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Abstract—This paper investigates the fundamental connection
steering issue in cellular-enabled Unmanned Aerial Vehicles
(UAVs), whereby a UAV steers the cellular connection across
multiple Mobile Network Operators (MNOs) for ensuring en-
hanced Quality-of-Service (QoS). We first formulate the issue as
an optimization problem for minimizing the maximum outage
probability. This is a nonlinear and nonconvex problem that
is generally difficult to be solved. To this end, we propose a
new approach for solving the optimization problem based on
Deep Reinforcement Learning (DRL), considering two important
reinforcement learning algorithms (i.e., Deep Q-Learning (DQN)
and Advantage Actor Critic (A2C)). Simulation results show
that under the proposed approach, the UAVs can make optimal
decisions to select the most suitable connection with MNOs for
achieving the minimization of the maximum outage probability.
Furthermore, the results also show that in our new approach,
the A2C-based algorithm is better than the DQN-based one,
especially when the number of MNOs increases, while the DQN-
based algorithm can be executed in a shorter time.

Index Terms—Unmanned Aerial Vehicles (UAVs), 5G, Beyond
5G, Mobile Networks, Connection Steering, and Deep Reinforce-
ment Learning.

I. INTRODUCTION

Mobile networks have been advocated to be the commu-
nication infrastructure to support the challenging applications
of Unmanned Aerial Vehicles (UAVs) [1]. Specifically, UAVs,
which connect to cellular networks, have attracted increasing
attention from both military and civilian fields like remote
monitor, industrial detection, cargo delivery and remote sens-
ing. This is because cellular UAVs can provide distant commu-
nication services with high throughput, low delay and strong
security, and thus can satisfy various application requirements.
Accordingly, they have been envisioned as a critical compo-
nent in the 5th generation of mobile networks and beyond.

The cellular UAVs could bring many new opportunities.
Particularly, the UAVs can flexibly switch their connections
with different network operators (MNOs) within their coverage
range for routing the traffic, aiming to significantly improve
the Quality-of-Services (QoS). Indeed, some new OBUs (On-
Board Units), which are used to enable vehicular communica-
tions to cellular networks, integrate the possibility to connect
to several mobile networks at the same time. As illustrated
in Fig. 1, an OBU can support the simultaneous connections
to several mobile networks [2]. The traffic from the OBU
is first directed, using one selected MNO, to a steering

service residing in an edge service nearby the base stations
(BSs) of the concerned MNOs. This service ensures seamless
connection to the internet by preserving one IP address if
a steering operation happens. Although an OBU module is
being originally considered for vehicular communications, this
principle can be also considered for UAVs. A crucial issue for
these OBU-equipped mobile UAVs is how to constantly select
and connect to the right MNO for ensuring enhanced QoS and
accordingly steering the traffic.

Fig. 1: An OBU module can enable the connection to several
mobile networks at the same time.

While the concept of traffic steering among multiple MNOs
can enhance the QoS for cellular UAVs, it comes with
important challenges. Effectively, the selection of MNOs is
of fundamental importance to achieve enhanced QoS. This
selection depends on different parameters and becomes more
complex in case of a large scale network. Furthermore, given
the moving nature of UAVs, the traffic steering decision needs
to be taken within a relatively short time. This underpins the
focus of this paper, where we elaborate on enabling traffic
steering for cellular UAVs in online use. To this end, we
advocate an approach based on Deep Reinforcement Learning
(DRL). Recently, available works on DRL for cellular UAVs
mainly focus on the studies of path planning and resource
management. However, to the best of the authors’ knowledge,
no work has considered DRL for traffic steering, particularly
in the context of cellular UAVs.

The rest of this paper is organized in the following fashion.
We review some related works on connection steering and
reinforcement learning in Section II. The considered system
model and the formulation of the problem are presented in
Section III. Thereafter, we introduce the proposed deep rein-



forcement learning approach for traffic steering in Section IV.
Performance evaluations are provided in Section V. The paper
concludes in Section VI.

II. RELATED WORK

In the literature, some works considered the concept of con-
nection steering to route the traffic between different network
functions [3], [4]. However, this principle is less studied for
the part between the connected devices and the serving BSs.
The work in [5] focused on LTE-connected vehicles. The
authors target enhancing the communication by anticipating
QoS degradation and directing the traffic to different Radio
Access Technologies (RAT). In [6], the authors considered the
problem of connection steering in cellular-enabled UAVs. The
proposed solution steers UAV communication to the mobile
network ensuring the best Radio Signal Strength Indicator
(RSSI) quality. The work is analyzed by applying Discrete
Time Markov Chain (DTMC) to evaluate the performance of
the testbed results. However, while RSSI can be considered as
a good indicator for terrestrial communication, aerial commu-
nication presents different characteristics imposing the revision
of such indicators. In [7], the authors proposed a coalitional
game-based solution for traffic steering in cellular UAVs. The
goal is to form UAVs in coalitions around MNOs in a way
to enhance their QoS. However, the convergence of the game
takes time which makes such a solution more adequate for
offline use (planning) rather than for online use.

Recently some studies have proposed the use of DRL
for cellular UAVs, mainly for path planning and resource
management. In [8], the authors proposed a DRL for cellular
UAVs. The goal is to optimize UAV path planning while taking
resource management into consideration by achieving a trade-
off between maximizing energy efficiency and minimizing
both wireless latency and the interference. The authors in [9]
tackled the problem of UAV navigation in a way to have
the best UAV-ground link. The authors considered massive
multiple-input-multiple output (MIMO) and proposed a deep
Q-learning for selecting the optimal policy. In [10], the authors
considered the application of providing wireless charging for
UAVs deployed to collect data from sensor devices scattered
in the physical environment. A reinforcement learning based
approach is proposed to plan the route of a UAV, where the
problem is formulated as a Markov decision process and Q-
learning is used to find the optimal policy. The authors in [11]
considered the problem of providing computation resources to
ground UE using Flying Mobile Edge Computing (F-MEC)
on top of UAVs. A reinforcement learning based algorithm is
proposed to optimize the trajectory of the UAVs. In another
work [12], the authors focused on network aided UAVs, where
UAVs serve as aerial base stations for multiple ground users.
The trajectory design is investigated to maximize the expected
uplink sum rate with inaccessibility to user-side information,
such as locations and transmit power as well as channel
parameters. The problem is formulated as a Markov decision
process and is solved with model-free reinforcement learning.

Although the application of DRL for cellular UAVs is
getting more interest, their use for traffic steering has not been
investigated, and that is to the best of the authors’ knowledge.
Such an application is very crucial, mainly to enable quick
and online decisions for flying UAVs. In the next section, we
present the system model for traffic steering in cellular UAVs
as well as the problem formulation.

III. SYSTEM MODEL AND PROBLEM FORMULATION

1) System Model: We consider a cellular network consist-
ing of UAVs and BSs. BSs belong to different MNOs. We use
O, U and Vo to denote the sets of MNOs, UAVs and BSs,
respectively. We also denote by Co the set of sub-carrier used
by the MNO o ∈ O. As shown in Fig 2, each UAV u ∈ U has
a serving BS in each MNO, and can steer its communication to
only one selected MNO. We also consider the uplink scenario
and we use the term uvo to denote the link between the UAV
u ∈ U and the BS vo ∈ Vo, while the term tvo is used to
denote the link between the interfering UAV t ∈ U and the
non serving BS vo ∈ Vo. The instantaneous received signal-to-
noise ratio (SNR) for the link uvo, which is denoted by γuvo ,
can be computed as

γuvo = Puα
2
uvo/N0, (1)

where Pu stands for the transmission power of UAV u, αuvo

is the fading coefficient and N0 refers to the variance of a
zero-mean additive white Gaussian process. The instantaneous
received signal-to-interference-plus-noise ratio (SINR) for the
link between a UAV u and the BS vo can be obtained as

SINRuvo = γuvo
/(1 +

t6=u∑
t∈U

γtvo
). (2)

Fig. 2: System model (uplink): a UAV can connect to different
MNOs and steer the connection only via one selected MNO.

We consider a probabilistic model for the propagation
channel which depends on the line-of-sight (LoS) condition
PLoS
uvo defined in 3GPP [13]. The LoS situation results in better

channel conditions for the UAV. The path loss expression,
PLuvo , is therefore expressed in terms of this condition
introduced in [13]. We also take into account the effect of



fading. It follows a Nakagami-m distribution for LoS links,
and a Rayleigh distribution for NLoS links. We define the two
parameters Auvo and Buvo to characterize the mean values of
the SNR, for LoS and NLoS conditions, respectively, as{

Auvo
= PLoS

uvo
× Pu/N0 × 10−

PLuvo
10 ,

Buvo = PNLoS
uvo

× Pu/N0 × 10−
PLuvo

10 .
(3)

Theorem 1. For an uplink communication from a UAV u
to the BS vo ∈ Vo, we use outage probability P out

uvo (γth)
to characterize the probability that SINRuvo falls below a
target threshold γth leading to the failure of data transmission
between u and vo. Then, it can be expressed as

P outuvo
(γth) =

m∑
j=1

(
β1j

(−1)j

(j − 1)!

(
m

Auvo

)−j(
Γ(j) +

N∑
t=1

δ′tfj,1(Btvo )−

N∑
t=1

m∑
j′=1

δt,j′
(−1)j

′

(j′ − 1)!
fj,j′ (Atvo/m)

))
− β21Buvo

[
1+exp

(
−

γth

Buvo

)
(

N∑
t=1

δ′t
γth
Buvo

+ 1
Btvo

−
N∑
t=1

m∑
j=1

δt,j(
γth
Buvo

+ m
Atvo

)j (−1)j

(j − 1)!
Γ(j)

)]
(4)

where Γ(j) is the gamma function. ([1, . . . , N ]) refers to the
list of interferer UAVs. The terms β1j , β21, δ′t, and δt,j have
unique values satisfying the following formulas (fractional
decomposition)(

1 − x
Auvo
m

)−m
(1 − xBuvo )−1 =

m∑
j=1

β1j

(x− m
Auvo

)j
+

β21

(x− 1
Buvo

)

(5)

N∏
t=1

(1 − xBtvo )−1

(
1 −

xAtvo
m

)−m

=
N∑
t=1

δ′t
x− 1

Btvo

+
N∑
t=1

m∑
j=1

δt,j

(x− m
Atvo

)j
. (6)

The function fj,j′(y) is provided as

fj,j′ (y) =
n∑
p=1

yj
′
(θp)j

′−1λpΓ

(
j,
mγth(θpy + 1)

Auvo

)
, (7)

where λp and θp denote the weight and the zero factors of the
n-th order Laguerre polynomials, respectively [14]. Γ(a, z) is
the upper incomplete gamma function defined as Γ(a, z) =∫∞
z
ta−1e−tdt.

Proof: The proof is provided in [15]. �
As mentioned in [15], Theorem 1 considers most of the

propagation phenomena that the wireless signal undergoes,
which makes the system model realistic.

2) Problem Formulation: As mentioned in the above sub-
section, each UAV can be connected to different MNOs and
needs to steer the connection via one mobile network. The
objective of this paper is to minimize the maximum outage
probability by optimizing the selection of MNO for each UAV,
which can reduce the outage probabilities for the worse-case

links for ensuring the QoS. To characterize the selection, we
define the Boolean variable xuo as

xuo =

{
1, If the UAV u chooses the MNO o ∈ O,
0, Otherwise. (8)

The steering problem can therefore be formulated as,

min-max
u∈U

(∑
o∈O

xuoP
out
uvo

(γth)

)
(9)

s.t.

∑
o∈O

xuo = 1, ∀u ∈ U , (10)

xuo ∈ {0, 1}, ∀u ∈ U ,∀o ∈ O. (11)

The objective function (9), expressed in the above optimization
problem, aims to reduce the outage probability for the UAVs.
This is subject to constraint (10) to ensure that each UAV
selects one and only one MNO, and constraint (11) to limit
the value of the decision variable to {0, 1}.

However, this optimization is not linear and complex to
resolve, especially for a large network. Solving such a problem
takes time. In order to enable quick and online traffic steering
decisions for cellular UAVs, we propose an approach based
on deep reinforcement learning. The next section introduces
the proposed approach.

IV. DEEP REINFORCEMENT LEARNING FOR CONNECTION
STEERING IN CELLULAR UAVS

While solving the above optimization problem can be con-
sidered for offline environments, this is not adequate for online
use. To this end, we advocate in this paper a deep reinforce-
ment approach to enable connection steering in cellular UAVs.
DRL can be trained to learn complex tasks and effectively
takes decisions through the interaction with the environment
based on trial and error processes. More precisely, a RL
agent periodically interacts with an environment, observes the
current state st, then executes an action at. Subsequently, the
agent will observe a new state st+1 and receives a corre-
sponding reward rt. We also design a replay memory to store
history of experiences that will be used during the learning
process. Unlike supervised and unsupervised machine learning
algorithms, RL techniques do not require prior dataset. In what
follows, we present the architecture of the proposed DRL
framework for connection steering. Thereafter, we introduce
the underlying learning process.

A. Architecture of the Proposed DRL Framework

The general architecture of the proposed DRL framework
is depicted in Fig. 3. In particular, we define the state of the
system, the action space and the system reward.

1) System State: The system state is defined in a way
to capture the feature of the current deployment. To this
end, we consider the mean SNR to the serving BS of the
selected MNO for each UAV in defining the system state.
Furthermore, it is very important to define the system state



Fig. 3: Architecture of the DRL framework.

in a way to accommodate the dynamic of the network, so
effective decisions can be made when the number of UAVs
changes. In this regard, the number of MNOs, BSs, and sub-
carriers does not change frequently in practice. Taking this into
consideration, we define the function w(vo,co) that returns the
UAV u being served by the MNO o and assigned with the sub-
carrier co from the BS vo ∈ Vo. At a time step t, the system
state can be defined as st = (sto,vo,co)o,vo,co ∈ R|O|×|Vo|×|Co|,
where

sto,vo,co =

{
Auvo +Buvo

, If ∃u ∈ U|u = w(vo,co),
0, Otherwise.

(12)

As it can be seen, a system state is based on the mean SNR
from each UAV to the serving BS of the selected MNO.

2) Action Space: After receiving a state, optimal selection
of the target MNOs needs to be performed. The action
therefore consists of the target MNOs to be selected by each
UAV and is defined as at = (atv1,c1)v1,c1 ∈ O|V1|×|C1|. The
actions are also applied to the UAVs in their assignment order
to the first MNO. This allows to make a mapping between the
captured state and the taken action, in terms of the order of
the UAVs. This order will also be considered for the system
reward as detailed in what follows.

3) System Reward: The goal is to select for each UAV
the best MNO ensuring the enhanced QoS in the network.
The system reward is therefore defined by considering the
outage probabilities achieved by the UAVs after executing

the received actions. More precisely, a reward for a UAV
u is based on P out

uvo (γth), where vo is the served BS of the
selected MNO after executing the action. The system reward is
therefore defined as rt = (rtv1,c1)v1,c1 ∈ [0, 1]|V1|×|C1|, where

rtv1,c1 =

{
1− P out

uvo
(γth), If ∃u ∈ U|u = w(v1,c1),

1, Otherwise. (13)

As we can see, the system reward is based on the outage
probabilities of UAVs according to their assignment order to
the first MNO, as it is the case for the action.

B. Learning Process

In the proposed framework, we consider two important
reinforcement learning algorithms, namely Deep Q-Network
(DQN) and Advantage Actor-Critic (A2C). A DQN agent
relies on replaying experiences to ensure a stable learning. It
uses Q-values (which is the maximum expected reward) and
computes the temporal difference error based on the distance
between Q-targets (which is the maximum value that can be
captured from the next states) and the predicted Q-values. Two
networks are used in our implementation of the DQN agent,
namely Q-network and target network, to reduce the relevance
between choosing actions and training the model [16]. In A2C
algorithm, we consider two networks, i.e., the actor and critic
networks. The Actor observes the environment and selects a
given action by outputting a probability distribution across the
action space. After that, the Critic evaluates the quality of
the selected action regarding both the current state and the
next state [17]. Furthermore, we use a replay memory to store
experience in our framework, which is implemented as part of
the agent.

Algorithm 1 summarizes the learning process adopted in
the proposed approach. This process is executed in episodes
until reaching a maximum value E. This process is common
for both DQN and A2C agents. At each episode t, the agent
gets the system state st from the environment. Thereafter,
the agent selects an action at. This action is chosen based
on the Q-network in the case of DQN agent, and based on
the Actor network in the case of A2C agent. After executing
the selected action, the agent gets the immediate reward rt

and the new state st+1. This allows to construct the transition
(st, at, rt, st+1) and store it in the replay memory. Finally, the
agent takes samples from the replay memory and learns from

Algorithm 1 DRL algorithm.

Input: Agent (DQN or A2C)
1: for episode t = 1 to E do
2: Observe the state st

3: at = Agent.select action(st)
4: Execute action at

5: Get the reward rt

6: Observe the state st+1

7: Agent.push replay memory(st, at, rt, st+1)
8: Agent.learn()
9: end for



(a) Outage probability (Two MNOs) (b) Outage probability (Three MNOs) (c) Outage probability (Four MNOs)

Fig. 4: Evaluation of the average reward and outage probabilities for DQN agent.

(a) Outage probability (Two MNOs) (b) Outage probability (Three MNOs) (c) Outage probability (Four MNOs)

Fig. 5: Evaluation of the average reward and outage probabilities for A2C agent.

it. This is translated into updating the Q-network in the case
of DQN agent, and both Actor and Critic networks in the case
of A2C agent.

V. PERFORMANCE EVALUATION

In this section, we provide the performance evaluation of
the proposed reinforcement learning approach. The simulation
environment is implemented using python. We considered a
carrier frequency fc of 2 GHz, a noise variance N0 of −130
dBm [18], and a Nakamai parameter m = 2. Furthermore,
in order to reduce the action space we limit detected area for
UAVs to a region of 500m×500m and of 4 BSs and 20 UAVs
in total. As for the DNN, we used Pytorch 1.7.1 [19]. For the
hyper-parameters, we considered a learning rate of 0.003 for
the two agents.

We evaluated the proposed DRL-based approach for traffic
steering considering DQN and A2C algorithms in terms of
the achieved outage probabilities. The obtained results are
respectively depicted in Fig. 4 and Fig. 5. These evaluations
have been performed considering 5000 episodes and a var-
ied number of MNOs. In terms of the outage probabilities,
we have compared the achieved results using DRL-approach
against the initial deployments consisting of a grid topology
and uniform distributions of MNOs on the UAVs (plotted in an

orange color (the more light color in black-and-white printed
form) in Figs. 4 and 5).

As we can see, both agents are able to learn optimal
solutions in selecting the MNOs to be used to steer the
connection for UAVs. The obtained results show that the
agents are able to increase the reward function, which is
translated into reduced outage probabilities as shown in Figs. 4
and 5 (note that the reward function is the inverse of the
outage probability, as provided in Equation (13)). Furthermore,
the achieved reward increases with the number of considered
MNOs. This observation is valid for the two agents. Indeed,
the more MNOs are available, the more choices are present
to distribute the MNOs on the UAVs in a way to achieve
more enhanced spectral efficiency. The evaluation also shows
that A2C agent achieves better results compared to DQN
agent, especially when the number of MNOs increases. Indeed,
increasing the number of MNOs is translated into increasing
the action space. In this regard, the A2C agent demonstrates
its effectiveness in supporting a large action space compared
to the DQN agent. Compared to the initial assignment, the
outage probabilities have been reduced by 4.13%, 4.08%, and
3.56% when considering the DQN agent on a deployment of
2 MNOs, 3 MNOs and 4 MNOs, respectively. It has also been
reduced by 8.04%, 8.31%, and 11.13% when considering the
A2C agent on a deployment of 2 MNOs, 3 MNOs and 4



MNOs, respectively.

Fig. 6: Evaluation of the execution time for DQN and A2C
agents.

We have also evaluated the execution time for selecting
the target MNOs considering the two agents. The result of
the evaluation is depicted in Fig. 6. This evaluation has
been conducted by averaging 5000 trials. As we can see,
the application of the proposed DRL approach involves short
time which is less than 5 ms. On average, the execution time
was 0.27 ms for the DQN agent and 4.5 ms for the A2C
agent. This makes the DQN agent 16 times faster than the
A2C agent. This is due to the fact that the A2C uses two
networks during the selection, in addition to the application
to a distribution function. Nevertheless, the execution time
remains very short which is in the order of milliseconds. This
demonstrates the applicability of such solutions for online use.
We can also observe that increasing the MNOs, from 2 to
4, did not affect the execution time. In our implementation,
increasing the number of MNO is translated into increasing
the action space and the corresponding neural networks only
at the output layer. We note that these evaluations have been
performed on a x86 64 machine with 8 CPUs of 2397.224
MHz, and recent studies have validated the deployment of RL
algorithm for real UAVs.

VI. CONCLUSION

This paper tackled the problem of connection steering in
cellular UAVs. In particular, we focused on enabling quick
and online decisions for selecting MNOs to be used for each
UAV in a way to enhance the QoS in the network. To this end,
the paper proposed an approach based on deep reinforcement
learning. We considered two important RL algorithms, DQN
and A2C. The simulation results showed that the two algo-
rithms can learn optimal decisions in selecting the MNO to
be used for steering the traffic. Remarkably, the results showed
that the implemented A2C algorithm can achieve better results
than the DQN algorithm, especially when the number of
MNOs increases. On the other hand, while the execution time
of the two algorithms is very short, the implemented DQN
agent is faster than A2C agent.
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