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Abstract—The adoption of machine learning techniques in
next-generation networks has increasingly attracted the attention
of the research community. This is to provide adaptive learning
and decision-making approaches to meet the requirements of
different verticals, and to guarantee the appropriate performance
requirements in complex mobility scenarios. In this perspective,
the characterization of mobile service usage represents a funda-
mental step.

In this vein, this paper highlights the new features and
capabilities offered by the “Network Slice Planner” (NSP) in
its second version [12]. It also proposes a method combining
both supervised and unsupervised learning techniques to analyze
the behavior of a mass of mobile users in terms of service
consumption. We exploit the data provided by the NSP v2 to
conduct our analysis. Furthermore, we provide an evaluation of
both the accuracy of the predictor and the performance of the
underlying MEC infrastructure.

Index Terms—Artificial Intelligence, Machine Learning, Net-
work Slice Planner, 5G, and MEC.

I. INTRODUCTION

Artificial Intelligence (AI) techniques are considered key
technologies, able to provide precious insights by analyzing
the huge amount of data generated by network devices,
mobile applications, and even user behavior. Furthermore,
the analysis of user mobility, as well as the characterization
of mobile application usage, are getting crucial to provide
useful information for service provisioning and management,
thus accommodating the mobile users’ expectations in densely
populated areas.

To optimize the delivery of mobile services, it is important
to understand where, when, and what mobile service users
launch over time. With such per-service understanding of
mobile traffic, supported by adequate models and predictors,
the mobile traffic demand can be anticipated and both mo-
bile services and their delivery networks can be accordingly
customized. Such study of spatio-temporal characterization
of mobile service consumption can also help in making a
meaningful grouping of users (e.g., grouping users that move
within the same neighborhood and launch the same set of
services at nearly the same time). This shall help, in turn, to
develop a better understanding of the aggregated behaviors of
mobile users at specific locations.

One of the most common challenges for such studies is
the availability of the dataset. Indeed, the data needed to
characterize the users’ behaviors are critical, yet not available

due to concerns relevant to the privacy of users. Therefore,
to cope with this challenge, in this paper, we resort to
simulation. A new version of the NSP Simulator, introduced in
Section IV, is used to acquire the needed data. Appropriate AI
techniques are then selected to achieve accurate mobile service
characterization, and an extended performance evaluation is
carried out to evaluate the robustness and accuracy of the
proposed techniques.

The remainder of this paper is organized as follows. Sec-
tion II introduces some related research work. After a brief
introduction to Machine Learning in Section III, the Network
Slice Planner v2 is described in Section IV. In Section V, the
method proposed to predict the usage behavior as well as the
approach to handle the prediction are explained. Section VI
discusses the obtained results, comparing scenarios with and
without the envisioned prediction method. Finally, the paper
concludes in Section VII.

II. RELATED WORK

Machine learning techniques are deemed highly important
to further optimize next generation networks [1]. In theory,
machine learning can be used for automating network opera-
tions. However, the implementation in a real-life scenario faces
several limiting factors (i.e., legacy network equipment, the
complexity of the network, and scattered control). But with
the emergence of key technologies for network Softwarization,
such as Software Defined Networking (SDN) and Network
Function Virtualization (NFV), networks have become more
homogeneous and network control can be remotely carried out
from a centralized entity. Around these technologies, authors
in [2] proposed an architecture of an automated network,
leveraging machine learning for a real-time balancing of
resources.

In this context, Naboulsi et al [3] were able to categorize
the call data records obtained from diverse operators using an
unsupervised technique based on the usage characteristics of
the users. This experiment allowed an accurate prediction of
usage dynamics. On the other hand, the study conducted in [4]
focused on finding correlations between multiple parameters
such as the subscriber identifier, data consumption and access
time. Such studies can help in adapting the network according
to the users’ needs. Nowadays, the usage of smartphones is
more varied and is not only bound to simple phone calls. This



has motivated several research activities to use a monitoring
application to collect data related to the users’ behaviors and
their patterns of service usage directly from smartphones [5].

Multi-Access Edge Computing (MEC) is an emerging tech-
nology that aims to reduce end to end latency by providing
a cloud infrastructure at the edge of the network and hosting
services nearby end-users. When efficiently exploited, such
key technology combined with artificial intelligence can help
to improve the overall network performance [6, 7]. In this vein,
the authors in [8] proposed applying a reinforcement learning
approach in a MEC-based environment to achieve a dynamic
resource allocation ensuring good performance. Such analysis
could help in increasing both the Quality of Experience (QoE)
and Quality of Service (QoS).

III. MACHINE LEARNING

Machine learning aims to extract knowledge from data. This
process of learning is performed through algorithms. A variety
of algorithms exist, depending on the nature of the problem,
and some are more suited than others. Machine learning can
be divided into three main categories, each category has its
own way to handle the learning [10]:

1) Supervised Learning: This category applies to labeled
data, where the algorithm will create models that take
unlabeled data instances as input and map them to their
corresponding label. This approach is mostly used for
resolving classification problems.

2) Unsupervised Learning: This kind of learning takes
unlabeled data, tries to search for predominant patterns,
and regroups them accordingly. This category is appro-
priate for clustering problems.

3) Reinforcement Learning: This method relies on ob-
servations to learn from the environment in an iterative
fashion, then exploits the acquired knowledge to adopt
the correct course of actions and reach the goal state.

Most of the machine learning algorithms belong to either
one or more of the aforementioned categories. For instance,
Support Vector Machine (SVM), Decision Trees and K-
Nearest Neighbor (KNN) are mostly applied when treating a
supervised learning problem; K-Means is a popular algorithm
for resolving unsupervised learning problems. Regarding Re-
inforcement Learning, Q-Learning tends to be widely used
among the learning policies.

IV. NETWORK SLICE PLANNER V2

The ability to anticipate the demand for network resources
requires a deep understanding and analysis of the behavior of
users and that is in terms of both users’ mobility and their
patterns of mobile service consumption over space and time.
To that end, information such as location, service usage and
data consumption are crucial. This set of information could
be collected either from a mobile operator or by using a
monitoring application installed on the users’ terminals (e.g.,
smartphones). Due to the critical nature of such data (i.e., since
it is directly related to the privacy of users, mobile operators

and users are reluctant to share data), it has become more
apparent and useful to rely on realistic simulation solutions.

Indeed, even though anonymizing the data, by replacing
subscribers’ unique identifiers, could seem a viable solution
to address this issue, the privacy could still be breached. This
was portrayed in [11] where the authors conducted an analysis
on the locations visited by users and were able to identify
individual users according to their frequency of movement. It
was presumed that the most frequently visited places could
represent either home or work places.

To cope with the unavailability of such data, NSP mimics
as much as possible real-life use-cases, by defining a spatio-
temporal modeling of mobile service usage over a particular
geographical area and in real time1. The generation of services
is based on models that characterize the behavior of real
users in consuming different types of services such as video
streaming, social networks, and Internet of Things services
(IoT). The mathematical background behind each service-type
within the service consumption module of NSP is given in
[12], and its consequent compound traffic is validated in [9].
Many virtual network function placement algorithms exploited
the traces generated from NSP such as in [16]. NSP was then
extended for the abstraction of the LTE workload generation,
and the performance modelling of the whole LTE network [9].

In NSP, users are simulated with different mobility profiles
(i.e., walking, biking, or driving) that are enhanced relying on
Google APIs, and several patterns in mobile service consump-
tion. The first version implements multiple services such as
video streaming, social networks and instant messaging [12].
The new version is more aligned with 5G use-cases, as it
incorporates services related to Unmanned Aerial Vehicles
(UAVs) and IoT. It also simulates the cloud resource usage
in terms of RAM, CPU, and storage, as well as networking-
relevant events (e.g., handoff operations, Tracking Area Up-
dates (TAU), migration, and offloading operations). Leveraging
LENA NS32, NSP provides detailed information and statistics
on Key Performance Indicators (KPIs) (e.g., temporal variation
of PHY Layer KPIs such as RSRP (Reference Signal Receive
Power) and SINR (Signal-to-Interference-plus-Noise Ratio)
reported by User Equipments (UEs), temporal PDCP (Packet
Data Convergence Protocol) Layer KPIs such as the average
PDU size and delay) and events (e.g., detailed logs related to
the signaling messages generated during a handoff operation
such as UE’s position, time, cell ID, UE’s IMSI, and average
SINR).

A. Added Services

In this sub-section, we highlight the new services within
NSP v2, namely UAV and IoT services.

1) UAV Services: UAV-related services are implemented
as a drone delivery service and a drone transportation
service. NSP uses Software in the Loop (SITL) with
Ardupilot to simulate realistic drone behavior. Packets

1Network Slice Planner: http://mosaic-lab.org/implementations.aspx
2The LTE-EPC Network Simulator (LENA) project:

http://iptechwiki.cttc.es/LTE-EPC Network Simulator (LENA)



generated, such as defined in the MavLink Protocol3,
are then collected in addition to the network related
information. When a UE requests one of the UAV-related
services, a drone is then dispatched from the drone home
to the destination of the UE. Such a way enables the
simulation of realistic use cases of UAV services with
an accurate behavior.

2) IoT Services: IoT related services are implemented as
sensors that collect diverse data. Based on the Con-
strained Application Protocol (COAP), accurate data
usage is calculated. Three types of IoT services were
envisioned: Weather and Air Pollution Services, the data
of which is harvested from Open Weather API to reflect
realistic weather conditions in the simulated area; and a
Parking Lots Service with sensors that track the number
of places available in the parking lots of the simulated
area.

B. Multi-Access Edge Computing Simulation

Fig. 1. Multi-Access Edge Computing Simulation Architecture.

NSP implements a Multi-Access Edge Computing Simu-
lation module. This module aims to generate realistic data
related to cloud infrastructure resources usage, and that is in
terms of CPU, RAM and storage capacity. Several important
events were considered (e.g., offloading and migration). The
general architecture of the simulator is shown in Figure 1.

The MEC module is event-driven, where throughout the
simulation and depending on the context, different events can
be triggered and then processed. We defined several types
of events, such as Offloading Request, Offloading Success,
Offloading Failure, Migration, Migration Success, Migration

3Mavlink protocol: http://qgroundcontrol.org/mavlink/start

Failure, Migration Aborted, and Release. The detailed mech-
anism of this module is given as follows.

First, when a UE starts using a service, an Offloading
Request Event is triggered. Depending on the availability of
the resources in the Edge Cloud (EC), an application is then
transferred from the Global Cloud of the service provider to
the nearest EC. It shall be noted that the term ”application”
refers to any kind of tasks that consumes resources in the MEC
infrastructure.

Since each EC contains a fixed set of Virtual Machines
(VMs), multiple policies were defined to select the appropriate
VM that will carry the task. These policies are as follows:

1) First-Fit: it consists of choosing the first available VM
that has enough resources.

2) Best-Fit: the application will be placed in a VM that
contains the smallest sufficient amount of resources
required in terms of CPU, RAM and Storage capacity.

3) Random: a random VM which has enough resources
will be chosen as the one that will handle the application.

Based on the concept of Follow Me Cloud [13], migration
events are triggered. Therefore, when a UE moves from
one region to another, if a closer and more adequate EC
is available, a migration process of the application from the
previous EC to the new one is performed and the related events
are then triggered. Finally, when the UE finishes using the
service, a Release Event is triggered and the application will
be terminated, freeing the resources.

V. SERVICE PREDICTION

In order to predict the service consumption of users, it is
important to analyze their behavior. In this perspective, we
introduce an approach based on the concept of highly-dense
areas. The idea is that before entering the phase of service pre-
diction, a first step consists in determining areas that contain
the largest number of users. Once these areas are identified,
the service analysis will focus on them, thus allowing the
system to predict the prevailing services consumed by a mass
of users, rather than services consumed occasionally by a few
individuals scattered over less-populated areas.

TABLE I
THE CONSIDERED FEATURES AND THEIR DESCRIPTION.

Feature Description
Time The times in seconds

UE ID The unique identifier of the user equipment
Service Name The name of the service that is being used

Latitude The latitude value of the GPS coordinate
Longitude The longitude value of the GPS coordinate

ENodeB ID The unique identifier of the ENodeB
Datarate Uplink The throughput of the user in the uplink

Datarate Downlink The throughput of the user in the downlink
Zone The name of the target zone

The advantage of this approach relies on its simplicity. From
a mobile operator’s point of view, being able to customize the
network to improve both QoS and QoE for a group of users
provides less complexity than managing users individually.
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Fig. 2. Performance Benchmark of NaiveBayes, KNN, RandomForest, J48, SVM, and ZeroR

The fact that there would be always a minority of users to
not benefit from the changes made in the network represents
a limitation for this method.

NSP offers a variety of information. The features used in
this paper are listed in Table I. As the first step for service
prediction, determining high-density areas is needed. To this
end, the Density-based Spatial Clustering of Applications
with Noise (DBSCAN) [14] can be applied on the raw GPS
coordinates of UEs. With the appropriate distance function,
the results of this algorithm are clusters that represent highly
dense areas. Since we use GPS coordinates, the haversine
formula can be used as a distance function. The choice of
this algorithm is mainly motivated by two reasons: i) this
algorithm does not need to supply the number of clusters
(i.e., areas) beforehand since this information is not always
available in real-life scenarios, and ii) the ability to handle the
noise. Noise points are entries that do not participate in any
cluster. Indeed, those rogue points could mislead algorithms
by either changing the center of the area or by mistakenly
considering isolated points as a highly dense area.

With the dense areas being determined as per the previous

phase, the next step consists in creating the prediction model.
A classification method can be applied to the data set (i.e.,
generated by NSP) whereby the service name feature repre-
sents the class of the model. To evaluate different classification
methods, the Waikato Environment for Knowledge Analysis
(WEKA) [15] is used in this paper. This tool implements
various machine learning algorithms. Its open source nature
in addition to its comprehensive JAVA API (i.e., permitting
its integration into the NSP simulator) are the main reasons
behind choosing this tool.

VI. EVALUATION

A. Classification Algorithms Benchmarking

In order to select the appropriate classification algorithm
for this study, a thorough analysis on several algorithms is
conducted. The considered algorithms are NaiveBayes, K-
Nearest Neighbors (KNN), RandomForest, J48, SVM, and
ZeroR. These algorithms are selected for the wide variety of
families that they represent. Many classifiers require a set of
parameters. Hereunto, the default and recommended values are
used.



The dataset, used to draw the results shown in Figure 2, was
generated using the simulation parameters detailed in Table
II and is constituted of more than 67000 instances. Figure 2
represents the mean values and Confidence Interval (CI) of
five executions.

TABLE II
SIMULATION PARAMETERS.

Parameter Value
Number of UEs 500
Update Meters 100

Number of eNBs per Edge Cloud 3
Number of eNBs per Tracking Area 6

Number of Edge Clouds 10
Number of Drone Homes 5

Number of Drones Per Home 2
Range 5000M

Number of Weather Devices 10
Number of Air Pollution Devices 10

Number of Parking Devices 10
MIME Probability 20%

Video Streaming Probability 30%
Social Network Probability 30%
Drone Delivery Probability 5%

Drone Transportation Probability 5%
IoT Services Probability 10%

Simulation Time 12H

To evaluate the accuracy of each algorithm, the cross-
validation technique was used. This technique evaluates the
model by partitioning the dataset into multiple equally sized
segments called folds. One sample will be used as a validation
sample and the rest will be used as training samples. For our
evaluation, we used a cross-validation with 10 folds. Figure
2(a) shows the accuracy obtained for each algorithm. From
the result, the three classifiers KNN, RandomForest and J48
achieve the highest accuracy rates which are 91.59%, 91.16%
and 89.4%, respectively.

Although the accuracy may be an important parameter in
the choice of a classification algorithm, the resource con-
sumption as well as the execution time are also important
factors that need to be taken into account. In this vein, a
thorough analysis of the resource consumption in terms of
RAM and CPU usage was conducted and the obtained results
are illustrated in Figure 2(b). Clearly, RandomForest is the
most resource-demanding algorithm. Indeed, RandomForest
consumes roughly four times more RAM and three times
more CPU than J48 and KNN. In terms of execution time,
Figure 2(c) illustrates the results obtained. RandomForest still
exhibits the highest values. On the other hand, KNN is slightly
superior to J48 with a difference of 0.7 s. From these results,
we can conclude that KNN is the most suitable classification
algorithm for our study since it offers a balance between
accuracy, resource consumption and execution time.

B. Performance Analysis

In this section, we perform an analysis on the performance
of the MEC infrastructure. By integrating the predictor into
the MEC simulation module, we are able to anticipate the
service usage and offload the necessary services into the

EC beforehand. Thus, by comparing the performance under
scenarios with and without the predictor, we can evaluate
the gains brought by the anticipation of the service usage.
To realize such an analysis, we use the parameters presented
in Table III for the MEC simulation module. Also, several
simulations were performed. The simulated scenarios share
the same parameters listed in Table II and the same mobility
pattern. Since the simulator generates random itineraries for
UEs, the highly-dense areas change in each simulation, there-
fore, making the predictor obsolete since it was trained based
on completely different areas. For this reason, adopting the
same mobility pattern for all simulations would be a better fit
to evaluate the performance. Even though they share the same
parameters, the service usage of UEs changes. However, by
keeping the overall probabilities of occurrence for each service
the same, the general behaviors would stay nearly the same.

TABLE III
PARAMETERS OF THE MEC SIMULATION MODULE.

Parameter Value
Bandwidth 1GB

Policy First Fit
Number of VMs Per Edge Cloud 2

Host Resource 16GB RAM, 16 Cores, 1TB Storage
VM Resource 8GB RAM, 8 Cores, 500GB Storage

Application Resource 1GB RAM, 2 Cores, 2GB Storage

The results obtained by running 10 simulations are pre-
sented in Figure 3. The results show the mean number of
events occurred and their respective CI. Figure 3(a) shows the
results related to the Offloading events. Two types of events are
shown, namely the success of the offloading operation and its
failure. The failure occurs when there are not enough resources
available in the EC. We recorded 17613 offloading requests,
when using the module without the predictor. In this case,
we had 8636 successful offloading operations which represent
49%. On the other hand, 8977 (51%) offloading operations
failed. When using the predictor, we experienced 10586 (60%)
successful operations against 7027 (40%) failed operations. To
conclude, using the predictor, the performance is enhanced by
11%.

Figure 3(b) plots the results obtained for the migration
events. We had an average of 48 Migration events without
using the predictor. We then recorded three aborted migrations,
15 failed migrations, 7 successful migrations, and 23 ongoing
migrations. On the other hand, by using the predictor, we had
one aborted migration, 13 failed migrations, 21 successful mi-
grations and 13 ongoing migrations. By applying the predictor,
we were able to increase the number of successful migrations
by 29.17%.

VII. CONCLUSIONS

In this paper, we introduced a new version of the Network
Slice Planner (NSP), offering new services, and simulating
MEC related events and resource consumption. Using the valu-
able information collected from the simulator, we conducted
a comprehensive study on the implementation of machine
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Fig. 3. Performance of The MEC Infrastructure

learning techniques to improve both the QoS and QoE for the
end-users. In this vein, a method was proposed based on using
the clustering algorithm DBSCAN in order to identify highly-
dense areas, thus allowing to focus on the behavior of a mass
of users. By adopting supervised learning techniques through
several algorithms, we were able to predict the prevailing
mobile services in different areas. A detailed benchmark of
diverse classifiers was conducted, and KNN was proven to be
the most suitable algorithm for the envisioned study.

Once the predictor is trained using the data from NSP, a
thorough performance analysis of the MEC infrastructure was
performed. By comparing the events of a rudimentary scenario
against a scenario implementing the predictor. We noticed
the gain in terms of performance. Especially, the number
of successful migration and offloading operations increased
by 29.17% and 11%, respectively. Overall, this study proved
the important gain that the system could get from applying
machine learning techniques, ultimately ensuring a better QoS
and QoE for end-users.
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