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Abstract—This paper investigates the fundamental traffic steer-
ing issue for cellular-enabled unmanned aerial vehicles (UAVs),
where each UAV needs to select one from different Mobile
Network Operators (MNOs) to steer its traffic for improving the
Quality-of-Service (QoS). To this end, we first formulate the issue
as an optimization problem aiming to minimize the maximum
outage probabilities of the UAVs. This problem is non-convex and
non-linear, which is generally difficult to be solved. We propose a
solution based on the framework of deep reinforcement learning
(DRL) to solve it, in which we define the environment and
the agent elements. Furthermore, to avoid sharing the learned
experiences by the UAV in this solution, we further propose a
federated deep reinforcement learning (FDRL)-based solution.
Specifically, each UAV serves as a distributed agent to train
separate model, and is then communicated to a special agent
(dubbed coordinator) to aggregate all training models. Moreover,
to optimize the aggregation process, we also introduce a FDRL
with DRL-based aggregation (DRL2A) approach, in which the
coordinator implements a DRL algorithm to learn optimal
parameters of the aggregation. We consider deep Q-learning
(DQN) algorithm for the distributed agents and Advantage Actor-
Critic (A2C) for the coordinator. Simulation results are presented
to validate the effectiveness of the proposed approach.

Index Terms—Unmanned Aerial Vehicles (UAVs), Cellular
Networks, Connection Steering, Deep Reinforcement Learning
(DRL), Federated Deep Reinforcement Learning (FDRL), FDRL
with DRL-based Aggregation (DRL2A).

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have shown great
prospects in a wide range of applications, such as crowd
surveillance, rescue management and disaster recovery, which
urgently demand the support of high performance communi-
cations. A promising technology is to integrate UAVs into
cellular networks, where UAVs can utilize ubiquitous base
stations (BSs) to communicate with distant control cen-
ter/users. Meanwhile, UAVs can reuse the licensed spectrum
resources of cellular networks to achieve high rate, reliability
and security for data transmission. Therefore, cellular UAVs
have been identified as one important component of the next
generation wireless networks. The connection steering, which
is to dynamically steer UAVs’ communications to one of Mo-
bile Network Operators (MNOs), is significantly important to
guarantee the Quality-of-Service (QoS) for supporting various
applications of cellular UAVs.

As shown in Fig. 1, a framework for traffic steering would
enable a UAV to be connected to several MNOs in the same
time, while sending the traffic via the one ensuring the best
QoS. In this framework, a steering gateway is considered in an

edge cloud located near to the BSs of the concerned MNOs.
This gateway has the role of preserving one IP address when
communicating with the internet, ensuing therefore seamless
steering. Based on the above observations, two fundamental
and interesting issues arise for cellular-enabled UAVs. One
issue is how to select an optimal MNO for each UAV to
enhance the performance of UAV communications. Another
issue is how to solve the complex optimization problem for
large-scale networks in a relatively short time.
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Fig. 1: Framework for traffic steering via different mobile
networks.

In the literature, different methods have been proposed to
improve the QoS of cellular UAVs. The work in [1] aims
at minimizing the outage probability by jointly optimizing
channel and power allocation based on game theory. The data
rate is maximized by jointly optimizing channel and power
allocation, where a weighted mean square error (MSE) is
used to model the problem [2]. The work in [3] aims to
optimize the transmit power of UAVs serving as aerial BSs
while maximizing the data rate from the UAVs to their served
users based on the transport theory and facility location. In [4],
the authors propose a price-based power allocation scheme to
maximize the system utility using Stackelberg game theory.

Recently, some initial works exploit machine learning (ML)
approaches to optimize the performance of UAV communica-
tions [5], [6]. The work in [5] first formulates the optimal
deployment of multiple UAVs acting as BSs to serve ground



users as a mixed-integer program, and then solves it using
an unsupervised learning approach. In [6], the goal of the
work is to maximize the data rate by jointly optimizing user
association, power allocation and trajectory design based on
a deep reinforcement Learning (DRL) approach. Other works
such as [7]–[9] use DRL to perform path planning for cellular-
enabled UAVs.

However, the connection steering has not been well ex-
plored for cellular-enabled UAVs. Fewer works have addressed
the problem of connection steering, especially between the
connected devices and the serving BSs. Initial solutions have
been provided in [10], [11]. However, this solutions require
a central agent that collects experiences from all the UAVs
and issue decisions on the selected MNOs. Such solutions
can not be applicable in situations where the UAVs are
not willing to share their experiences and consider them as
private data. To address these challenging issues, this paper
advances a Federated Deep Reinforcement Learning (FDRL)
solution for UAV traffic steering in cellular networks. The
main contributions of this paper are summarized as follows.

• We propose a DRL framework, based on deep Q-learning
(DQN), for UAV traffic steering in which we define the
environment and the agent elements.

• We further propose a FDRL solution, where distributed
agents train local models without sharing their experi-
ences. The local models will be communicated a coordi-
nator to aggregate them.

• To enhance the aggregation process, we also propose
a DRL-based aggregation (FDRL2A) approach, where
the coordinator also implements a DRL algorithm. The
advantage actor-critic (A2C) is considered for the coor-
dinator.

The rest of the paper is organized as follows. The system
model and the problem formulation are provided in Section II.
The proposed DRL framework for UAV traffic steering in
cellular networks is introduced in Section III. The extended
FDRL is thereafter presented in Section IV. Performance
evaluations are then provided in Section V. Finally, Section VI
concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

1) System Model: We consider an uplink transmission
scenario, where data is transmitted from the flying UAVs to
the serving BSs. We use U and O to denote the set of UAVs
and MNOs, respectively. We also use Vo and Co to denote the
set of BSs belonging to the MNO o ∈ O and the set of RB
belonging to the same MNO, respectively. In the concerned
scenario, each UAV is connected to several MNOs and steers
the traffic via a selected one. Let uvo denote the link between
the UAV u ∈ U and its serving BS vo ∈ Vo in the MNO
o ∈ O, and denote tvo the link between the interfering UAV
t ∈ U to the BS vo ∈ Vo in the MNO o ∈ O.

The received signal-to-noise ratio (SNR) γuvo
for the link

uvo, is given by

γuvo
= Pu|αuvo

|2/N0, (1)

where Pu denotes the transmit power of UAV u, αuvo denotes
the channel gain between the transmitter u and the receiver
vo, and N0 stands for the variance of a zero-mean additive
white Gaussian process. We can define the instantaneous
received signal-to-interference-plus-noise ratio (SINR) for the
link between a UAV u and the BS vo as

SINRuvo = γuvo/(1 +

t̸=u∑
t∈U

γtvo). (2)

We use P out
uvo

(γth) to denote the outage probability of the
UAV u, which is defined as the probability that u fails in
transmitting its data to its serving BS vo in the MNO o. Then,
we have

P out
uvo

(γth) =

m∑
j=1

(
σ1j

(−1)j

(j − 1)!

(
m

Auvo

)−j
(
Γ(j) +

N∑
t=1

δ′tfj,1(Btvo )−

N∑
t=1

m∑
j′=1

δt,j′
(−1)j

′

(j′ − 1)!
fj,j′ (

Atvo

m
)

))
− σ21Buvo

[
1 + exp

(
−

γth

Buvo

)
(

N∑
t=1

δ′t
γth

Buvo
+ 1

Btvo

−
N∑
t=1

m∑
j=1

δt,j(
γth

Buvo
+ m

Atvo

)j (−1)j

(j − 1)!
Γ(j)

)]
,

(3)

where γth is the SINR threshold. Auvo and Buvo
refer

respectively to the mean SNR characterizing the LoS and
NLoS conditions for the link uvo. m is the parameter of the
Nakagami distribution which is used for LoS link. Γ(j) is the
gamma function. ([1, . . . , N ]) refers to the list of interferer
UAVs. The terms σ1j , σ21, δ′t, and δt,j have unique values
satisfying the fractional decomposition formulas [12, Eq. (10)
and Eq. (12)]. fj,j′(y) is a Laguerre polynomial-based function
[12, Eq. (13)]. The proof of the outage probability formula is
provided in [12].

2) Problem Formulation: To enhance the QoS, our ob-
jective is to minimize the maximum outage probability by
optimizing the selection of MNO for each UAV. We use a
Boolean variable xuo to decide whether a UAV selects one
from the set O of MNOs or not, where

xuo =

{
1 if the UAV u ∈ U selects the MNO o ∈ O
0 otherwise.

(4)

Then, the traffic steering can be formulated as the following
constrained optimization problem:

minimize
{xuo}

max
u∈U

(∑
o∈O

xuoP
out
uvo (γth)

)
(5)

s.t. ∑
o∈O

xuo = 1, ∀u ∈ U (6)

xuo ∈ {0, 1}, ∀u ∈ U ,∀o ∈ O. (7)

However, this problem is nonlinear due to the nonlinear
expression of the outage probability defined in the objective
function of the above optimization problem. To solve it, we
propose a deep reinforcement learning framework of UAV
traffic steering in the next section.



III. A DEEP REINFORCEMENT LEARNING FRAMEWORK
FOR UAV TRAFFIC STEERING

In this section, we provide a solution for the problem of
UAV traffic steering based on the framework of deep reinforce-
ment learning. Throughout interactions with the environment,
an agent can learn complex tasks and decide on their execution
in a way to optimize a given objective. A central agent
is considered in the proposed framework to train a model
allowing to select the optimal MNO for each UAV. At a
time slot t, the agent gets current state of the environment
st, and then decides on the appropriate action at (MNOs to
be selected) to execute. The agent will thereafter get the next
state st+1 and the associated reward rt. A replay memory M
is also used to store the experiences that will be used to train
the model. In what follows, we further define the system state,
the action space and the system reward. In addition, we also
introduce the learning process for training the model where a
DQN algorithm is considered.

A. System State

The system state is used to capture the features character-
izing the network deployment. At each time slot t, it can be
described as

st = [φt, Dt,Ωt,Θt] ∈ S, (8)

where 
φt = [ψuv]u,v ∈ [−π, π]|U|×|∪o∈OVo|,
Dt = [duv]u,v ∈ R|U|×|∪o∈OVo|,

Ωt = [vuo]u,o ∈ ∪o∈O(V |U|
o ),

Θt = [cuo]u,o ∈ ∪o∈O(C|U|
o ),

(9)

and S is the set of states. In (9), ψuv refers to the orien-
tation angle formed between the UAV u ∈ U and the BS
v ∈ ∪o∈OVo, which is computed as ψuv = tan−1(∆y

uv/∆
x
uv),

where ∆x
uv and ∆y

uv respectively correspond to the difference
in the x and the y coordinates between u and v. duv refers to
the distance between the UAV u ∈ U and the BS v ∈ ∪o∈OVo.
vuo is the serving BS of the UAV u ∈ U in the MNO o ∈ O.
As for cuo, it corresponds to the assigned resource block to
the UAV u ∈ U in the MNO o ∈ O.

B. Action Space

After receiving a system state st, the agent will decide
on the action at to perform. The action space is defined to
reflected to choice of the selected MNOs to be used for traffic
steering for each UAV u ∈ U . Therefore, at each time slot t,
an action is described as

at = [aut ]u ∈ O|U|, (10)

where aut ∈ O corresponds to the MNO selected for the UAV
u at time slot t.

C. System Reward

The system reward is defined based on the objective func-
tion in such a way that maximizing the reward values would be
translated into minimizing the outage probabilities. Regarding

a system state st and the action at, the corresponding system
reward function R(st, at) is defined as{

R(st, at) = [rut ]u ∈ [0, 1]|U|,
rut = 1− P out

uvo
(γth),

(11)

where P out
uvo (γth) is the outage probability of the UAV u after

considering the action at in the state st.

D. Learning Process

Based on the above definitions of the system state, action
space and system reward, we provide in this subsection a
learning process allowing to train a model to select optimal
actions for given system states. To this end, we consider
the DQN algorithm. The optimization objective is to find an
optimal policy π ∈ Π for maximizing the expected long-term
reward, which is expressed as the following the V-function
Vπ(s): {

V∗(s) = max{π} Vπ(s),
Vπ(s) = E [

∑∞
t=0 τ

tR(st, at)|s0 = s] ,
(12)

where E[.] is the expectation operator and τ ∈ [0, 1] reflects a
discount factor. By applying the Bellman equation, Vπ(s) can
be written as

Vπ(s) =
∑

a∈O|U|

π(a|s)

(
R(s, a) + τ

∑
s′∈S

P (s′|(s, a)).Vπ(s′)

)
︸ ︷︷ ︸

Qπ(s,a)

,

(13)

where a is the action taken at the state s, π(a|s) denotes the
possibility of taking the action a when the sate is s, and s′

is the possible resulting states after executing a. The function
Qπ(s, a) reflects the Q-function which defines the value of
the taken action a in the state s under the policy π. Based
on the Bellman optimality equation, the optimal policy can be
formulated as{

V∗(st) = maxat Q∗(st, at),
Q∗(st, at) = R(st, at) + τ maxat+1

Q∗(st+1, at+1).
(14)

Given the complexity of the environment, which is charac-
terized by continuous state space, we consider a deep neural
network to estimate the function Qπ(st, at). Let θt denote
the parameters of the model at time slot t. We can write
Qπ(st, at) ≈ Qπ(st, at, θt). We also use the history of
experiences stored in the replay memory and the gradient
decent to update the model parameters. More precisely, the
parameters θt are learned by iteratively minimizing the loss
function defined as

Lq(θt) =
∑

(st,at)∈M

(
R(st, at) + τ max

at+1

Qπ(st+1, at+1, θt−1)

−Qπ(st, at, θt)
)2
. (15)

The above learning process allows to train models to decide
optimal selection of MNO for each UAV in a way to reduce
their outage probabilities. This training process is performed



by an agent throughout the interaction with the environment.
However, the use of a centralized agent requires UAVs to share
their achieved outage probability with this agent. In addition,
the latter is aware of the selection performed by each UAV
as it holds the trained model. In order to address the issue
where UAVs consider these information (i.e., the action and
the captured reward) as private information, we propose a
federated deep reinforcement learning framework for UAV
traffic steering. The latter allows UAVs to train individual
model without the need to share their achieved QoS or the
selected MNOs.

IV. A FEDERATED DEEP REINFORCEMENT LEARNING
FRAMEWORK FOR UAV TRAFFIC STEERING

This section introduces the proposed framework of FDRL
for UAV traffic steering. The aim is to enable training models
in a distributed way to select the MNO used to steering the
traffic for each UAV, without sharing the experiences or the
selected MNOs by the UAVs. The general architecture of the
framework is depicted in Fig. 2. In this framework, each UAV
will be associated with an agent that deals with individual
experiences and trains a model to issue individual actions. On
the other hand, a coordinator is considered to aggregated the
individual models. Therefore, we first derive the structure of
the individual agents. Then, we introduce the structure of the
coordinator.
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Fig. 2: Architecture of the FDRL2A model.

A. Distributed Reinforcement Learning

In this subsection, we propose a distributed reinforcement
learning for the problem of UAV traffic steering. Considering
(10) and (11), we can write the system actions and rewards as{

at = [aut ]u,
R(st, at) = [rut ]u = [Ru(st, a

u
t )]u.

(16)

We can see from (16) that the system actions and rewards
are based on individual values from the different UAVs. Note
that the function Ru(st, a

u
t ) in practice is computed locally,

as each device can perceive such QoS. On the other hand,
the system state is kept shared among all the agents. This is
commonly known as vertical federated reinforcement learning

[13]. As reflected in Fig. 2, each agent u ∈ U deals with
individual actions, aut , and rewards, rut , while the states st are
kept shared. Based on these formulations of the system actions
and rewards, we derive the learning process to be considered
locally by each UAV.

Considering the DQN algorithm described in the previous
section, the underlying optimization aims to maximize the
long-term reward. We first express the value function Vπ(s)
as

Vπ(s) = E

[ ∞∑
t=0

τ tR(st, at)|s0 = s

]

= E

[ ∞∑
t=0

τ t[Ru(st, a
u
t )]u|s0 = s

]
= [V u

π (s)]u. (17)

As we can see from (17), the value function Vπ(s) can also be
expressed based on the functions V u

π (s) corresponding to each
UAV u ∈ U . Each agent will therefore target to maximize the
expected long term-term reward and find the optimal strategy
that achieves V u

∗ (s). By considering the Bellman equation and
following the same approach of the previous section, we can
express the optimal policy for each agent u ∈ U as{

V u
∗ (st) = maxau

t
Qu

∗(st, a
u
t ),

Qu
∗(st, a

u
t ) = Ru(st, a

u
t ) + τ maxau

t+1
Qu

∗(st+1, a
u
t+1),

(18)

where Qu
∗(st, a

u
t ) is the Q-function implemented by the agent

u. Note that the agents are dealing with local experiences
and their policies would be different. In order to estimate the
function Qu

π(st, a
u
t ), each agent u ∈ U operates a local model

whose parameters at time slot t are denoted by θut . We can
therefore write Qu

π(st, a
u
t ) ≈ Qu

π(st, a
u
t , θ

u
t ).

B. Model Aggregation

As the distributed agents do not share their experiences, they
operate different models. As depicted in Fig. 2, a coordinator
is considered in the proposed framework to aggregate the
different models and return the resulting one to the distributed
agents. The coordinator therefore does not deal with the
experiences of the agents, maintaining therefore the privacy of
the data. The aggregation is performed at a predefined round
of iterations. Let t̂ denote the evolving iteration round. The
model aggregation is expressed as

θt̂ =
∑
u∈U

βu
t̂
θu
t̂
, (19)

where [βu
t̂
]u ∈ [0, 1]|U| is a weighting parameter, and∑

u∈U β
u
t̂

= 1. θt̂ corresponds to the model that will be
shared back with the distributed agents. The value of the
weighting parameters [βu

t̂
]u affects the inference result. To

further optimize this process, we propose in this paper to
consider the coordinator as an agent whose objective is to
learn optimal values for the weighting parameters. We propose
a DRL-based aggregation (FDRL2A) approach. Under such
an approach, the coordinator decides on the values of the
weighting parameters, which is used to produce the aggregated
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Fig. 3: Evaluation of the proposed solutions (DRL, FDRL and FDRL2A).

model for the distributed agents. The coordinator also gets a
reward value that corresponds to its decision. We derive in
what follows the system state, the action space, the system
reward as well as the learning process of the coordinator.

The system state is defined in a way to capture the feature
characterizing the agents, which is reflected in their respective
models. Therefore, the system state ŝt̂ at the iteration round t̂
is described as

ŝt̂ = [θu
t̂
]u. (20)

The action space reflects the values to be selected for the
weighting parameters, and then an action ât̂ to be performed
at an iteration round t̂ is described as

ât̂ = [βu
t̂
]u. (21)

The action will therefore allow to produce the aggregated
model θt̂, using (19), which will be sent back to the agents.

The system reward is defined as value actions allowing to
enhance the aggregation process. To this end, each agent u ∈
U computes at the end of each iteration round t̂ the average
reward r̂u

t̂
achieved at this iteration. The system reward when

applying the action ât̂ on the state ŝt̂ is defined as

R̂(ŝt̂, ât̂) = [r̂u
t̂
− r̂u

t̂−1
]u. (22)

As we can see, the reward increases only when the average re-
ward of the associated agents progresses from the last iteration
round. Maximizing the expected reward for the coordinator
is therefore translated into selecting values for the weighting
parameters that increase the rewards for the distributed agents.

Learning process allows building a model that selects op-
timal values for the weighting parameters. To this end, we
consider the A2C algorithm which is a policy-based algorithm
that directly parameterizes the policy π. Two deep neural
networks are used in A2C: one is a dubbed actor used to
approximate the agent policy, and another is a critic used
to approximate the value function. We use θ̈t̂ to denote the
parameters of the actor network and use θ̇t̂ to denote the
parameters of the critic network.

A2C also updates the parameters in the direction
∇log(π(ât̂|ŝt̂))Aπ(ŝt̂, ât̂), which is an unbiased estimation of

∇E[
∑∞

k=0 τ̂
kR̂(ŝt̂+k, ât̂+k)], where Aπ(ŝt̂, ât̂) is the advan-

tage value which is defined as

Aπ(ŝt̂, ât̂) = Qπ(ŝt̂, ât̂)− Vπ(ŝt̂). (23)

Furthermore, by considering the Bellman equation, the advan-
tage can be expressed as

Aπ(ŝt̂, ât̂) = R̂(ŝt̂, ât̂) + τ̂Vπ(ŝt̂+1)− Vπ(ŝt̂), (24)

where τ̂ ∈ [0, 1] is the discount factor. The parameters of
critic network are learned by minimizing the error of the value
function as

Lc(θ̇t̂) = E[Aπ(ŝt̂, ât̂)
2]. (25)

As for the actor network, the parameters are learned by
minimizing the negative log likelihood scaled by the advantage
as

La(θ̈t̂) = E[Aπ(ŝt̂, ât̂)log(π(ât̂|ŝt̂))]. (26)

V. PERFORMANCE EVALUATIONS

This section presents the results of the performance evalua-
tions. The simulation considers a Nakagami parameter m = 2
and a noise variance N0 of −130dBm [14]. In addition, in
order to limit the action space, the detection area for a UAV
is limited to a zone of 500m × 500m, 2 MNOs, 4 BSs per
MNO and 8 UAVs.

Three Deep reinforcement learning solutions have been
implemented; In addition to the proposed FDRL2A approach,
we have also implemented the DRL solution presented in Sec-
tion III and also a FDRL solution where the model aggregation
performed by the coordinator is based on averaging the models
of the different agents. The two implementations, DRL and
FDRL, are used as baselines for our proposed approach. The
comparison is based on the archived reward values by the
different solutions. Note that the achieved outage probabilities
can directly be derived from those of the reward values, as the
later is expressed as 1− P out

uvo
(See equation (11)).

We have first compared the proposed FDRL2A solution
with the DRL and the FDRL solutions. The results of the
evaluations are depicted in Fig. 3. As we can see, the three
approaches are able to learn optimal strategies allowing to
enhance the reward values. This is directly translated into
selecting optimal MNO for each UAV in a way to reduce
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Fig. 4: Evaluation of the proposed FDRL2A against FDRL with 3 malfunctioning agents.

the outage probability. In the case of the DRL solution, one
centralized agent agent is considered to collect the experiences,
learn a model and take decision. However, in the case of
the proposed FDRL2A approach and also the FDRL solution,
distributed agents (corresponding to the different UAVs) take
individual decisions without sharing their experiences. At the
end of each iteration (5 iterations are considered in the eval-
uation), the coordinator aggregates the models of the agents.
We can see from the conducted evaluation that the reward
decreases for the first episodes after each model aggregation
(Fig. 3 (b) and Fig. 3 (c)). However, this only lasts for a couple
of episode then increases again.

Furthermore, in order to show added-value of the FDRL2A
approach against the FDRL solution, we have performed
another evaluation where some agents send random and un-
learned models to the coordinator (case of malfunctioning
agents). This directly affects the aggregated model produced
by the coordinator. The obtained results are depicted in Fig. 4.
As we can see, while the consideration of 3 malfunctioning
agents has induced the coordinator to produce an aggregated
model that led to unstable reward values in the FDRL solution,
the proposed FDRL2A approach showed better results. This
is due to the fact that the coordinator agent in the proposed
FDRL2A solution learned optimal strategies to select the
values of the weighting parameters based on the agents’
models, whereas the FDRL solution performs averaging-based
aggregation. This proves that the proposed approach can still
operate even with the presence of malfunctioning agents.

VI. CONCLUSION

This paper investigated the traffic steering for cellular-
enabled UAVs. The paper advanced the approach of FDRL2A,
where the coordinator of a FDRL environment implements
a DRL algorithm to learn optimal strategies to perform the
aggregation. The simulation results illustrate that the proposed
FDRL2A approach can achieve the similar performance as the
DRL and FDRL solutions. Remarkably, in comparison with
DRL, the proposed FDRL2A can avoid sharing their learned
experiences among the agents. Furthermore, the evaluations
against a FDRL solution show that the proposed FDRL2A can

learn optimal strategies to perform model aggregation, even
with the presence of malfunctioning agents.
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