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Abstract—The effective distribution of user transmit powers
is essential for the significant advancements that the emer-
gence of 6G wireless networks brings. In recent studies, Deep
Neural Networks (DNNs) have been employed to address this
challenge. However, these methods frequently encounter issues
regarding fairness and computational inefficiency when making
decisions, rendering them unsuitable for future dynamic services
that depend heavily on the participation of each individual
user. To address this gap, this paper focuses on the challenge
of transmit power allocation in wireless networks, aiming to
optimize α-fairness to balance network utilization and user
equity. We introduce a novel approach utilizing Kolmogorov-
Arnold Networks (KANs), a class of machine learning models
that offer low inference costs compared to traditional DNNs
through superior explainability. The study provides a compre-
hensive problem formulation, establishing the NP-hardness of
the power allocation problem. Then, two algorithms are proposed
for dataset generation and decentralized KAN training, offering
a flexible framework for achieving various fairness objectives
in dynamic 6G environments. Extensive numerical simulations
demonstrate the effectiveness of our approach in terms of fairness
and inference cost. The results underscore the potential of KANs
to overcome the limitations of existing DNN-based methods,
particularly in scenarios that demand rapid adaptation and
fairness.

Index Terms—6G, Wireless Networks, Transmit Power Allo-
cation, Deep Neural Network (DNN), Fairness, Machine learning
(ML), Kolmogorov-Arnold Network (KAN), and Explainability.

I. INTRODUCTION

The advent of 6G wireless networks heralds a new era
of connectivity, promising to revolutionize sectors such as
healthcare, education, logistics, and transportation [1]. These
next-generation networks are poised to deliver unprecedented
capabilities, including ultra-high data rates, massive device
connectivity, and adaptive responses to highly dynamic en-
vironments [2]. Central to realizing these advancements is the
efficient allocation of user transmit powers, a critical factor
that directly influences network performance, user experience,
and energy efficiency. In recent years, the complexity of this
challenge has led researchers to explore innovative solutions
leveraging Machine Learning (ML) techniques, with a partic-
ular focus on Deep Neural Networks (DNNs).

Among the studies addressing the transmit power alloca-
tion problem in this rapidly evolving field, several notable
approaches stand out. Nasir et al. [3] and Sheu et al. [4]
employed Deep Q-Learning (DQL) to maximize the sum data

rate of users, utilizing channel information as input. Li et
al. [5] extended the same approach to a distributed setting.
Jamous et al. [6] applied DQL to optimize transmission energy
efficiency. Zhang et al. [7] innovated by using convolutional
DNNs with users’ geographical information to maximize ag-
gregate data rates. In a different approach, Zhang et al. [8]
implemented Proximal Policy Optimization (PPO) with signal
strength inputs to ensure predefined Signal-to-Interference-
plus-Noise Ratio (SINR) thresholds. Huang et al. [9] also
utilized PPO, focusing on maximizing the sum of data rates.

While existing DNN-based methods have demonstrated
considerable performance, they face significant challenges in
two key areas: balancing network utilization with fairness, and
achieving computational efficiency during inference. Most of
the existing studies have primarily focused on system-wide
performance indicators, such as aggregate data rates, often at
the expense of equitable resource allocation among individual
users. This oversight becomes particularly critical in the con-
text of future services, where semantic-aware communication
is expected, and ensuring fair participation for each user is
essential to maintain the quality and diversity of outcomes,
thereby mitigating potential biases from specific sources [10].
Furthermore, the DNN-based techniques prevalent in the lit-
erature are predominantly black-box models, necessitating
complex computations for each inference. This computational
intensity often results in prolonged inference times [11]. Such
inefficiency is particularly problematic in the dynamic envi-
ronments anticipated for 6G services, where rapid adaptation
to changing environmental conditions is paramount.

To address the gaps in existing research, this paper focuses
on investigating the power allocation problem with the objec-
tive of optimizing α-fairness. The α-fairness metric offers a
versatile framework for balancing the trade-off between fair-
ness and utilization in resource allocation. By modulating α,
we can achieve various fairness objectives, providing a flexible
approach suitable for dynamic future services. To tackle this
problem, we employ a novel class of machine learning models
known as Kolmogorov-Arnold Networks (KANs), which have
been proposed as an alternative to conventional DNNs [12].
KANs are designed to approximate continuous multivariate
functions using learnable activation functions within a rela-
tively simple architecture, offering improved generalization ca-
pabilities. The reliance on these functions renders KANs fully
explainable, significantly reducing the computational overhead



typically associated with inference. This characteristic makes
KANs particularly well-suited for time-sensitive and resource-
constrained environments, offering an attractive solution for
next-generation communication systems.

The remainder of this paper is structured as follows. Section
II presents the system model, provides a comprehensive prob-
lem formulation, and proves the NP-hardness of the consid-
ered problem. Section III elucidates the proposed KAN-based
solution, encompassing its fundamental principles, as well
as the proposed dataset generation and decentralized training
algorithms. In Section IV, we present and analyze numerical
results, with a particular focus on evaluating the efficiency of
the proposed solution in terms of fairness and inference cost.
Finally, Section V concludes the paper with a summary of our
findings and closing remarks on the implications and potential
future directions of this research.

II. PROBLEM STATEMENT

A. System Model

This paper focuses on a wireless network, comprising a
set of Base Stations (BSs) and User Equipment (UE), as
illustrated in Fig. 1. The network is characterized by B BSs,
denoted as B, and N intelligent UE, represented by N. We
exclusively consider uplink transmissions, and the data rate for
each UE i is calculated using the Shannon-Hartley theorem.
This fundamental theorem in information theory defines the
channel capacity, and consequently, the maximum achievable
data rate, as follows:

ri = log2

(
1 + γi

)
= log2

(
1 +

pi × hi,bi

I−i + σ2

)
= log2

(
1 +

pi × hi,bi∑
j∈N\{i}

pj × hj,bi + σ2

)
. (1)

In this formulation, the following variables and parameters are
defined:

• bi represents the BS associated with UE i. For the pur-
poses of this study, it is assumed that UEs are uniformly
distributed among BSs such that the average distance
between each UE and its serving BS is minimized.

• pi denotes the transmit power of UE i, and P represents
the vector encompassing the transmit power of all UEs.

• hi,bi signifies the path gain between UE i and BS bi.
• σ2 represents the noise power.
• γi denotes the SINR of UE i at BS bi.
• I−i quantifies the interference power at BS bi, which is

equivalent to the sum of received power from all UEs
except UE i at BS bi.

It is important to note that this paper assumes the implemen-
tation of a universal frequency reuse strategy, characterized by
a reuse factor of one. This design choice is primarily motivated
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Fig. 1. The system model.

by the scarcity and high cost of spectrum resources, which
necessitates efficient spectrum utilization. The implementation
of this approach aligns with the principles established in Fifth-
Generation New Radio (5G-NR) specifications. As we look
towards the development of 6G wireless networks, this one-to-
one reuse factor is anticipated to play an increasingly critical
role. It is expected to be instrumental in achieving the ultra-
high spectrum efficiency required to meet the stringent perfor-
mance targets of future wireless communication systems. This
approach provides a foundation for advanced techniques such
as coordinated multipoint transmission and reception, which
are crucial for realizing the full potential of next-generation
wireless networks.

B. Problem Formulation

In this study, we aim to optimize the network performance
by maximizing the α-fairness of UE data rates, that is:

Fα =


∑
i∈N

log(ri) if α = 1

(1− α)−1 ×
∑
i∈N

(ri)
1−α if α ̸= 1

(2)

The trade-off between equitable resource distribution and
overall system utilization is adjustable by balancing α in α-
fairness. As depicted in Fig. 2, when α → 0, optimizing (2)
becomes equivalent to maximizing the sum of data rates, com-
monly known as utilitarian fairness or sum-rate maximization.
In this scenario, the objective is to maximize the total data rate,
with minimal consideration for its distribution among users.
Although this method is generally less complex, it can result in
significant inequality. Conversely, when α → ∞, optimizing
(2) shifts to maximizing the minimum UE’s data rate, known
as max-min fairness. Max-min fairness ensures that the trans-
mit power allocations are adjusted to enhance the allocation
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Fig. 2. The α-fairness of data rates for a two-user network for various transmit powers. The subplots show α-fairness for α values of 0.1, 0.3, 0.6 and 0.9,
respectively. Assuming that there is just one base station, channel gains are set to 0.8 for UE 1 and 0.4 for UE 2, representing asymmetric channel conditions.
σ2 is fixed at 0.1W . Transmit powers for both users range from 0.1W to 10W . The color gradient represents the magnitude of α-fairness, with warmer
colors indicating higher utility values.

received by the UE with the worst channel condition, thereby
achieving the highest level of equality among users, albeit
potentially at the expense of overall complexity. Given this,
we formulate our α-Fairness Power Allocation Problem (α-
FPAP) as shown in (3).

α-FPAP: max
P
Fα s.t. Rate Constraints (1) (3)

where Pmin ≤ pi ≤ Pmax ∀i ∈ N

Here, we seek to maximize α-fairness by adjusting the trans-
mit power of UEs subject to both rate and transmit power
constraints, ensuring that the transmit power remains within
the feasible range defined by Pmin and Pmax.

C. Complexity Analysis

The α-FPAP intuitively appears NP-hard due to several
compelling reasons. With N UEs and B BSs, the number of
possible allocations for transmit powers exhibits exponential
growth. Each UE’s power setting influences not only its own
data rate but also potentially impacts the rates of all other
UEs due to mutual interference. The data rate for each UE is
characterized by a non-linear function dependent on its own
power and the interference received from other UEs, and the
incorporation of α-fairness introduces additional non-linearity
into the objective function. Small perturbations in channel
conditions or user locations can result in significant shifts
in the optimal power allocation. The α parameter introduces
further complexity, as varying α values can produce vastly
different optimal allocations. These characteristics collectively
result in a multi-dimensional solution space abundant with
numerous local optima, rendering the identification of the
global optimum particularly challenging.

Beyond intuitive reasoning, the NP-hardness of the α-
FPAP requires a formal proof. To establish this, we need
to demonstrate that a well-known NP-hard problem can be
reduced to a special case of the α-FPAP in polynomial time.
We choose the Maximum Independent Set Problem (MISP) for
this reduction. Given an undirected graph G = (V,E) where
V = {vi | i ∈ N} and E ⊆ {(vi, vj) | i, j ∈ N}, the MISP
seeks to find the largest subset of vertices such that no two

vertices in the subset are connected by an edge. The reduction
proceeds as follows:

1) Set α = 1 (proportional fairness).
2) Set the noise power to a small value ϵ > 0.
3) Suppose that each vertex vi in G is equivalent with a

UE-BS pair (UE i, bi). Set channel gain hi,bi = 1 for
each UE i to its BS bi.

4) For each pair (vi, vj) in G, establish an edge if hi,bj > ϵ
or hj,bi > ϵ. Then, set channel gains hi,bj = hj,bi =M,
where M is a large positive value.

5) Set all other channel gains to 0.

In this setup, the optimal solution to the α-FPAP will
allocate high power to UEs that correspond to a maximum
independent set in G (i.e., UEs whose corresponding vertices
in G are not connected by an edge), and low or negligible
power to others. In other words, a maximum independent set
in G corresponds to the set of UEs that can transmit at high
power without causing significant interference. Consequently,
if the special version of the α-FPAP (with α = 1 and specific
channel gain settings) could be solved in polynomial time, the
MISP could also be solved in polynomial time. Considering
that the reduction is polynomial relative to the size of the
input graph G and the MISP is NP-hard, this signifies that
the special version of the α-FPAP is also NP-hard. Since this
special version is at least as difficult as the general problem,
the proof is complete, and the α-FPAP is proved to be an
NP-hard problem1.

III. PROPOSED SOLUTION

A. The Formulation of KANs

The general formulation of a KAN can be expressed as:

f(X) =
2η+1∑
q=1

Φq

( η∑
ρ=1

ϕq,ρ(xρ)
)
, (4)

1This proof establishes NP-hardness for the decision version of the problem.
The optimization version (finding the actual power allocation) is at least as
hard as the decision version.



where f is the continuous multivariate function being approx-
imated, X = {x1, x2, ..., xη} is the set of input variables, η
denotes the number of input variables, Φq (q ∈ {1, ..., 2η+1})
are continuous univariate functions forming the outer layer,
and ϕq,ρ (q ∈ {1, ..., 2η+1} and ρ ∈ {1, ..., η}) are continuous
univariate functions forming the inner layer. This formulation
establishes the fundamental structure of the KAN architecture.
The inner functions ϕq,ρ constitute the first layer of the
Kolmogorov-Arnold network, performing initial transforma-
tions on individual input variables. The outer functions Φq

form the second layer, operating on the aggregated outputs of
the corresponding inner functions.

As mentioned, the approximation process in a KAN is
achieved through a systematic transformation and aggregation
of input variables. The initial transformation is performed by
the first layer, comprising inner functions ϕq,ρ. This layer
consists of η×(2η+1) functions. Each function ϕq,ρ operates
on a single input variable xρ, serving as a feature extractor
to capture diverse aspects of the input. The outputs of these
functions are subsequently aggregated for each q, yielding
2η+1 intermediate results. The original KAN paper proposes
an implementation of the functions ϕ as described in (5):

ϕ(x) = ω ×
(
b(x) + spline(x)

)
= ω ×

( x

1 + e−x
+
∑
i

ci ×Bi(x)
)

(5)

In this formulation, ω acts as a scaling factor, modulating the
overall magnitude of the function’s output. b(x) represents a
smooth approximation of the Rectified Linear Unit (ReLU)
function, introducing non-linearity and facilitating the capture
of complex data patterns. spline(x) is a piecewise polynomial
function, where Bi(x) denote basis functions (typically B-
spline basis functions), and cis are trainable coefficients or
weights associated with each basis function.

The second layer comprises outer functions Φq , which
further process the intermediate results from the first layer.
This layer consists of 2η+1 functions, where each function Φq

takes as input the sum of the outputs from the corresponding
ϕq,ρ functions of the first layer. These Φq functions perform
additional transformations on the aggregated features, enabling
more complex, non-linear mappings. The final output of the
KAN is obtained by summing the outputs of all Φq functions.
A generalized formulation of a KAN with L = 2η + 1 outer
functions Φq can be expressed as follows:

KAN(X) =
(
ΦL−1 ◦ ΦL−2 ◦ . . . ◦ Φ0

)
(X) (6)

where ◦ denotes function composition.

The universal approximation capability of KANs is derived
from the flexibility in selecting appropriate ϕq,ρ and Φq

functions. These functions can be optimized during the training
process through the adjustment of trainable parameters (the ci
coefficients in the spline functions). Once trained, these fully
explainable functions can be used to directly produce outputs
based on given inputs using basic mathematical operations,

making KANs highly efficient in terms of inference cost and
suitable particularly for real-time applications in resource-
constrained environments.

B. Dataset Generation

To address the α-FPAP with KANs, the first step is to
create a supervisory dataset, as represented in Algorithm
1. This algorithm systematically generates a diverse set of
training examples, encompassing various network topologies
and fairness parameters. The algorithm takes as input the
system model parameters (Θ) and the desired dataset size
(D). It iteratively generates random network topologies (H)
based on the system model parameters and solves the α-FPAP
for different values of α ranging from 0 to 0.9 in increments
of 0.1. Each dataset entry corresponds to a specific α value
and a network with randomly located UEs and BSs, featuring
optimal transmission powers (P) obtained from the Gurobi
optimization solver [13].

It’s important to note that since the α-FPAP is NP-hard,
we employ practical approximations to make the method
computationally feasible. Specifically, we utilize piece-wise
linear approximations of the exponential function in the α-
fairness definition and the logarithmic function in Shannon
rates. This approach enables us to extract near-optimal solu-
tions to the problem for various inputs (i.e., UEs’ path gains)
and fairness-utilization trade-offs (via adjusting α values), thus
creating a comprehensive training dataset for the framework.
The algorithm continues to generate and solve instances until
the desired dataset size D is reached. The resulting dataset
S contains tuples of network topologies, α values, and their
corresponding optimal transmission powers, providing a rich
set of examples for training the KAN to approximate solutions
to the α-FPAP across different network configurations and
fairness settings.

C. Model Training

Following the dataset generation, the subsequent phase
involves KAN training to address the α-FPAP. We adopt a
decentralized methodology wherein each BS is tasked with
training its dedicated KAN to ascertain the transmit power of
its associated UEs. As delineated in Algorithm 2, the training
process commences with data preprocessing. For each BS k,
we construct a new dataset S ′k, derived from the original
dataset S. This dataset comprises input vectors Xt, encom-
passing path gains hi,k for all UEs in the network topology
Ht and the fairness parameter αt, along with target vectors Yt,
consisting of optimal transmit powers pi for UEs associated
with BS k. Next, the dataset is partitioned into training and
test sets utilizing a ratio of β. We then initialize a KAN for
each BS, configured with B×N +1 inputs (corresponding to
the size of Xt) and N/B outputs (representing the size of Yt,
assuming equal distribution of UEs among BSs). The KAN
for each BS undergoes training using its respective training
set and is subsequently evaluated using the test set.



IV. EVALUATION

A. Setup

In this section, we conduct a numerical analysis of the
proposed KAN-based solution using the system model pa-
rameters detailed in Table I. While other parameters may be
selected arbitrarily, they must adhere to the logical framework
established in Section II. We explore two scenarios: first,
evaluating the low inference cost promised by KANs, and
second, assessing KAN’s efficiency in solving the α-FPAP.

B. Inference Cost

To evaluate the inference cost of KANs, we consider a
scenario involving four UEs and one BS. After training the
KAN for 100 rounds using Algorithm 2, we approximate the
function applied to each element of the input vector X to
generate the corresponding element of the target vector Y.
Figure 3 depicts the functions relating each element of X to the

Algorithm 1: Dataset Generation
Input: System Model Parameters (Θ),

Dataset Size (D)
Output: Dataset of Optimal Transmission Powers (S)

1 Initialize S ← ∅
2 t← 0
3 while |S| < D do
4 Generate random network topology Ht based on Θ
5 for α ∈ {0, 0.1, 0.2, . . . , 0.9} do
6 αt ← α
7 Pt ← Solve the α-FPAP for (Ht, αt)
8 S ← S ∪ {t : (Ht, αt,Pt)}
9 t← t+ 1

10 if t = D then
11 break
12 return S

Algorithm 2: KAN Training
Input: Dataset S, Number of BSs B, Training ratio β
Output: Trained KAN for each BS

1 for k ∈ B do
2 Initialize S ′k ← ∅
3 for t ∈ {1, 2, . . . ,D} do
4 extract {t : (Ht, αt,Pt)} from S
5 Xt ← {hi,k|∀i ∈ N and k ∈ B of Ht} ∪ {αt}
6 Yt ← {pi|∀i ∈ N and bi = k and pi ∈ Pt}
7 S ′k ← S ′k ∪ {(Xt,Yt)}
8 Straink ← β · |S ′k| random samples from S ′k
9 Stestk ← (1− β) · |S ′k| random samples from S ′k

10 Initialize the KANs with shape (B ×N + 1,N/B)
11 Train the KAN of BS k using Straink

12 Evaluate the KAN of BS k using Stestk

13 return Trained KAN for each BS

TABLE I
SYSTEM MODEL PARAMETERS.

Parameter Value
Network area 2D: 100m× 100m

Noise power (σ2) 10−9

Max transmit power (Pmax) 1000W
Min transmit power (Pmin) 10W

Path gain (hi,j ) (∥loci − locj∥2)−2

α [0.1, 0.5, 0.9]
KAN implementation Based on the design of Liu et al. [12]
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Fig. 3. The trained KAN for a network comprising four UEs and one
BS and approximated functions for each element of the input vector X =
{h1,b1 , h2,b1 , h3,b1 , h4,b1 , α} to compute p1. It is important to note that
r2 is the coefficient of determination, indicating the accuracy with which the
symbolic function approximates the underlying data for each element.

calculation of the transmit power of UE 1 (p1) after pruning.
The relaxed general function for computing p1 based on X is
given by:

KAN(X)[p1] ≃− 8031× (0.06− x1)
3 + 561× (0.09− x2)

3

+ 6440× (0.1− x3)
4 + 9121× (0.09− x4)

4

− 0.06× log(0.4× x5)− 0.19

This explainable structure enables us to understand the contri-
bution of each input feature to the output, allowing decision-
making through straightforward arithmetic operations. Conse-
quently, when the number of UEs or parameter α changes
in our scenario, the transmit powers can be determined with
significantly reduced inference costs, in contrast to many other
deep machine learning techniques that necessitate extensive
computational resources due to their complexity.

C. fairness

To investigate the efficiency of the proposed solution in
terms of fairness, we consider a scenario involving three BSs
and the number of UEs varying from 3 to 60. After training the
KAN for 10000 rounds, the results for different α values are
illustrated in Fig. 4. The figure demonstrates that the prediction
error is consistently low across different values of α, indicating
the robustness and effectiveness of the KAN in allocating
transmit powers. When the number of UEs is small, the error
is around 3%, and as the number of UEs increases to 60, the
error only grows to about 4%. Considering the NP-hard nature



Fig. 4. The prediction error (%) for the proposed KAN solution in a network
with three BSs and varying numbers of UEs (3-60), shown for different
α values (0.1, 0.5, 0.9). The solid lines represent the average of multiple
simulation results, while the shaded areas encompass the individual data points
from each simulation run, illustrating the range and distribution of outcomes.

of the problem, which typically results in exponential growth
in complexity as the problem size increases, this modest
increase in error is remarkably small. This demonstrates that
the KAN remains highly efficient even as the network scales
up significantly.

V. CONCLUSION

This paper addresses the fairness-utilization trade-off in
wireless networks by maximizing α-fairness of UE data rates
through transmit power allocation. First, we formulated the
problem as a non-linear program and proved its NP-hardness
by reducing the MISP to it. Then, to achieve low inference
costs, we proposed a method based on the Kolmogorov-
Arnold representation theorem, detailing data generation and
decentralized KAN training algorithms. Extensive simulations
demonstrated the KAN’s high efficiency across significant
network size increases and various α values, allocating trans-
mit powers with negligible computational cost due to its
explainability.

For future research directions, we propose to extend the
application of KAN-based decision-making to multiple-access
control problems. This extension would encompass not only
the management of UE transmit power but also the regulation
of their admission to shared spectrum resources. Such an
approach would build upon our previous work on multiple
access in semantic-aware [10] and continual reinforcement
learning [14] scenarios within the Metaverse context. Fur-
thermore, we intend to explore the integration of KAN-based
power allocation techniques with resource allocation strategies
in other domains. This includes investigating applications
in wired network infrastructures and distributed computing
environments [15]–[17].
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