is considered based on threshold values relevant to
resource usage. In [5], the work uses the concept of dynamic scaling
of resources based on concurrent users count and the number of
active connections. A front-end load-balancer (LB) is used to dis-
tribute the processing of services among parallel instances. In [6], an
Amazon web service (AWS) auto scaling is introduced using indi-
cators such as CPU utilization, network usage, and disk operations.
The mechanism automatically scales up or scales down VM in-
stances using threshold values of the indicators to trigger the oper-
ation. The research work described in [7] also proposes an au-
to-scaling mechanism based on budget constraints and job execu-
tion deadline. In [8], the proposed approach considers dynamic

IEEE ICC 2016 - Next-Generation Networking and Internet Symposium

978-1-4799-6664-6/16/$31.00 ©2016 IEEE

service level agreement (SLA) between the CSP and VNFP. Rather
than allocating a fixed amount of resources for the whole life-cycle,
the resources are varied based on predictable user load [9]. Similarly,
in [10], another auto-scaling mechanism is introduced considering a
pattern-based prediction algorithm to handle sudden appearance/
disappearance of traffic, which ensures good user experience.
Unlike pattern-based approaches, the research work described in
[11] suggests a work-profile based filtering concept, wherein the
service quality of a cloud instance depends on specific service type.
According to the service type, the cloud resources are allocated to
achieve optimum results towards improving Quality of Service
(QoS). To improve users’ perceived QoE, various studies have
come up with metrics, which are directly related to the performance
of services such as video streaming. Studies in [12] proposed met-
rics in the form of network bandwidth, Round Trip Time (RTT),
video-bit rate, page load times and video interruptions to evaluate
the user QoE in terms of Mean Opinion Score (MOS) [9][13].

In the above-mentioned research work, optimal resource utiliza-
tion and resource scaling decisions are made based on various
indicators. They can be classified as either prediction-based ap-
proaches, feedback-controlled algorithms, or service-specific re-
source allocation schemes. To the best knowledge of the authors, no
solution has considered QoE’s feedback as a criterion to scale
up/down cloud resources. To fill this gap, in this paper, we propose
a novel scaling method that closely considers users’ QoE. Besides
real-time feedback on system resource usage (i.e., CPU and RAM
usage), the proposed scaling method also considers real-time feed-
back on the quality of the service (i.e., service hosted inside the
VNF) as perceived by the end-users. As will be described in the next
section, the proposed scheme aims at building an intelligent, cog-
nitive and self-healing system capable of scaling up/down resources
in an autonomic fashion based on users’ perceived QoE.

III. PROPOSED QOE-AWARE ELASTICITY ENFORCEMENT
SCHEME

The overall objective of the proposed solution is to build a
QoE-aware resource management of virtual instances; in order to
automatically provision and scale network services (NS) in an
elastic way. To make the proposed solution compliant with the
existing ETSI NFV architecture, additional functions, namely QoE
Assessor (QA), Resource Usage Monitor (RUM), and Elasticity
Decision Maker (EDM) have been integrated with the architecture’s
Service Manager (SM) and Service orchestrator (SO).

The NFV Management and Orchestration (MANO) architecture,
presented in [2], depicts the MANO framework. Three functional
blocks, namely Virtualized Infrastructure Manager (VIM), the VNF
Manager (VNFM) and the NFV Orchestrator (NFVO), play the key
role in controlling the infrastructure and are inter-connected over
specific reference points. Besides traditional management, the
MANO framework focuses on novel management aspects intro-
duced by NFV such as the creation and life-cycle management
(LCM) of the virtualized resources for VNFs, collectively referred
to as VNF management [1]. There are several VNF management
tasks such as VNF scaling, migrating, updating, to name a few, but

this paper focuses on cognitive scaling of VNF resources. Consid-
ering the ETSI NFV architecture [2], the three main architectural
entities involved in the management and orchestration of VNFs are
Service Orchestrator (SO), Cloud Controller (CC) and Service
Manager (SM). SO is the entity responsible for lifecycle manage-
ment of a NS. The primary functionality of SO also includes im-
plementation of the service and complete end-to-end orchestration
of service instance with creation and scaling. CC is mainly respon-
sible for cloud infrastructure resource provisioning and deployment.
It also manages virtual resources coordinating with SO and is also
involved in provisioning, deployment and disposal of instances. The
focus of SMs is in managing individual VNFs of different tenants
based on predefined policies. We depict in Fig. 1 the role of the
added functional blocks within the ETSI NFV architecture.

To illustrate the idea behind our proposed cloud resource man-
agement scheme, we consider a web based video service (i.e. based
on HTTP) as a NS, which is hosted as a VNF on top of a VM,
utilizing shared resources such as CPU, RAM, I/Os of the parent
physical machine (PM). Typically, the NFV-MANO coordinates
the instantiation of VM(s) on selected PM(s) [14-16] and as-
sign/allocate resources based on the selected flavors to the VM(s)
that will eventually host the VNF(s). However, the process of
hosting/instantiating/deploying VNFs on VMs has inherent limita-
tions because of the static process of choosing flavors [1] which
may meet the functional requirements but the complexity can be
found in the form as mentioned below:

a) An over-provisioned allocation of resources, exceeding the
requirements, may increase the overall cost of the system
and may also result in scarcity of resources in the pool.

b) The allocation process may not take into account the un-
foreseen traffic/load surges, which may ultimately impact
the service performance.

c) The strict resource allocation and isolation policy prevents
the sharing and run-time/dynamic (re)allocation and/or
(re)organization of the unused capacities of the underlying
physical resources that are “pinned” to other VMs on the
same PM.

 Given the abovementioned limitation, for a service such as a
web-based video streaming whereby multiple clients connect to the
network to receive video streams, they normally end up exhausting
the resources. The nature of traffic in terms of connection count and
bandwidth utilization is pretty much dynamic and unpredictable. If
the allocated static set of resources (i.e., processing power of CPU
or the buffer/ cache/ swap / physical memory) are not sufficient to
handle the number of connections, it will impact the service in terms
of delay, packet loss, play-out interruptions, and will eventually
downgrade the users’ perceived quality. On the other hand, when
the resources are overprovisioned, the cloud will operate in an
under-utilized manner and will experience high energy consump-
tion, increased power budget and reduced profit. To address the
above limitations, there is need for a solution that intelligently
allocates resources to VNFs when they are instantiated as well as
during their run-time, attaining full and true elasticity of the cloud.
In this paper, this is achieved by constantly checking the service

quality and accordingly enforcing elasticity and that is through
integration of RUM, QA and EDM into the MANO architecture
(Fig. 1).

A. Resource monitoring
Dedicated resources for a VNF can be of different types. For a

web-service VNF, the most important resources are CPU and RAM
as they are crucial for efficiently processing and handling connec-
tion requests. Indeed, large CPU and RAM sizes enable fast pro-
cessing of a large number of connections [17][18]. In Openstack, the
concept of “flavors” is used whereby each flavor represents a block
of fixed resources in terms of CPU cores, RAM, storage, ephemeral
disk and swap disk. Accordingly, when a VNFP allocates a flavor to
a VNF, it allocates a certain amount of resources that remain fixed
during the operation course of that VNF. To keep real time infor-
mation about the resource usage of a VM, we consider the RUM
functionality that can be part of Openstack’s Ceilometer. The main
functionality of RUM includes real-time monitoring of the re-
sources. Integrated with the SM, RUM takes into account the
aforesaid parameters and periodically monitors the running in-
stance’s utilization percentage of CPU to find the idle states and the
percentage amount of RAM left to handle additional processes. As
part of the management architecture, RUM performs this periodical
monitoring to gather information on the health of the VM instance,
considering whether it is becoming exhausted or is underutilized.
The gathered data is then sent periodically to the Elasticity Decision
Maker (EDM) for further processing.

B. QoE Assessor

Since there is a direct impact of allocated resources on QoE, the
proposed scheme decides on whether to trigger elasticity or not
based on QoE perceived by users. Therefore, the proposed scheme
does not only optimize the resource pool, but also aims for ensuring
the desired QoE. For this purpose, there is need to measure and
monitor, in real-time, users’ perceived QoE in terms of the MOS
score. To this end, we used the Pseudo-Subjective Quality As-
sessment (PSQA) method, which allows measuring user perceived
quality in an automatic manner and without any human intervention.
PSQA is based on random neural networks, which capture the

relation between quality impacting parameters and the MOS value.
PSQA runs in two phases. The first phase is a subjective test phase,
where users give MOS score to video sequences allocated by a
predetermined parameters. The second phase consists in training the
random neuronal network, which derives a non-linear function that
captures the relation between MOS and the criteria that impact QoE.
The used version of PSQA is dedicated for HTTP-based video
streaming [13][19]. Two parameters impacting QoE are considered,
namely play-out interruptions and quantization parameter (QP –
index providing a scaling matrix of amount of video compression in
an encoded video). In HTTP streaming, the underlying protocol is
TCP, where service distortion is eliminated through the recovery of
lost packets but interruptions happen in the form of retransmissions
and bandwidth fluctuations. Considering this as a playout interrup-
tion, the model is trained to generate the QoE estimation based on
values of total numbers of interruptions, average delays and max-
imum delays experienced along with QP. Using PSQA on the
delivered service in real-time, the QoE estimation is obtained by QA
and eventually the MOS values are then periodically fed into EDM
as an input attribute for elasticity decision.

C. Elasticity Decision Maker (EDM)

The main EDM functionality consists in deciding when to trigger
SO to enforce the elasticity operation of an instance indicating what
resources should be allocated for the instance, while preventing
service interruption. EDM periodically receives monitoring infor-
mation from both RUM and QA. Based on that, it carries out the
following operations:

d) Selecting adequate thresholds for triggering elasticity; this
operation is conducted in a self-learning fashion based on
ad-hoc measurements, past experiences, and benchmark-
ing of the VNF performance.

e) Specifying the right amount of resources to allocate to an
instance to meet the service level agreement in terms of
QoE and to also avoid underutilization of cloud resources.

To analyze data, EDM employs a Multi Attribute Decision
Making (MADM) algorithm as depicted in Fig. 2 and that is using
multiple inputs such as resources allotted for an active instance,
resources being effectively in use, maximum resources that can be
allocated for the service, instance flavor size, the available flavor
sizes in the pool, and MOS of the running service. The thresholds of
each of these inputs are preset for variable flavors and for different
services (i.e., video streaming) ensuring optimal working conditions.
This can be achieved before bringing services into the production
environment by manually performing load-benchmarking test for
different flavors. The evaluation starts by comparing the CPU usage,
RAM usage and the MOS score against their respective threshold
values, and accordingly EDM decides on the elasticity as follows:

i) In case the resource usage exceeds the maximum defined
threshold and the MOS score is below the optimal value,
EDM initiates vertical scale-up.

ii) In case the resource usage is low and below a minimum
threshold while MOS is acceptable, EDM initiates vertical
scale-down.

Fig. 1. Key components of the proposed scheme as part of the ETSI
MANO framework.

iii) In case the resource usage is within the threshold range but
the MOS value is below optimal value, EDM initiates
vertical scale-up.

iv) In case the resource usage is within the threshold range but
the MOS value exceeds the optimal value, EDM takes no
action in terms of elasticity deeming the system being
healthy and instead updates the relevant thresholds.

Table 1. Notations and details used in the Algorithm of Fig. 2.

When EDM needs to take an action in terms of elasticity, it
triggers SO to scale up/down the running instance specifying the
new size/flavor of the instance. Hereby, the term “scaling” refers to
increasing or decreasing the resources in terms of CPU, RAM, and
storage. Scaling can be either vertical or horizontal. Through ver-
tical scaling, SO increases the computing power on a running VM,
whereas the horizontal scaling adds computing power in the form of
adding another VM in parallel to the one in question. Whilst hori-
zontal scaling is relatively straightforward, it is costly as it involves
more VMs and is also more complicated from the management
perspectives. Furthermore, horizontal scaling requires load balanc-
ers to be more effective. In contrast, vertical scaling exhibits less
operation cost but is highly complex from the implementation point
of view. For this reason, in this research work, we report on results
obtained in case of vertical scaling as its horizontal counterpart is
relatively easier to implement.

As the allocated resources shall not exceed the available PM re-
sources; SO consults CC for the available resources before allo-
cating any. For a particular NS, a set of resources is already fixed
but not allocated from the beginning. The service starts with a
minimal flavor of the instance attached to a load balancer (LB). LB
works as a front-end service and re-routes the incoming requests in a
round-robin fashion to the newly built instance (in case of scaling)
and accordingly prevents service disruption. In case scaling up
becomes required and the service is already running with the
minimal flavor, a bigger flavor instance is added to the LB pool.
Once the service migration occurs between the old and new in-
stances and the new instance becomes ready and functional, SO
removes the old busy instance. In case of an underutilized VM,
scaling down is performed in the same fashion. As explained before,
RUM keeps sending periodically the status of the newly instantiated
VM to EDM. If the information received from QA conveys that the
perceived quality is not satisfactory, the whole process is re-run to
achieve the desired MOS score, thus resulting in the selection of the
best fit flavor with the best QoE. In this way, EDM, supported by
QA, reflects QoE in its elasticity decisions in a dynamic and auto-
nomic manner saving cost, energy consumption, and equipping the
overall system with the self-healing feature.

IV. PERFORMANCE EVALUATION

For the sake of performance evaluation, a real-life testbed was
built using Ubuntu 14.04.03 LTS desktop workstation with 8 core
CPU and 16GB RAM. The cloud environment was built using
Openstack (i.e., Devstack Juno) inside a VirtualBox Ubuntu server
with dedicated 4 vCPUs and 8 GB RAM. The setup consists of
all-in-one Openstack environment with the controller, compute,
heat and neutron components running on the same node. Heat was
used to orchestrate the initial setup of a LB and a single instance
within the LB pool with a built-in Nginx server for streaming a
preloaded video file. LB balances load in round-robin fashion. A
HTTP-based live network streaming (i.e., progressive stream) was
used. Chrome (i.e., incognito mode) and VLC player were used at
the client side to view the video stream. Moreover, the Apache
Bench and WRK2 frameworks were used to simulate load, while a

Uc Instance CPU usage (%)

Um Instance RAM usage (%)

MOS Index of quality perceived

MOSopt Optimal MOS score

Tmax Max Threshold of CPU & RAM

Tmin Min threshold of CPU & RAM

MAXquota Maximum resources that can be allocated

1. function scaleup ()
2. if allotted resource == MAXquota then
3. scaleup not possible; exit to main ()
4. else
5. if vertical scale not possible then
6. launch smaller instance and attach to LB // do parallel scaling
7. else
8. launch bigger instance and attach to LB
9. wait for new instance to be active
10. remove smaller instance
11. end if
12. end if

13. function scaledown ()
14. if allotted resource == MAXquota then
15. remove smaller instance
16. else
17. if already lowest flavor then
18. exit to main () //scaledown not possible
19. else
20. launch smaller instance and attach to LB
21. wait for new instance to be active
22. remove bigger instance
23. end if
24. end if

25. function operation ()
26. if (Uc Um ≥ Tmax) && (MOS ≤ MOSopt) then
27. scaleup ()
28. elif (Uc Um ≤ Tmin) && (MOS ≥ MOSopt) then
29. scaledown ()
30. elif ((Uc Um ≥Tmin && Uc Um ≤ Tmax) || MOS ≤ MOSopt) then
31. if resource available then
32. scaleup ()
33. else
34. exit to main () // upper limit reached
35. end if
36. else ((Uc Um ≥ Tmin && Uc Um ≤ Tmax) && MOS == MOSopt)
37. exit to main () // System healthy
38. end if

39. function main ()
40. receive monitoring data
41. perform operation()

Fig. 2. The adopted Multi Attribute Decision Making algorithm.

modified VLC player was used to measure the MOS score at the
user side. Instances were created using Ubuntu cloud image inside
customized flavors, wherein the minimal one (Flavor1) had 1vCPU,
512 MB of RAM, and 4 GB storage; and the largest one (Flavor 4)
had 2 vCPUs, 2048 MB of RAM and 10GB storage. Two more
flavors, Flavor3 and Flavor 4 were created with 1vCPU, 1048 MB
RAM, 4GB storage and 2 vCPUs, 1048 MB RAM, 10GB storage,
respectively. The RUM, QA and EDM modules were implemented
in the same node along with the controller. At RUM, resource usage
are monitored and fed to EDM every 60 seconds. To deliberately
overload the VM hosting the video service (i.e., busy CPU and
exhausted RAM), parallel concurrent connections towards the
server were launched: 2000 concurrent connections and a total of
100000 requests per second were sent to the server. The resource
usage thresholds were set to 90% for both CPU and RAM as the
upper limit to trigger a scale up operation. As for scaling down, the
thresholds were set to 25% and 65% for CPU and RAM, respec-
tively. The above thresholds were empirically retrieved after testing
instances multiple times under varying loads using the AB
benchmarking. The threshold limits were set accordingly and with
the intention to keep the system responsiveness in enforcing elas-
ticity (i.e., particularly scaling up) within a reasonable range. In-
deed, if the system responsiveness is too long, the service will be
totally disrupted before even scaling up the relevant instance.

In our setup, elasticity is performed using Flavor 1 and Flavor 4.
The environment starts with Flavor 1 and once the resource usage at
the instance reaches the upper limit thresholds, EDM triggers
HEAT (i.e., Openstack orchestration engine used as SO) to instan-
tiate a new instance in the same pool with Flavor 4. A sleep time
was considered for the newly created instance before it becomes
active. Once the second instance becomes active, the first one is
released ensuring the service is intact. Apart from this vertical
scale-up, horizontal scale-up was also carried out to meet the high
number of concurrent connections and that is by instantiating
additional VMs running in parallel. Scaling down was also carried
out in the same fashion. It shall be noted that since the instances
were active, resize or stack update operations were not performed as
that would result in suspend mode of the instance which would
eventually disrupt the video stream service. Figs. 3 and 4 depict the
full scale-up and scale-down operations, respectively. The ‘firm’
line indicates which instance is in service and how LB takes care of
the switchover. The firm line at level 80% represents Flavor 4 is
used for streaming and at 40% indicates when Flavor 1 is in use. The
pointers ‘s’, ‘e’, and ‘c’ on Figs. 3 and 4 indicate respectively the
elasticity triggering start time, the end of the scaling operation, and
the actual instance changeover time considering a predefined sleep
time set up for the new instance to ensure service continuity.

These figures show that right after the changeover in flavor, the
usage ratios of both RAM and CPU change, although the injected
load is constant in all cases. The figures also indicate that LB rotates
the service as soon as the new instance is instantiated. However, the
complete release of the old instance takes some time as a sleep time
interval was deliberately considered to ensure a smooth streaming

service. It is worth noting that the delay since triggering vertical
elasticity till the release of old instance is merely ‘15s to 20s’.

To further investigate the impact of the VM flavor on the per-
ceived QoE, different sizes of VMs were instantiated and videos

were streamed from these instances. The MOS values were meas-
ured at the client side and the impact of the MOS score in deciding
when and by how much to scale up/down an instance was also
evaluated. The testbed was run multiple times using a high defini-
tion 112-seconds long video. The presented results are an average of
multiple testbed runs. The testbed was performed using the con-
sidered four flavors under the same load (i.e., 200 concurrent users
viewing the video at a rate of 600 requests per second using wrk2).
The MOS score and the resource usage patterns are shown in Figs. 5
and 6, respectively. MOS was calculated for every 16 sec chunk of
the received video. It was calculated based on how much additional
time was involved to playback that 16 sec chunk of actual video
when streamed from the loaded instances. The MOS scale is from
“0” (low) to “1” (high). Considering the network constraints (i.e.,
delay and bandwidth), the buffering and interruption times experi-
enced in all scenarios varied within the range of 0.5 sec and 64.2 sec
for the different flavors. Every 16 sec span of measuring the video
quality is represented as “Measuring Window” in Fig. 5. Initial 16
sec chunk was not considered in calculation. The average video play
length for Flavors 1, 2, 3 & 4 were 176.2 sec, 157.89 sec, 112.5 sec
and 121.5 sec, respectively.

Fig. 3. An example of a scale up operation. (s: elasticity trigger time; e: VM

migration end time; c: VM actual changeover time).

Fig. 4. An example of a scale down operation (s: elasticity trigger time; e:

VM migration end time; c: VM actual changeover time).

From Fig. 6, it is apparent that Flavor 4 is the least utilized.
However, from Fig. 5, Flavor 3 exhibits the best QoE. This implies
that considering the MOS score only may yield an optimal solution
in terms of both quality and cost (i.e., resource size). It also repre-
sents an effective metric in assessing the system “health”: the in-
stance with the highest resources does not necessarily guarantee the
highest QoE. Indeed, a tradeoff between the allocated resources (i.e.,
cost) and QoE needs to be attained.

V. CONCLUSION
In this paper, we proposed a scheme that reflects QoE in deciding,

in an autonomic manner, when and by what magnitude to enforce
elasticity in a cloud environment. The proposed scheme supports the
self-healing feature of the cloud as the cloud becomes cognitive and
can take autonomic corrective measures, when needed, to maintain
an optimal level of QoE of its offered services. The scheme was
incorporated in the ETSI MANO framework and was evaluated in a
real-life testbed. The obtained results demonstrated the respon-
siveness of the scheme in effectively enforcing elasticity (e.g.,
within 15s) and that is based on real-time values of MOS, obtained
from the client side. The results also showed that there is an im-
portant tradeoff between the allocated resources and QoE. Deter-
mining such a tradeoff empirically and theoretically is a research
subject worth investigation and shall define one of the authors’
future research directions in this area.
Acknowledgment
This work was partially supported by the TAKE 5 project funded by
the Finnish Funding Agency for Technology and Innovation

(TEKES) and in part by the Finnish Ministry of Employment and
the Economy.

References
[1] F.Z. Yousaf and T. Taleb, “Fine Granular Resource-Aware Virtual Net-

work Function Management for 5G Carrier Cloud,” to appear in IEEE
Network Magazine.

[2] T. Taleb, M. Corici, C. Parada, A. Jamakovic, S. Ruffino, G. Karagiannis,
and T. Magedanz, "EASE: EPC as a Service to Ease Mobile Core Net-
work," in IEEE Network Magazine, Vol. 29, No. 2, Mar. 2015. pp.78 – 88.

[3] G. Somani, P. Khandelwal, and K. Phatnani, “VUPIC Virtual Machine
Usage Based Placement in IaaS Cloud,” arXiv preprint arXiv:1212.0085
(2012).

[4] H. C. Lim, S. Babu, J. S. Chase, and S. S. Parekh, “Automated Control in
Cloud Computing: Challenges and Opportunities,” in Proc. 1st workshop
on Automated Control for Datacenters and Clouds, Chicago, Illinois, Jun.
2009.

[5] T. C. Chieu, A. Mohindra, A. A. Karve, A. Segal, “Dynamic Scaling of
Web Applications in a Virtualized Cloud Computing Environment,” in
Proc. IEEE ICEBE Int’l Conf. e-business Eng. , Macau, China, Oct. 2009

[6] AWS auto-scaling – URL: http://aws.amazon.com/autoscaling/
[7] M. Mao, J. Li, M. Humphrey, “Cloud Auto-scaling with Deadline and

Budget Constraints,” in Proc. 11th IEEE/ACM Int’l Conf. Grid Compu-
ting, Brussels, Belgium, Oct. 2010

[8] B. B. Nandi, A. Banerjee, S. C. Ghosh, “Dynamic SLA Based Elastic
Cloud Service Management: A SaaS Perspective,” in Proc. IFIP/IEEE Int’l
Symp. on Integrated Network Manage. , Ghent, Belgium, May 2013

[9] A. Ksentini, T. Taleb, and K. Benletaief, “QoE-based Flow Admission
Control in Small Cell Networks”, to appear in IEEE Trans. on Wireless
Communications.

[10] J. Bao, Z. Lu, J. Wu, S. Zhang, Y. Zhong, “Implementing a Novel
Load-aware Auto Scale Scheme for Private Cloud Resource Management
Platform”, in Proc. IEEE Network Operations and Manage. Symp.
(NOMS), Krakow, Poland, May 2014

[11] T. Magedanz, F. Schreiner,, “QoS-aware Multi-Cloud Brokering for NON
Services- Tangible benefits of elastic resource allocation mechanisms”, in
Proc. 5th IEEE Int’l Conf. on Communications and Electronics (ICCE),
Danang, Vietnam, July 2014

[12] P. Casas, A. Sackl, S. Egger, and R. Schatz, “YouTube & Facebook
Quality of Experience in Mobile Broadband Networks”, in Proc. GC'12
workshop: Quality of Experience for Multimedia Communications, Ana-
heim, CA, Dec. 2012

[13] A. Ksentini and T. Taleb, “QoE-Oriented Adaptive SVC Decoding in
DVB-T2,” in IEEE Trans. on Broadcasting, Vol. 59, No. 2, Jun. 2013.
pp.251-264

[14] T. Taleb, M. Bagaa, and A. Ksentini, “User Mobility-Aware Virtual
Network Function Placement for Virtual 5G Network Infrastructure,” in
Proc. IEEE ICC 2015, London, UK, Jun. 2015.

[15] M. Bagaa, T. Taleb, and A. Ksentini, “Service-Aware Network Function
Placement for Efficient Traffic Handling in Carrier Cloud,” in Proc. IEEE
WCNC’14, Istanbul, Turkey, Apr. 2014.

[16] T. Taleb and A. Ksentini, “Gateway Relocation Avoidance-Aware Net-
work Function Placement in Carrier Cloud,” in Proc. ACM MSWIM 2013,
Barcelona, Spain, Nov. 2013.

[17] T. Taleb, A. Ksentini, and R. Jantti, “Anything as a Service for 5G Mobile
Systems”, to appear in IEEE Network Magazine.

[18] P. Frangoudis, L. Yala, A. Ksentini, and T. Taleb, “An architecture for
on-demand service deployment over a telco CDN,” in IEEE ICC’16, Kuala
Lumpur, Malaysia, May 2016.

[19] K. Singh, Y. Hadjadj-Aoul, G. Rubino, “ Quality of Experience estimation
for Adaptive HTTP/TCP video streaming using H.264/AVC”, in Proc.
CCNC - IEEE Consumer Communications & Networking Conf., Las
Vegas, United States, Jan. 2012.

Fig. 5. QoE values for different flavors.

Fig. 6. Average resource usage ratios for different flavors.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

