
An architecture for on-demand service deployment
over a telco CDN

Pantelis A. Frangoudis∗, Louiza Yala∗, Adlen Ksentini∗, and Tarik Taleb§
∗IRISA/University of Rennes 1, France

§Aalto University, Finland

Email: ∗name.surname@irisa.fr, §talebtarik@ieee.org

Abstract—Internet Service Providers are becoming more in-
volved in the audiovisual content delivery chain. One manifesta-
tion of this trend is the emergence of telco CDNs, i.e., content
delivery networks operated by telecom service providers. In this
work, we make the case for opening the telco CDN infrastructure
to content providers by means of network function virtualization
(NFV) and cloud technologies. We design and implement a CDN-
as-a-Service architecture, where content providers can lease CDN
resources on demand at regions where the ISP has presence.
Using open northbound RESTful APIs, content providers can
express performance requirements and demand specifications,
which can be translated to an appropriate service placement on
the underlying cloud substrate. To gain insight which can be
applied to the design of such service placement mechanisms, we
evaluate the capabilities of key enabling virtualization technolo-
gies by extensive testbed experiments.

I. INTRODUCTION

Internet traffic is dominated by data distributed over Con-

tent Delivery Network (CDN) infrastructures, and the current

Internet ecosystem is, to a significant extent, shaped by the

interactions of different key actors with often conflicting

objectives, including Over-the-Top (OTT) content providers,

IP transit providers, CDN infrastructure providers and ISPs [1].

Content distributed over the top creates a bidirectional

dependence between CDN and network providers: CDN cus-

tomers, and, in turn, end users, depend on the underlying

network infrastructure and user experience is affected by its

conditions. Network operators, on the other hand, are vulner-

able to the traffic dynamics caused by time-varying shifts in

content demand. At the same time, network providers wish to

take advantage of their regional presence and proximity to end

users to enter the content delivery market.

This has led to the emergence of telco CDNs, i.e., con-

tent delivery infrastructures owned and operated by network

providers. In this case, the network operator installs data

centers at its points of presence (or other points strategically

located in its network) and offers a CDN service advertising

high-performance delivery due to user proximity. From the

perspective of a content provider, traditional and telco CDNs

are not competitive, but, rather, complementary services: A

telco has the advantage of proximity to end users, but typ-

ically this is limited to specific geographic locations where

This work was supported in part by the French FUI-18 DVD2C project.

it has presence. In contrast, traditional CDN players compete

offering a global service.

In this work, with cloud orchestration frameworks and

network function virtualization (NFV) as our enabling tech-

nologies, we design a scheme which offers the flexibility to a

telecom operator to lease its CDN infrastructure in a dynamic

manner, offering a virtual CDN (vCDN) service which can be

deployed on demand over the operator’s private cloud infras-

tructure. This can be considered an evolution towards opening

a telco CDN to potentially (but not exclusively) smaller-scale

content providers. Our basic design goals are (i) to offer a well-

specified, extensible northbound interface to customers, which

will allow them to express service demand specifications and

performance constraints, allowing them sufficient control at the

service level, but abstracting internal network and infrastruc-

ture details, and (ii) to be able to combine customer-provided

demand dimensioning information (e.g., target number of users

per region) with infrastructure/network awareness for optimal

resource allocation. We make the following contributions:

• We design and implement an extensible cloud-based

vCDN service architecture, tailored to telecom providers.

Our design features RESTful APIs which enable content

providers to lease virtual CDN resources on demand.

• We carry out extensive experiments to explore the capa-

bilities and limitations of the virtualization technologies

we apply. Our results can be used to drive resource allo-

cation/service placement algorithms that aim to optimally

satisfy user demand, and to provide insight to the system

operator with respect to service pricing.

This paper is structured as follows. In Section II we review

recent advances in telco CDNs and NFV. Section III presents

our architecture for CDN-as-a-Service (CDNaaS) provision.

In Section IV, we present an experimental evaluation of the

capacity of candidate virtualization technologies which can

support our vision, before we conclude the paper in Section V.

II. RELATED WORK

A. Telco CDNs

Given the complementary competitive advantages of telco

and traditional CDNs, Lee et al. [2] analyze the strategic

interactions between the two types of players. Importantly,

they study the conditions that can lead to alliances among

IEEE ICC 2016 - Next-Generation Networking and Internet Symposium

978-1-4799-6664-6/16/$31.00 ©2016 IEEE

telco CDNs and provide evidence that if a telco CDN properly

manages to offer better service quality exploiting its com-

petitive advantages (e.g., joint traffic engineering and content

distribution), market benefits are possible.

Kamiyama et al. [3] study some critical decisions that a

telco CDN operator needs to take, namely, where to place data

centers, and where and how to cache content. For an overview

of the challenges, design goals and principles for a telco CDN,

the reader is referred to the work of Spagna et al. [4].

Our work focuses on different aspects, i.e., how the CDN

infrastructure can be flexibly managed and leased to content

providers in a dynamic fashion, attempting to match user

demand taking into account insight from performance mea-

surements for service dimensioning.

B. Network function virtualization

Network Function Virtualization (NFV) is becoming a key

technology for future large-scale service delivery [5]. NFV

involves carrying out in software networking tasks that were

traditionally performed by costly, special-purpose hardware.

NFV is being applied to a diverse set of functions [6], [7].

In our case, the basic components of our architecture (service

orchestration, virtual infrastructure management, etc.) and the

components of the CDN service (caches, load balancers, name

servers, etc.) are implemented as VNFs.

As pointed out by Wood et al. [8], the flexibility offered by

NFV comes with a performance cost due to virtualization.

They therefore identify the need for a carefully designed

NFV platform, coupled with a sophisticated SDN control

plane. Our work addresses such challenges, by experimentally

quantifying the performance capabilities of core enabling

virtualization technologies, and by offering expressive service

representations and management and control interfaces, which

can enable optimal service instantiation considering customer

and operator cost, performance and quality constraints.

An effort worth noticing is T-NOVA [9], [10], an EU-funded

project proposing a VNF marketplace, where VNF providers

will be making available their functions to be deployed over

the infrastructure of a network or cloud service provider,

developing the necessary support for VNF brokering, man-

agement and service delivery. The NF-as-a-Service approach

of T-NOVA shares similarities with our work, but the overall

target application and business environment is different. Our

architecture is designed and optimized for content delivery

(CDNaaS). Resource management and other relevant low-level

deployment decisions are taken by the operator, based on

customer demands and constraints, and accurate knowledge

of the structure and conditions of its infrastructure.

III. A FRAMEWORK FOR CDNAAS PROVISION

A. Features

We present an architecture which allows a network operator

to virtualize its CDN infrastructure and lease it to content

providers on demand. The market particularly targeted by

the ISP is that of small-to-medium content providers, but

other options are possible. For instance, the virtual CDN

Fig. 1. CDNaaS architectural components.

instantiated by a customer can be coupled with other CDN

infrastructures; the flexibility offered by our design allows the

customer to, e.g., use the leased infrastructure to respond to

predicted traffic surges at specific regions, taking advantage of

the network operator’s regional presence. From the perspective

of the network provider, our design allows for more efficient

use of its infrastructure resources, compared to a less dynamic

resource reservation model with static allocation of data center

resources to clients.

B. Architecture

Our design involves various functional blocks, commu-

nicating via well-specified interfaces. This decouples their

operation from any physical location, allowing the CDNaaS

provider to execute any of these blocks autonomously as

virtual functions over its own (or any) cloud infrastructure.

One of our core design principles is to expose open APIs to

customers, but also among the components of our architecture,

and to design with extensibility in mind, so that our scheme

can be extended towards a generic Any-as-a-Service model. In

this section we provide the main components of our CDNaaS

architecture (Fig. 1), their functionality and their interactions.

1) Customer Interface Manager: Our system provides a

RESTful northbound API, through which customers can re-

quest to deploy a virtual CDN over the telco cloud. This API

exposes information on the available services and regional

presence, abstracting information about the underlying net-

work and cloud infrastructure, and mediating the communi-

cation of customers and the service orchestrator. Using the

northbound API, a customer can express its service require-

ments per region that it wishes to cover, and in particular

(i) demand specifications, i.e., how many clients it wishes to

server per region, and what is the service lease duration, and

(ii) quality specifications, i.e., a target Quality of Experience

(QoE) rating, desired response times, target uptime, etc.

2) Service Instance Descriptor Repository (SIDR): Each

service supported by our scheme has some inherent require-

ments and constraints. These are encoded in a service instance

template, which provides information such as the minimal

number of VNFs that need to be deployed for a service in-

stance, constraints with respect to the processing and memory

resources that should be available to each VM, etc. Although

we mainly focus on the provision of a virtualized CDN

service, our design includes an extensible service template

description language which can support further services. The

SIDR component stores these service instance templates and

provides them to the Service Orchestrator (SO) to drive service

deployment decisions.

3) Service Orchestrator: The Service Orchestrator coordi-

nates vCDN service deployment. After receiving a request

from the client, it derives an appropriate VNF placement

taking into consideration (i) the inherent service requirements,

as expressed in the service instance template, (ii) the client

demand and quality specifications, included in the service

request, and (iii) its operational capacity. The result of the ex-

ecution of the VNF placement algorithm is a Service Instance

Graph (SIG), which maps VNF instances (VMs) to physical

nodes. The SIG is then passed on to the Virtual Infrastructure

Manager (VIM) for deployment.

4) Virtual Infrastructure Manager (VIM): The VIM com-

ponent is responsible for the deployment of a service on

the underlying cloud infrastructure. It receives the SIG that

the SO derives following a customer request, and uses the

southbound API of the cloud management software (in our

case, OpenStack [11]) to set up and configure VNF instances.

C. vCDN service components and life cycle

At a high level, a CDN service is typically composed of

one or more origin servers, where the content provider places

content items, and a number of caches distributed across the

CDN, which temporarily store content replicas and efficiently

serve them to users, without having the latter retrieve content

directly from the origin servers. Therefore, a mechanism to

direct user requests to the optimal cache (e.g., the one located

closest to them) is also necessary. As per our design approach,

the main components of a CDN, i.e., origin servers, caches,

DNS servers, request load balancers, etc., are implemented as

VNFs.

The vCDN service which he have designed and imple-

mented supports a two-level load balancing: A user’s DNS

request for the URL of a content item is resolved to the ap-

propriate regional data center, based on the user’s geographic

location, as inferred from the latter’s IP address (DNS geo-

location). Then, we perform HTTP request load balancing

across all cache VNF instances deployed in a regional data

center.

Upon receiving a customer request for the creation of a

vCDN, the SO runs an algorithm to calculate a VNF instance

placement on the appropriate regional data centers in the form

of a SIG, and uses the VIM API to request its deployment on

the provider’s infrastructure. The VIM, which is responsible

for translating the abstract service representation (SIG) to

an actual deployment, carries out the following steps: (i) It

launches the origin server VNF(s), (ii) automatically config-

ures one or more DNS VNF instances for request geolocation,

(iii) configures cache VNF instances so that they proxy all

user requests towards the content origin server VNF(s), and

(iv) configures each region/host’s load balancers.

Eventually, the customer entry point, with connection infor-

mation and the necessary credentials for the origin server, is

included in the northbound customer API response.

The vCDN service is terminated and the respective re-

sources are released either automatically, when the lease

specified in the customer request expires, or when the customer

explicitly requests its termination using the northbound API.

D. Implementation

As a proof of concept, we have implemented our CDNaaS

architecture on top of OpenStack [11]. VNF instances (origin

servers, caches, DNS servers) are executed as Debian Linux

virtual machines on kvm [12] hypervisors (compute nodes,

in the OpenStack terminology). We are using nginx [13]

to implement HTTP server/caching functionality, a choice

motivated by its wide adoption.

The components of our scheme (customer interface, SIDR,

SO, VIM) have been implemented in Python and communicate

over HTTP. Our RESTful northbound API has also made it

straightforward to create a web-based customer front end.

For VNF placement, we have designed a simple greedy

algorithm which aims at covering all regions requested by

the client, evenly distributing cache VNF instances across

them, and satisfying the constraints specified in the vCDN

service template. Our ongoing work focuses on devising

measurement-driven algorithms for optimal VNF placement,

using the results we present in Section IV. Note that our soft-

ware architecture allows for the integration of VNF placement

algorithms in a pluggable manner.

IV. TESTBED EXPERIMENTS

A. Performance metrics

For service dimensioning purposes, and given a customer’s

specific performance demands, it is necessary for the CDNaaS

provider to be aware of the associated service delays and

request throughput, given a specific configuration and con-

ditions. Service performance has many factors affecting it:

Network capacity and conditions, resources (CPU, memory,

storage) allocated to the service, current demand (concurrent

number of users accessing the service), the specific virtualiza-

tion technologies and their configuration, the software used to

implement a service, the cloud platform, etc.

In this experimental study, we focus on performance mainly

as a function of the available processing resources. Our pro-

cessing unit (or, otherwise put, our unit of scaling) is a virtual

CPU (vCPU), which in our case is a single CPU core. Under

various experimental configurations, we measure the following

quantities: (i) the time it takes to instantiate a service, (ii) the

HTTP/caching server’s response times, and (iii) the request

throughput, i.e., the number of requests per second that a

server can process.

B. Virtualization technologies and testbed configuration

We perform a comparative study of two candidate tech-

nologies to implement VNFs, namely virtualization and con-

tainerization. In the first case, we use virtual machines on

top of the kvm [12] hypervisor, and, in the second, docker

containers [14]. Note that both technologies are supported by

OpenStack, our cloud computing software of choice. For a

comparison of the features and the internal workings of the

two technologies the reader is referred to the work of Dua

et al. [15]. Felter et al. [16], on the other hand, present a

thorough experimental evaluation of their associated overhead

for specific applications.

We execute our tests on an HP Z800 workstation with a 16-

core Intel Xeon processor and 16 GB of RAM, running Ubuntu

14.10. We are benchmarking the performance of the popular

nginx HTTP server, which is the technology we are using

in our proof-of-concept CDNaaS implementation. We have

carefully tuned nginx and the operating system (both host and

guest) for high performance and in order to alleviate network

and I/O bottlenecks. Nginx works by spawning a number of

worker processes, which handle user requests. The optimal

strategy is to launch one worker per CPU core available. To

deal with large numbers of concurrent users, we increased

the maximum number of allowed concurrent connections per

worker (and the respective operating system limits on the

number of open file descriptors), and set the tcp_tw_reuse
operating system option, to allow for reusing sockets that are

in the TIME WAIT state.

One of the aspects that we wish to quantify is the scalability

of the service as a function of the CPU resources available.

Intuitively, this should scale linearly with the number of

available virtual CPUs (cores); our intuition is experimentally

verified. To achieve the appropriate level of isolation, for each

of our experiments, we pin the server VM/container and the

load generation tool to separate core sets using the taskset
utility, and give the highest priority to the respective processes

using the nice command.

To benchmark our server, we use the weighttp tool [17].

Being multi-threaded, it takes advantage of the availability of

multiple CPU cores, ensuring that the HTTP traffic generator

does not become the performance bottleneck.

Before the experiments, we also verified that network I/O

is not the bottleneck. For the experiments using kvm, we ac-

tivated the vhost-net module, which enables handling packets

between the guest and the host in-kernel, thus reducing context

switching and packet copying overheads. By using two virtual

Ethernet interfaces on the guest and connecting each one of

them to a tap device on the host, we measured (using iperf) a

30 Gbps aggregate host-to-guest TCP throughput, enough to

saturate our HTTP server. For docker, to avoid the overhead

associated with Network Address Translation (NAT) in host-

to-guest communication, we launched containers using host-
mode networking. Thus, containers have direct access to the

host networking stack.

C. Startup times

One of the advantages of container technologies is that they

are more lightweight compared to VMs. To start an HTTP

server/cache VNF instance hosted in a VM typically requires

booting a full operating system. By startup time we define

the time interval from launching a VM/container until it is

capable of responding to HTTP. To measure it, we start the

VM or the container and simultaneously scan TCP port 80

(where our web server listens to) using nmap [18] from the

host, until the port is detected open (i.e., the HTTP server is

ready). We found that the average startup time for kvm was

11.489 s, while for docker it was 1.129 s (mean values of 50

experiments).

It should be noted that in a cloud environment, booting a

VNF instance may also involve transferring the VM image or

container from the image store to the actual host(s) where it

will be executed.

D. Request throughput

An important aspect of HTTP server performance is the

rate at which they can serve user requests. Being able to

estimate the request throughput of a VNF instance with

specific processing characteristics allows the CDNaaS provider

to calculate the number of instances to deploy to cater for

the demand of a specific customer, and appropriately respond

to demand dynamics by up/down-scaling the deployment.

Request throughput is a function of the processing capabilities

of the server, its software architecture, the number of parallel

users accessing the server, the size of the files to serve, and

its disk and network I/O capacity.

We carried out a set of experiments to measure how our

nginx-based HTTP server/cache VNF scales with the CPU

processors available and the number of concurrent users. In

our first test, to study these two properties in isolation, we

minimized the effect of disk and network I/O by having HTTP

clients request a special URI which corresponds to a single-

pixel transparent GIF (the response body amounts to 43 bytes);

this is a resource embedded in the HTTP server and causes

zero disk I/O. We then emulated parallel users by varying

the number of concurrent HTTP sessions on the client side

(weighttp). Each emulated user constantly performed HTTP

requests and we measured the HTTP request throughput when

1 or 2 CPU cores were allocated to the server. The results of

this test are shown in Fig. 2. We notice that request throughput

scales roughly linearly with the number of CPU cores.1

Interestingly, we notice that docker achieves approximately

10k requests/s more than kvm for large numbers of parallel

users. Each point in the figure represents a request throughput

value calculated from the execution of 100 million requests.

Since one of the target applications of our CDNaaS scheme

is video delivery, we further experimented with HTTP object

sizes which correspond to a video service. To select realistic

1Although the figures show only the case for 1 vs. 2 vCPUs, our experi-
ments with higher numbers of vCPUs demonstrate the same linear scaling.

Fig. 2. HTTP request throughput for increasing numbers of parallel
connections. We compare the use of docker and kvm and the impact of
utilizing more CPU resources.

such sizes, we encoded a 720p HD video using H.264/AVC,

and prepared it for HTTP adaptive streaming delivery2 using

GPAC [19]. Average chunk sizes for our test video were 73 KB

and 435 KB for the low and high quality representations

respectively (average bitrates of 250 Kbps and 1.7 Mbps). We

therefore varied the number of concurrent connections across

100, 1000, and 10000, and measured request throughput when

clients were requesting a 73 KB and a 435 KB file.

Fig. 3 presents the achieved HTTP request throughput when

all clients are requesting (i) the minimal embedded object

(empty GIF, 43 bytes), (ii) 73 KB video chunks (low quality),

and (iii) 435 KB video chunks (high quality). We notice the

expected response rate decrease as the size of the requested ob-

jects increases. One vCPU unit is capable of sustaining a high-

quality video request throughput of ∼8600 requests/s when the

HTTP server is containerized, compared to ∼3800 requests/s

when it is run in a kvm VM for 10000 parallel HTTP con-

nections. We witnessed a proportional performance increase

when the HTTP server was using 2 cores; we have omitted

these data from the figure for reasons of clarity.

E. Response times

Our third performance metric is related with user experi-

ence. We measured HTTP response times as a function of

the virtualization technology used, the number of parallel

connections, and CPU resource availability. We launched 90%

of the concurrent HTTP connections using weighttp and we

recorded response times for the remaining 10% using ab [20],

due to its latency measurement capabilities. All figures of this

section present empirical Cumulative Distribution Functions

(CDF) of response times; each point represents the percentage

of requests which were served in a time less than or equal to

a specific value on the x-axis.

2With Dynamic Adaptive Streaming over HTTP (DASH) technologies,
multiple quality/bitrate representations of the same video are stored on a
plain HTTP server. A video is segmented in chunks, and a Media Presentation
Description (MPD) file describes chunk information. The client receives the
MPD file and proceeds by retrieving the video chunk-by-chunk, potentially
switching among available qualities.

Fig. 3. HTTP request throughput for various object sizes and for increasing
numbers of concurrent connections.

(a) kvm

(b) docker

Fig. 4. Response time distributions for different sizes of the requested objects.

Fig. 4 compares a virtualized (kvm) to a containerized

(docker) HTTP server. Docker achieves lower response times,

since it incurs less overhead for interacting with the operating

system and for network I/O (especially given our host-mode

configuration, which gives it native access to the host’s net-

working stack). When clients request larger objects, response

times increase. This increase is noticeable in both cases. For

kvm (Fig. 4a), it reaches more than 200 ms for 35% of the

requests for a 73K file when the server VM runs on a single

Fig. 5. Response time distributions for a server hosted in a kvm VM as the
number of available vCPUs scales, for different numbers of parallel HTTP
connections. Clients request a 43-byte embedded object.

CPU core and there are 1000 concurrent connections (blue

curve, star points). Docker (Fig. 4b) performs better: In the

same settings, 98% of the requests are completed in less than

35 ms (blue curve, star points). Scaling up processing capacity

by adding a second vCPUs significantly reduces latency in

both cases (square points).

This performance improvement in terms of latency when we

scale up CPU resources is more evident as server load grows

from 1000 to 10000 parallel HTTP connections. As shown in

Fig. 5, an increase in the number of parallel connections results

in higher latencies, as a result of the connection management

overhead on the server.

F. Uses of our results

Our experiments offer insight on the capabilities of the

enabling technologies of our CDNaaS vision. Our findings

indicate that virtualization comes with a larger overhead

compared to using containers. This observation is in line with

other works in the literature [16]. However, it should be noted

that containerization technologies for cloud computing have

only recently gained popularity, while virtualization can be

considered more mature in this context.

There are two main usages of our quantitative results: (i)

Optimally deciding on the amount of resources to deploy

and their configuration to match customer demand, and (ii)

deriving pricing strategies for the offered vCDN service.

In the first case, using the CDNaaS API, a customer can

specify the target number of users accessing its service per

region, as well as a target QoE level which can be expressed

in terms of desirable response times, and information on the

content to be served (e.g., high definition video with specific

video segment size statistics). With this information in place,

and with measurement data on the performance capabilities

of the underlying server and virtualization technologies, the

CDNaaS provider can decide how many vCPUs hosting VNF

instances should be deployed per region, to cover the cus-

tomer’s request with a specific level of confidence.

In the second case, the CDNaaS provider can use such

measurements to estimate the amount of physical and virtual

resources customer requests translate to. This information can

then be used to derive service pricing policies, but also to

construct appropriate Service Level Agreements (SLAs).

V. CONCLUSION

We presented the design and implementation of an archi-

tecture for on-demand virtual CDN service instantiation on

top of a telco cloud. Our system offers a rich northbound

customer API, and allows for the application of sophisticated

service placement algorithms, given the inherent awareness of

the provider of its current network conditions and capacity, and

its presence close to end users. To get a better understanding

of the potential of virtualization and containerization as key

enabling technologies to support our CDNaaS vision, we have

carried out extensive testbed experiments. Such a quantitative

evaluation is critical for our ongoing research efforts on service

dimensioning and measurement-driven resource allocation al-

gorithm design, and on deriving CDNaaS pricing strategies.

REFERENCES

[1] R. T. Ma, J. C. Lui, and V. Misra, “On the evolution of the Internet
economic ecosystem,” in Proc. WWW, 2013.

[2] H. Lee, D. Lee, and Y. Yi, “On the economic impact of telco cdns and
their alliance on the cdn market,” in Proc. IEEE ICC, 2014.

[3] N. Kamiyama, T. Mori, R. Kawahara, S. Harada, and H. Hasegawa,
“ISP-operated CDN,” in Proc. IEEE INFOCOM Workshops, 2009.

[4] S. Spagna, M. Liebsch, R. Baldessari, S. Niccolini, S. Schmid, R. Gar-
roppo, K. Ozawa, and J. Awano, “Design principles of an operator-
owned highly distributed content delivery network,” IEEE Communica-
tions Magazine, vol. 51, no. 4, pp. 132–140, 2013.

[5] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: a survey,” IEEE Communications
Magazine, vol. 51, no. 11, pp. 24–31, 2013.

[6] F. Z. Yousaf, J. Lessmann, P. Loureiro, and S. Schmid, “SoftEPC
- dynamic instantiation of mobile core network entities for efficient
resource utilization,” in Proc. IEEE ICC, 2013.

[7] T. Taleb, M. Corici, C. Parada, A. Jamakovic, S. Ruffino, G. Karagiannis,
and T. Magedanz, “EASE: EPC as a service to ease mobile core network
deployment over cloud,” IEEE Network, vol. 29, no. 2, pp. 78–88, 2015.

[8] T. Wood, K. Ramakrishnan, J. Hwang, G. Liu, and W. Zhang, “Toward
a software-based network: integrating software defined networking and
network function virtualization,” IEEE Network, vol. 29, no. 3, pp. 36–
41, 2015.

[9] FP7 T-NOVA. [Online]. Available: http://www.t-nova.eu
[10] G. Xilouris, E. Trouva, F. Lobillo, J. Soares, J. Carapinha, M. McGrath,

G. Gardikis, P. Paglierani, E. Pallis, L. Zuccaro, Y. Rebahi, and A. Kour-
tis, “T-NOVA: A marketplace for virtualized network functions,” in Proc.
EuCNC, 2014.

[11] OpenStack - open source cloud computing software. [Online]. Available:
https://www.openstack.org/

[12] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
Linux virtual machine monitor,” in Proc. Linux Symposium, 2007.

[13] nginx. [Online]. Available: http://nginx.org
[14] Docker. [Online]. Available: https://www.docker.com/
[15] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs containerization

to support PaaS,” in Proc. IEEE IC2E, 2014.
[16] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated

performance comparison of virtual machines and linux containers,”
IBM Research, Tech. Rep. RC25482, July 2014. [Online]. Available:
http://goo.gl/ytEvt9

[17] weighttp. [Online]. Available: http://redmine.lighttpd.net/projects/
weighttp/wiki

[18] Nmap - the network mapper. [Online]. Available: https://nmap.org/
[19] GPAC multimedia open source project. [Online]. Available: https:

//gpac.wp.mines-telecom.fr
[20] ab - Apache HTTP server benchmarking tool. [Online]. Available:

https://httpd.apache.org/docs/2.2/programs/ab.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

