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Abstract—In virtualized networks, network functions are de-
livered as software running on generic hardware allowing service
providers to dynamically allocate resources based on traffic
and service demands. Network Function Virtualization (NFV)
is becoming a key enabler and consequently a hot research
topic. Dynamic scaling of resources in NFV is a highly important
challenge towards its implementation in real-life networks. In this
paper, we propose a method to predict the required resources
in the appropriate time to sustain true elasticity in NFV. The
capacity of different Virtualized Network Functions (VNFs)
would increase/decrease in a way that the CPU utilization is
maximized while the overall cost is minimized. In this paper, we
present two strategies to predict the day-ahead CPU utilization.
The first strategy is an offline scheduling method that helps
managing elasticity in virtualized networks by predicting normal
days events. The second one is an online scheduling approach that
predicts the day-ahead CPU utilization during sudden peaks due
to some unusual circumstances. In this paper, we also present new
promising results that show the correlation between the control
and data planes. Finally, we propose a hybrid algorithm that
uses both strategies to efficiently handle elasticity in virtualized
networks. The obtained results are encouraging and are all based
on real-life data of mobile operator networks.

I. INTRODUCTION

Network Function Virtualization (NFV) [1] promises to
deliver network functions as pure software running in a virtu-
alized environment with reduced cost and high deployment
efficiency. Traditionally, network nodes are delivered pre-
configured with highly optimized configurations and with
specialized hardware and dedicated capacity. However, based
on the authors’ previous work [2], the overall load in these
network nodes is only a fraction of installed capacity resulting
in inefficient utilization of resources. In order to overcome
this limitation, the use of NFV is suggested to increase
cost efficiency. As the cloud users follow pay as-you-use
business models, the virtualization with dynamic scaling of
node size based on load is more cost efficient even if large
virtualization overhead for data-plane is taken into account.
We also observed from our previous work [2] that the resource
utilization is different from a network to another but is highly
correlated with time of day and follows almost the same
pattern every day within the same network. Based on our
previous observation, the prediction of required resources for
every day can be done based only on the information gathered
from previous days. This will help the different operators to
increase the elasticity on their network and hence improve cost
efficiency.

On the other hand, traffic patterns in real-life networks may
be affected under special circumstances when there are abrupt
peaks in utilization due to some major events. These events
can be classified into two categories: i) the first category of
events are those that can be predicted a priori, such as new year
holidays; ii) the second category of events are those happening
due to a sudden event and hence cannot be predicted. In this
paper, we propose an offline mechanism to predict day-ahead
CPU utilization and accordingly schedule required virtualized
resources. However, the use of an offline mechanism can
predict the day-ahead CPU utilization only when the first
category of events is happening. The offline method cannot
deal with the second type of events. The events that we cannot
predict a priori can dramatically affect the system functionality
by creating excessive loads on many components of the NFV
system. In order to overcome this limitation, we propose an
online approach to predict CPU utilization over short ranges
of time. However, this method requires additional resources
to continuously monitor the system and dynamically scale the
resources.

Based on the resource utilization patterns of both the control
plane (CP) and data plane (DP) on daily scale [2], we opt
using time series models for forecasting the load a day-ahead,
and also for assessing load transition tendency for both CP
load and DP load [7]. We also show the correlation between
CP and DP utilization. Furthermore, we propose an algorithm
that makes use of day-ahead forecasts, for Virtual Machine
(VM) allocation based on historical data, and current load for
detecting any abnormal peaks due to some special happenings.
To the best knowledge of the authors, this is the first VM
scheduling models in the context of NFV which is based on
historical data from real-life mobile operator networks.

The remainder of this paper is organized as follows. Section
IT presents some background literature related to NFV tech-
nologies. Section III presents our forecasting models. Section
IV reports some observations on dynamic relationship between
CP and DP. Finally, the paper concludes in Section V.

II. RELATED WORK

NFV is foreseen as an important technology to enable the
on-demand creation of cloud-based virtual mobile networks.
Resource management is studied extensively in the context
of cloud based applications to maximize resource utilization
while meeting service level agreements (SLAs)[10]. Different



applications may have dynamic load demands and the re-
sources can be scaled based on workload as cloud users follow
pay as-you-use business models. Many researchers have pro-
posed different algorithms for dynamic scaling of resources in
cloud environment both at VM-level and resource-level using
different techniques. The documents in [3-5] provide surveys
on related research work dealing with resource allocation, VM
management and VM placement in cloud environments.

In this article, we are only concerned with dynamic scaling
of mobile network functions when delivered as virtualized
instances on general purpose hardware in multi-tenant datacen-
ters. In [6], a fine granular resource-aware VNF management
is proposed for the initial deployment and runtime manage-
ment of virtual network infrastructures. The limitation is that
spinning of new resources would take time and can eventually
effect performance. In our previous work [2], we studied
the utilization of traditional network nodes which follows
a repetitive pattern on daily basis. Utilizing historical time
series of real network load, we could predict future demands.
All models proposed in this article are evaluated using real
network data which is described in our prior work [2]. The
resource utilization of real network consists of normal load and
few instances of peak load due to some unpredictable events.
Our proposed algorithm was able to accurately predict day-
ahead resource demand and to prevent impact due to traffic
peaks which are rare.

III. TIME SERIES MODELS

In this section, we will describe our models to predict
resource demand day-ahead based on historical data and
load transition tendency five minutes ahead. We also make
some remarks on the dynamic relationship between control
plane and data plane utilization. For the sake of industrial
applicability, our goal is to come up with an effective, yet
simply implementable, model with a simple parameter setting.

A. OFFLINE Method

Dynamic scaling of VMs based on utilization can be done
ONLINE or OFFLINE. OFFLINE scheduling has the advan-
tage that it follows a pre-defined schedule, hence supporting
normal operations of the networks. The mobile core network
nodes which are to be virtualized follow utilization profiles
with repetitive patterns on daily basis for both CP and DP
[2]. Hence we can make use of time series models to predict
day-ahead resource demand on historical utilization data. The
utilization data under study are with five minutes granularity.
We assumed time series with different window sizes w (i.e.,
number of days), type of day (weekday or weekend), and
allocated different weights «; to each day for predicting
utilization day-ahead. The weight paratmeter «; is given by
equation 1.

X2
ai:m,i:LQ,&..w (1)
whereby the parameter 6 is called a skew factor. Setting 6 to
large values assigns uniform weights to each day while setting

it to values close to 0 yields highly skewed weights [8]. In our
scenario, we implemented the offline method by varying the
window size for w = 2,4,5,7 along with different types of
days for forecasting utilization day-ahead.

1) Model 1 (w =5 for weekdays, w = 2 for weekends)
In this model, we set used w = 5 for consecutive
weekdays and w = 2 for weekends (i.e., previous two
weekends). This approach is motivated by the fact that
the weekends have slightly different utilizations as com-
pared to weekdays for CP utilization [2]. Weekday’s’
utilization can be predicted from previous weekdays and
Saturday utilization can be predicted from last two Sat-
urday utilizations. The model is evaluated on the basis of
Prediction Error (PE), i.e. difference between predicted
utilization and actual utilization, to keep underestimation
as low as possible. In Model 1, the forecast of weekdays
(wd) follow the following formula:

Fy(wdy) =0 (wdy) + az(wds) + as(wds)+

2
ag(wdy) + as(wds) @

Similarly, the weekend day (we) forecast follows equa-
tion 3:

Fi(wer) = aj(wey) + as(wes) 3)

The weights are allocated in such a way that when
predicting for day x, we allocate more weights to pre-
vious day (x-1). From Fig.1, it can be observed that the
prediction error remains between 2% for normal load,
which is an acceptable range that can be reflected in the
actual resource deployment without much impact on the
overall cost. From Fig.1, we also observe that there is
one peak when PE reaches -7 %. This peak in PE is
due to a sudden peak in traffic load generated during
a sudden event. This shows that the proposed offline
model is unable to predict such peaks: certainly, these
peaks can be predicted during pre-known events such as
Football world cup, religious holidays, and New Year
eve, but in other cases, they cannot be easily predicted
earlier. From Fig. 1, we also observe that the obtained
results in terms of PE are slightly better when giving
more weight to immediately previous days in the load
forecast i.e., setting the skew factor to smaller values

e.g., 0 =0.2.
2) Model 2 (w = 2 for weekdays irrespective to day
type)

In this model, we used w = 2 to forecast load demand
day a- head using the utilization data of the same days
from two previous weeks. This model uses the same
approach of Model 1 applied to weekends. This model is
simplest: the load at time t is forecasted by simply using
the load at time t, from the same days of the previous
two weeks. Similarly, the any day (d) forecast follows
equation 4:

Fi(dy) = a1(d1) + az(d2), wherea; + aa =1 (4)
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Fig. 1: Prediction errors experienced in Model 1 for different
skew factors.

3)

The recent data are given high weight than the older
data. Similar to Model 1, Fig. 2 also indicates that PE
using Model 2 lies within 2% for normal load and that
Model 2 is unable to accurately predict the peak load.
From these figures, it becomes apparent that Model 1
is more efficient in terms of load underestimation. We
also observe that the skewing factor does not have a
significant impact on the prediction accuracy.

Model 3 (w = 4 for weekdays irrespective to day
type)

In this model, we set w = 4 to predict load demand
day ahead using previous four weeks data. For instance,
predicting load demand for Monday would utilize pre-
vious four Mondays utilization data. This model is
an enhancement of Model 2 with regard to increasing
historical data for prediction. We also evaluate the model
allocating high weight to recent data than the old ones.
From Fig.3 (a), we observe that allocating high weight
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Fig. 2: Prediction errors experienced in Model 2 for different
skew factors.

to old data has a negative impact on the prediction
accuracy. We then evaluate the model assigning high
weight to recent data. Fig.3 (b) shows the efficiency of
this strategy in terms of reducing the prediction error.
Forecast for any day is given by equation 5:

Fi(dy) = a1(dy) + as(d2) + as(ds) + as(dy)  (5)

The skew factor does not yield any significant change in
prediction that is why only plots for # = 0.4 are included
in this paper for this model. The PE for this model are
more than - 2% due to large w size of historical data
for prediction.

Based on the obtained values of PE and amount of time
for under estimation of resource utilization experienced
during the prediction period, we selected Model 1 for
our OFFLINE scheme. Although the skew factor does
not significantly change the prediction accuracy, with a
6 = 0.2 the results are slightly better. This model will be



8
Sep01 Sep03 Sep05 SepO7 Sep09 Sep1l Sep1d Sepis Sep17
Time (5 minut Jarity)

Sep19  Sep21 Sep23 Sep2s Sep27 Sep29

(a) Skew factor =0.4 with low weight (Skewness in opposite direction)
to recent data

——— Skowfactor =0  High Wolghtago to Recont Data)

s
Sep01 Sep03  Sep05 SepO7 Sep09  Sep it 17 Sep19 Sep2i Sep2d Sep25 Sep2l Sep29

(b) Skew factor =0.4 with high weight to recent data.

Fig. 3: Prediction errors experienced in Model 3 for skew
factor = 0.4.

used for predicting day-ahead resource utilization during
normal load conditions.

B. Load transition tendency (ONLINE METHOD)

In general, an ONLINE method relies on current or most
recent data for load prediction. This method has the advantage
that it can detect peaks in resource utilization quickly but at
the cost of operational complexity, i.e., additional resources for
online monitoring and real-time decision making. The results
discussed above reveal that there are instances when peaks
in resource utilization cannot be predicted through OFFLINE
models. It will be indeed interesting to know a while earlier
if the utilization is increasing or decreasing so that resources
are allocated in time to ensure high quality of experience [9].
Similar in spirit to [7], the Exponential Smoothing Average
(ESA) method is used to detect the load transition tendency
so that resource utilization peaks can be detected quickly and
the amount of resources needed can be allocated before the
load exceeds the capacity level of the node. The choice of
exponential smoothing average for predicting load transition
tendency is driven by the fact that it is easy to implement
and requires minimal computational load. The exponential
smoothing average method is formally defined through the
following equation equation 6:

F,=F,+a(A-F) (6)

where F'n is the next forecasted value for time ¢ 4+ 1, F'p
is the previous forecasted value for time ¢ and A is the actual
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Fig. 4: CP and DP utilization when VMs are allocated based
on the Exponential Smoothing Average Method.

value at time ¢. The value o = 0.9 is a damping factor which
gives high weight to forecast error. The abrupt change in
utilization due to some happening takes some time to reach
highest value. During the course of sudden peak, VMs can
handle the load for a specified time until the tendency of
increase or decrease is predicted in the next forecast. Then,
the allocated resources would be scaled up/down based on
prediction to meet the required load. ESA predicts this increase
soon both in CP and DP before the utilization of allocated VMs
increases from 80% to 100%. ESA may be unable to prevent
the peak at the very first instant when it hits the node but it
soon detects and adjusts the number of resources required to
reduce the magnitude of the traffic peak impact on the overall
network performance. As depicted in Fig. 4, in the analyzed
real network data, we had a case of sudden peak in CP and
DP which is soon detected by the ONLINE method and the
average VM utilization remains below the recommended 80
% for the rest of the time. With a fine granular data, this
method can easily support peak loads much more efficiently
and complement existing OFFLINE prediction. Alternatively,
we can compare current utilization with some thresholds and
allocate more resources when the current utilization exceeds
the predefined thresholds.

C. Dynamic Correlation Between CP And DP

Based on our previous work [2], we noticed a high cor-
relation between the patterns of the CP and DP resource
utilizations over time. We particularly observed that a peak
in CP is usually followed by a peak in DP. Based on this
observation, a possible correlation between CP and DP can be
quantified. The interest in this correlation is to prevent the peak
in DP based on previous information from CP. As the time
series of the CP and DP resource utilizations are correlated
with the time of the day, we used a technique called moving
windowed-cross correlation between CP and DP utilization to
find the dynamic relationships between the two planes.

Both time series were windowed into different time win-
dows (w = 2 % bmin,4 * bmin, 6 x d5min, 8 * bmin) and
the correlation coefficient was calculated using the equation
equation 7 for each time window.
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Where 14 and o4 are the mean and standard deviation of
time series A, respectively. up and op denote the mean and
standard deviation of time series B. Different nodes and differ-
ent days are used for finding cross-correlation between CP and
DP. As evident from the plots, on weekends the correlation is
much stronger than weekdays because of increase or decrease
rate in traffic is slower on weekends as compared to weekdays.
We observed that there is a good correlation between CP and
DP for w > 20 minutes as it can be observed from Fig. 5.
Note that the data under study are obtained with five minutes
granularity. Based on our study, the correlation between CP
and DP would be much stronger and finer if we had much fine
granular data. With much fine granular data, we can reveal the
accurate relationship equation between CP and DP and hence
the results can be used for dynamic scaling of DP based on
CP.

IV. THE PROPOSED DYNAMIC CLOUD RESOURCE
SCHEDULING FRAMEWORK

So far, we have studied, in isolation, different concepts
and models that can be used for dynamic scheduling of
cloud resources in virtualized environment. An intelligent
framework that copes with load peaks and supports normal
daily loads in a cost-efficient manner is required. For example,
the framework could trigger the OFFLINE method for normal

day’s prediction and when required, triggers the online method
to handle sudden peaks due to some unexpected happenings.
Effectively, an operator can use our proposed framework to
schedule resources in the evening for the next day and in case
of peak load it can add more VMs accordingly. The algorithm
of the framework is described as follows.

Data: Let V), be the number of VMs needed from Offline
forecast method at time ¢, V, be the number of
VMs adjusted for current actual utilization at time
t. P, = Prediction load based on offline method.
C, = Current measured load based on predicted
VMs. D =P, —C, ,V, = Allocate VMs at time ¢
initialization (V, = V});
while (/) do
OFFLINE METHOD , V, =V, ;
if D < —10% AND C, > 90% then
Vo= ‘/p +1;
Modify V,, of OFFLINE METHOD for t + 1 ;

end

end
Algorithm 1: PROPOSED algorithm

The algorithm works in a way that during normal load
conditions, the required VMs as predicted from the OFFLINE
method, support the load demand. However, whenever there is
a peak in the traffic load, the algorithm then adds more VMs
to cope with the load peak. The added VMs are instantiated
as long as they are needed. We used a threshold of 90% for
ONLINE method due to granularity of data at hand. Otherwise
the above-described load transition tendency method can be
used for fine granular data. We tested our proposed algorithm
on the measured data from nodes. The data consist of some
instances when there is a peak in the load. It was observed
that the online scheduling is triggered only when there is
a peak in the load. For data with 5 minutes granularity
measured during a one and half month, online scheduling is
triggered only 0.18% of the times. This means the ONLINE
method is triggered only when there is abnormal load and
does not impact the operations of the OFFLINE method during
normal load conditions. In Fig.6 (a), one can observe that the
OFFLINE method assigned a number of VMs that are unable
to support the abnormal peak conditions and the resource
utilization exceeded the recommended maximum threshold of
90%.

The proposed framework activates the ONLINE method to
add resources when the network operates under abnormal peak
conditions. As it can be observed from Fig.6 (b), using this
framework, the utilization remains below 90 % even during
load peak scenarios. We can also observe from Fig.6 (c)
that NFV with dynamic scaling is more cost-efficient than its
native counterpart, with only 20-40% of the native resources
being required, in the presence of a suitable dynamic scaling
algorithm.
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Fig. 6: Efficieny of Proposed framework

V. CONCLUSIONS

In this work, we studied different ONLINE and OFFLINE
models for allocating VMs to VNFs based on workload
prediction. The OFFLINE method is good for allocating cloud
resources when the network operates under normal workload,
whilst the ONLINE methods are used only when there is
a peak in the traffic load due to some major events. The
OFFLINE method provides operational flexibility while the
ONLINE method ensures detecting load peaks which may be
unpredictable. The dynamic relationship between control plane
utilization and data plane utilization was also investigated. It
was observed that there is a strong correlation between CP and
DP. With data measured at a finer granularity, this correlation is
expected to be further stronger, yielding more accurate results
in predicting load and accordingly required cloud resources.
Based on the above and for the sake of industrial applicability,
we proposed a lightweight framework that decides when to
use only the offline method and when to trigger the online
one, while ensuring low computational resources. The use
of the OFFLINE resource scheduling approach improves the
QoE and limits the operational impact as VMs needed for the
next instant in time is known one day earlier. Meanwhile, the
ONLINE approach copes with sudden peaks. The obtained
results demonstrate the efficiency of proposed framework,
requiring less than 40% of the resources compared to native
deployments.
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