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Abstract—Unmanned Aerial Vehicles (UAVs) are an emerging
technology in the 5G and beyond systems with the promise of
assisting cellular communications and supporting IoT deploy-
ment in remote and density areas. Safe and secure navigation is
essential for UAV remote and autonomous deployment. Indeed,
the open-source simulator can use commercial software-defined
radio tools to generate fake GPS signals and spoof the UAV
GPS receiver to calculate wrong locations, deviating from the
planned trajectory. Fortunately, the existing mobile positioning
system can provide additional navigation for cellular-connected
UAVs and verify the UAV GPS locations for spoofing detection,
but it needs at least three base stations at the same time. In
this paper, we propose a novel deep ensemble learning-based,
mobile network-assisted UAV monitoring and tracking system for
cellular-connected UAV spoofing detection. The proposed method
uses path losses between base stations and UAVs communication
to indicate the UAV trajectory deviation caused by GPS spoofing.
To increase the detection accuracy, three statistics methods are
adopted to remove environmental impacts on path losses. In
addition, deep ensemble learning methods are deployed on the
edge cloud servers and use the multi-layer perceptron (MLP)
neural networks to analyze path losses statistical features for
making a final decision, which has no additional requirements
and energy consumption on UAVs. The experimental results
show the effectiveness of our method in detecting GPS spoofing,
achieving above 97% accuracy rate under two BSs, while it can
still achieve at least 83% accuracy under only one BS.

Index Terms—UAV, GPS spoofing, Multi-Layer Perceptron
(MLP) , Deep ensemble learning, and Path loss.

I. INTRODUCTION

UNMANNED Aerial Vehicles (UAVs) play the crucial role
in the upcoming Internet of Things (IoT) platforms for

remotely data gathering and aerially data transiting, supporting
not only the capability of delivering IoT-based services but
also the prospects of providing communications to dense and
remote areas [1]. According to UAVs market report in [2], the
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value of UAV will reach 58.4B dollars by 2026. As more and
more UAVs are coming, the security of autonomous UAVs
must be addressed before the envisaged growth in UAV-based
applications and services [3].

As a response, the Unmanned Aircraft Systems (UAS) Traf-
fic Management (UTM) systems have been developed by the
federal aviation administration for providing UAVs mission-
related security services, including UAV authentication, flight
plan authorization, real-time tracking and geofencing [4]. Reli-
able information on UAV position is essential for its operations
and for a UTM system to carry out its mission. The global nav-
igation satellite system, particularly Global Positioning System
(GPS), is widely used to obtain UAV positioning information
due to its global coverage and accuracy [4]. However, the
unencrypted GPS signals are inherently vulnerable to spoofing
attacks. In fact, an attacker can send counterfeit GPS signals
to mislead the UAV’s GPS receiver into generating false
position information [5]. Furthermore, a malicious UAV may
intentionally report forged GPS information to UTM system,
resulting in violation of no-fly zone regulation and/or collision
risks. Therefore, an effective GPS spoofing detection approach
is vital to guarantee safe and secure integration of UAVs in
the airspace.

GPS spoofing detection methods include GPS navigation
signal analysis methods (e.g., [6]–[12]) and GPS navigation
message encryption methods (e.g., [13]–[20]). The former
signal analysis methods detect spoofing either through the dif-
ference of direction of arrival between the satellite signals and
spoofer signals or through cross-correlation property between
the military and civil GPS signals, while both need a ground-
truth source in their detection processes. The latter encryption
methods embed the authentication signature into navigation
messages to guard against GPS spoofing attacks. However,
the encryption processes need secured infrastructure support
as well as more computing resources on the GPS receiver.
The limited battery capacity and weight load of UAVs inhibit
this GPS spoofing detection methods adoption in UAVs swarm
systems.

Fortunately, the 3rd Generation Partnership Project (3GPP)
has defined several standards to enhance long-term evolution
support for Unmanned Aerial Systems (UAS) [21]–[24]. Those
new standards allow the terrestrial cellular networks to provide
identifying, locating, and tracking services for the UAS in
order to enhance the security of the UAS operation. In this
vein, the authors in [25] proposed a UAV tracking method,
namely Adaptive Trustable Residence Area (ATRA), to detect



the spoofed GPS position by leveraging up-link received signal
strength indication. Regardless of the performance brought by
the ATRA method, it requires at least three base stations at the
same time. To overcome the deficiency of the ATRA method,
the authors in [26] introduced a deep neural network on the
edge server that allows lively detecting GPS spoofing with
three, two, or one base station, where the neural network model
takes the statistical path losses features as inputs and produces
the spoofing possibility as its output. Despite the acceptable
performance provided by the neural network, it needs to collect
the path losses data from different base stations which may
lead to network congestion.

In this paper, we leverage the potential of deep ensemble
methods and exploit the statistical features of path losses
between a UAV and base stations to detect GPS spoofing
for cellular-connected UAVs. Unlike the aforementioned GPS
signal analysis and GPS information encryption contributions,
the proposed approach is based on the analysis of the terrestrial
mobile BS signal rather than GPS satellites signal from
medium Earth orbit. Compared with the GPS satellites signal,
the BS signal provides immunity from ionospheric interfer-
ence, which makes it more stable and reliable for detecting the
UAV trajectory deviation caused by GPS spoofing. In addition,
our approach needs no additional hardware or computation
load at the UAV. In fact, the detection task is accomplished at
the Multi-access Edge Computing (MEC) servers and edge
cloud server based on the path losses received from the
mobile network. Moreover, its effectiveness is insensitive to
the changes of the environmental conditions, thanks to the
use of statistical properties of path losses. Finally, the use of
deep ensemble learning amongst edge servers help to make
collaborations between BSs, which can mitigate the down-
tilt directional sector antennas impacts on spoofing detection
performance. The main contributions of this paper are sum-
marized as follows:

• We first formulate the spoofing detection processes as a
nonlinear and non-convex optimization problem, which
is subject to the threshold, the statistical feature weights,
and the number of BSs. The goal of the optimization
function is to minimize the sum of hypothesis test errors
of GPS spoofing by optimizing the threshold of the
hypothesis test and the statistical feature weights of the
differences between the theoretical path losses and the
actual ones provided by BSs.

• Due to the path losses vulnerable to environmental
changes, we adopt three statistical methods to analyze the
statistical properties of path losses, including moments,
quartile, and probability distributions, for making our
spoofing detection insensitive to the changes in environ-
mental conditions.

• We further propose a MEC architecture for deep en-
semble learning-based GPS spoofing detection. In MEC
servers, each MLP works independently to predict the
spoofing probability of a GPS position reported by each
BS. To decide whether the GPS position is spoofed or

TABLE I
LIST OF ABBREVIATIONS USED.

Abbreviations Definitions
ATRA Adaptive Trustable Residence Area

BS Base Station
DoA Direction of Arrival
DT Decision Tree

GNB Gaussian Naive Bayes
GPS Global Positioning System
IMU Inertial Measurement Unit
INS Inertial Navigation System
LoS Line of Sight
LR Logistic Regression

MEC Multi-access Edge Computing
ML Machine Learning

MLP Multi-Layer Perceptron
MPS Mobile Positioning System

MVSK Mean Variance Skewnee Kurtosis
NLoS None-Line of Sight
OCCS Operator Command and Control Service

PL Path Loss
RSS Received Signal Strength

SDPS Supplementary Data Provider Service
SVMK Support Vector Machine Kernel
SVMG Support Vector Machine Gamma
UAV Unmanned Aerial Vehicle
UAS Unmanned Aerial System
UFC UAV Flight Controller
UTM Unmanned aircraft systems Traffic Management
WD Wasserstein Distance
WP Wat Point

3GPP 3rd Generation Partnership Project

not, six types of deep learning models are deployed
into the edge cloud server to integrate MLPs’ individual
prediction results.

• In the end, we build a simulation platform using the
3GPP defined path losses model and the TensorFlow deep
learning models. The experimental results illustrate the
effectiveness of our proposed approach in detecting the
spoofed GPS positions even with only one BS.

This manuscript contains a number of abbreviations. For
the sake of ease of readership, Table I lists the abbreviations
used in this paper. The rest of the paper is organized as
follows. Section II summarizes related work in the literature.
The system model, path loss model and hypothesis testing are
described in Section III. Section IV introduces three statistical
methods and formulates the GPS spoofing detection as an
optimization problem. A MLP-based ensemble approach is
proposed in Section V. Experiment results are illustrated in
Section VI. Section VII concludes the paper.

II. RELATED WORK

Over the last decade, much research efforts have been
dedicated to studying the GPS spoofing problem. The proposed
contributions can be categorized into the following five classes.



A. Navigation Signal Analysis Approaches

GPS navigation signal analysis is widely used to determine
whether the GPS is spoofed or not. The authors in [9] proposed
a multi-antenna spoofing detection technique which analyzes
the DoA of GPS signals to discriminate between authentic and
fake GPS signals. The received signals are considered spoofed
if they arrive from the same source in space. Similarly, the
work in [10] introduces a spatial signal processing approach
for GPS spoofing detection and mitigation. The approach
leverages multi-antenna reception and null-steering for, re-
spectively, identifying and filtering out fake GPS signals. The
adoption of the aforementioned approaches requires multiple
antennas and incurs more computational load on the GPS
receiver.

The methods in [11] and [12] rely on the cross-correlation
between encrypted/military GPS signals received by a trusted
receiver and the defended civil receiver in order to detect the
spoofing of unencrypted GPS signals. A low cross-correlation
indicates the presence of a spoofing attack. While these
methods do not depend on a multi-antenna GPS receiver, they
require a communication link between the defended receiver
and a secure receiver to perform the cross-correlation.

B. Cryptal-protected Navigation Message Approaches

To protect civil GPS receivers against spoofing attacks,
the approaches falling in this category consider either the
encryption or the authentication of the navigation messages.
The navigation message encryption methods (e.g., [16]) ensure
the confidentiality of the navigation message by ciphering
its content. The navigation message encryption methods are
deemed impractical as their implementation requires changes
to the GPS interface specifications [17]. The navigation mes-
sage authentication techniques aim at guaranteeing the in-
tegrity of the navigation message and the authenticity of its
source by digitally signing its content. For instance, Wesson
et al. [18] combined signature-based authentication of GPS
navigation messages with a statistical hypothesis test to pre-
vent counterfeit navigation messages. Wu et al. [14] leveraged
SM cryptographic algorithms to authenticate the BeiDou-II
navigation messages. Similarly, the work in [19] presented a
BeiDou-II navigation message authentication scheme based
on digital signatures generated by an elliptic curve digital
signature algorithm. In [20], a trusted execution environment
was used to generate cryptographically-signed GPS messages
in order to prevent their forgery. The European Galileo global
navigation satellite system will provide an open navigation
message authentication service (OS-NMA) [27] based on
an adaptation of the Timed Efficient Stream Loss-tolerant
Authentication (TESLA) scheme. OS-NMA enables source
authentication and message integrity by transmitting the navi-
gation message along with a message authentication code. The
message authentication code key is derived from a one-way
hash chain and is released after a pre-defined period of time.
Even though navigation message authentication techniques
are considered a practical and effective defense against GPS
spoofing attack, their use induces significant computational

cost and latency due to signature verification. Moreover, some
of them (e.g., OS-NMA) require the availability of loose time
synchronization [28]. Finally, navigation message authentica-
tion based methods cannot withstand replay attacks.

C. Inertial Navigation System based Approaches

An INS uses an IMU comprising various inertial sen-
sors (e.g., accelerometers, gyroscopes, and magnetometers) to
assist navigation based on sensor measurements. The INS-
based approaches detect GPS spoofing attacks by using the
position estimated from the IMU readings to cross-validate
the veracity of the reported GPS position. Lee et al. [29] used
a fixed probability of false alarms and the root mean square
error between the accelerometer outputs and the acceleration
estimated from the GP outputs to detect spoofing GPS signals.
In [30], the accelerometer readings were leveraged to identify
spoofing GPS signals, where the spoofing decision is based
on the probability density function. Feng et al. [31] used on-
board gyroscopes’ measurements to determine whether a UAV
has been hijacked by GPS spoofing.

The INS has the advantage to operate without reliance on
any external signals, making it immune to spoofing attacks.
However, the main issue with INS is the error accumulation
of the IMU measurements over time, which can negatively
impact the detection accuracy.

D. Mobile Cellular Network based Approaches

Recently, a new class of anti-GPS spoofing approaches has
been introduced leveraging the localization ability of mobile
cellular networks to relocate the target and discriminate the
spoofed GPS positions in the base stations’ coverage area. The
work in [32] exploited the strength of signals received from
base stations of a 2G cellular network to estimate the vehicle
position. The estimated position is then used to cross-check
the consistency of the vehicle’s GPS position. The authors in
[33] used the position estimates obtained by the data relative to
the neighboring cells in order to check the validity of the GPS
position of a smartphone. Different from the aforementioned
solutions, the work in [34] considered the use of information
received from 5G network to recognize spoofed UAV’s GPS
positions reported to UTM. The proposed approach utilizes
the Received Signal Strength (RSS) collected from three base
stations to infer the trust area within which the GPS position
should be located in order to be considered genuine.

E. Machine Learning based Approaches

The capability of ML to learn from historical data to unveil
hidden patterns has driven the recent trend of using ML tech-
niques for GPS spoofing detection in UAV environments. In
this vein, different ML methods have been proposed to detect
GPS spoofing either by classifying the spoofed GPS signal
directly (e.g., [35]–[40]) or by verifying the GPS information
supplementally (e.g., [41]–[44]). The GPS signal classification
methods take advantage of the ML classifier techniques to
discriminate the fake GPS signal from the actual GPS signal,
while the GPS information verification methods make use of



TABLE II
SUMMARY OF DETECTION METHODS FOR GPS SPOOFING ATTACK.

Work Detection method Requirements
Data source Computing location Hardware Energy Loads

[6]–[12] Signal analysis GPS signals GPS receiver Multi-receivers UAV Yes[35]–[40] ML-based signal analysis
[13]–[20] Encryption GPS message GPS receiver Secure hardware UAV No
[29]–[31] Internal sensor Sensor data UAV board Different sensors UAV Yes[41]–[44] ML-based GPS verification
[32]–[34] Mobile positioning system Cellular signals Edge server Multi-BSs BS No

Ours Deep ensemble learning Path losses Edge server Single/multi-BSs BS No

the ML-based location recognition techniques to prove the
authenticity of the GPS locations.

1) ML-based GPS signal classification: Unlike the naviga-
tion signal analysis approaches discussed above, this method
relies on ML classification models to analyze the GPS navi-
gation signal characteristics for separating fake signals from
the authentic ones.

Manesh et al. [35] exploited the received GPS signal
characteristics, such as pseudo range, Doppler shift and signal-
to-noise ratio, to build a supervised neural network model
for detecting GPS spoofing against unmanned aerial systems.
Similarly, the spoofing detection approach in [36] used a neural
network to analyze the differences between the spoofing and
authentic signal patterns. The neural network takes as inputs
the delta criterion, coefficient of early and late phase criterion,
and total levels of signal. The authors in [37] proposed a
GPS spoofing detection approach that leverages a supervised
ML algorithm, specifically Support Vector Machine (SVM), to
analyze the cross-correlation among the GPS signals of mul-
tiple GPS receivers. The work in [38] introduced RBF SVM,
Ada Boost, Decision Trees, K-Nearest Neighbors, Random
Forests methods for GPS signal’s radio frequency interference
analysis under the assumption that the attacker was not able to
null the satellite signal. It is worth mentioning that the space
weather changes diminish the features of raw GPS signals [39]
and the attacker can broadcast the same frequency jamming
GPS signals for blinding the GPS receiver [40], which can
considerably hinder the effectiveness of the aforementioned
approaches.

2) ML-based GPS information verification: To overcome
the weakness of GPS signal analyses based spoofing detection
methods, the external positioning techniques, such as INS and
MPS, are also used to not only provide location services for
UAVs when the GPS is unavailable but also to cross-validate
the authenticity of GPS information. Recently, ML techniques
have been leveraged in both INS and MPS based GPS spoofing
detection methods for improving the detection accuracy.

Motivated by the fact that a camera view, one of the INS
components, endows a UAV with the ability to locate itself and
recognize its surroundings, a number of studies have developed
UAV camera view based ML methods to detect GPS spoofing.
For instance, the authors in [41] used a hidden Markov model

to model the human operator approaches in detecting fake GPS
locations based on analysis of aerial photos taken by the UAV.
Based on the PoseNet convolutional neural networks, the work
in [42] used aerial images to provide the UAV’s GPS position.
In the same vein, the deep convolutional neural networks was
adopted in [43] to enable the UAV navigation in GPS-denied
environments using only visual information. Nevertheless, the
acquisition, transmission and processing of camera views are
time consuming operations which can introduce noticeable
latency for detecting the GPS spoofing.

As aforementioned, MPS has been used to locate and
monitor the mobile targets using at least three BSs or multi-
antennas for acquiring an accurate target position. However,
some airspace areas may be covered by less than three BSs
and even only one BS, which can limit the effectiveness of
existing MPS based location tracking and spoofing detection
solutions. Luckily, ML is a potential enabler for building MPS-
based spoofing detection services that can perform well even in
some worse cases. In [44], Xiao et al. investigated the potential
of recurrent neural networks in recognizing the deviation in the
UAV’s trajectory caused GPS spoofing. To this end, the DoA
measurements of BSs’ signals from the UAV equipment are
analyzed by the proposed recurrent neural network models.
Nevertheless, the adoption of their approach requires UAVs to
be equipped with cylindrical antenna arrays and incurs more
computational load on the UAVs to estimate the DoA values.

Table.II summarizes the aforementioned spoofing detection
methods based on the requirements of data source, computing
location, hardware, energy, and UAV loads. Based on the
difference in data sources, the spoofing detection methods
can be divided into four categories, including GPS signals
analysis methods, GPS message encryption methods, internal
sensors data analysis methods, and cellular signals analysis
methods. Both signal analysis or ML-based signal analysis
methods require additional computing resources on the GPS
receiver and rely on multi-GPS receivers proving either signals
directions or a secure template, which increases the UAV
energy consumption and brings extra loads on the UAV. The
GPS message encryption methods execute encryption and
decryption processes on the GPS receiver secure hardware,
which consumes more energy but without the increase in
the UAV loads. The sensor data-based spoofing detection



methods detect spoofing through the differences between GPS
location and internal sensors’ location, which needs support
from UAV board computer and different kinds of sensors.
However, the internal sensor and ML-based GPS verification
methods consume UAV energy for location computation and
put more loads on the UAV for carrying sensors. Although
the MPS-based spoofing detection methods use the cellular
signals and are deployed on the edge servers without energy
consummation and load requirements on the UAV, they require
at least three BSs at the same time for triangular localization.

Despite the merits of the above mentioned solutions, an
effective approach to detect GPS spoofing while accommo-
dating to resource, cost and environmental constraints of a
UAV environment is still missing. To fill this gap, we leverage
the potential of ML and exploit the statistical features of path
losses between UAV and 5G base stations (BSs) to devise an
effective 5G-assisted GPS spoofing detection approach. The
proposed approach needs no additional hardware or computa-
tion and load at the UAV. Moreover, its effectiveness is less
prone to changes in the environmental conditions, thanks to
the stability introduced by the statistical features. Furthermore,
we use deep learning method to detect GPS spoofing with one
single BS and also can achieve cooperation between different
BSs with the help of ensemble learning. By using the path
losses that can be obtained from the BSs broadly and speedily,
and taking advantage of the capability of ML to deliver faster
decisions, the proposed approach will empower live detection
of spoofed GPS positions.

III. SYSTEM MODEL AND PERFORMANCE METRICS

A. Network Model

As illustrated in Fig. 1, we consider a space-aerial-terrestrial
integrated network consisting of a space GPS satellites net-
work providing location service for UAVs, an aerial vehicle
network including a target UAV u and an aerial GPS spoofer,
and a terrestrial mobile network with N BSs connecting with
aerial vehicles through wireless channels.

In the aerial network, the aerial GPS spoofer sends fake GPS
signal to mislead the target u into deviating from its planned
trajectory. As shown in Fig. 1, if there is no GPS spoofing, u
will reach the waypoint Pu of the planned trajectory starting
from the waypoint Pj to the waypoint Pj+1. Once GPS
spoofed, it will reach the waypoint P

′

u of the spoofed trajectory
starting from Pj to the waypoint P

′

j+1.
The terrestrial mobile network is mainly used for GPS

spoofing detection. The terrestrial BSs first collect the PL data
during the communications between u and these BSs. Three
kinds of statistical methods, introduced in the next section, are
then applied to process the PL data for reducing the negative
impact of the environmental conditions on it. In addition,
the edge servers deployed near the BSs provide computation
resources in order to reduce the data transmission latency
and improve spoofing detection effectiveness. Finally, the
edge servers receives the processed PL data through the core
network connecting these BSs, and further decides whether

TABLE III
NOTATIONS USED IN THE PAPER.

Symbol Definitions
u Target UAV
N The number of base stations
P GPS position, P = (Latu ,Lonu ,Altu)
P Planned way points
R Reported way points
λ/λ̃ The probability of LoS/NLoS link
L/L The actual/theoretical path loss

∆L
The difference between actual and theoretical
path loss.

L
′

The reference path loss in a free space
diu /d

′

iu The 2D/3D distance between ith BS and u
hu The altitude of u
T The threshold of hypothesis testing
E The number of data points in a time slot
fc The carrier frequency 2 GHz
F The statistical features set
F The ensemble statistical features from one BS
F The weighted sum of F from different BSs

C(·) The cumulative distribution function
C The set of MLP neural networks
ω The weight of statistical feature
Ω The weight of BS ensemble feature
B The binary cross-entropy loss
γ Fraction to create bootstrapped training data
dE The system GPS error tolerance
α The importance coefficient for miss detection
M Ensemble ML methods
D Data set of ML predictions
Θ Thresholds for ML ensemble

the GPS position is spoofed or not. The notations uses in this
paper are summarized in Table III for clarity.

B. Path Loss Model

The aerial UAV and terrestrial BS communication contains
both LoS and Non-LoS (NLoS) links. The following air-to-
ground path loss model for UAV u and BS i has been tested
by the 3GPP in [22], and is determined as

Liu = λiu × LL
iu + λ̃iu × LN

iu , (1)

where LL
iu and LN

iu denote the path loss of LoS link and NLoS
link, respectively. λiu is the probability of LoS link and λ̃iu

is the probability of NLoS link, and λ̃iu = 1− λiu .
For an urban micro UAV, the LoS probability, λiu , is given

by

λiu =

{
1 if diu ≤ d1
d1

diu
+ exp(−diu

q1
)(1− d1

diu
) if diu > d1

(2)

where d1 = max(294.05 log10(hu) − 432.94, 18) and q1 =
233.98 log10(hu)−0.95. diu is the horizontal distance between



Fig. 1. The space-aerial-terrestrial integrated network model.

ith BS and u , and hu is the u’s altitude, as shown in Fig.2.
Note that hu can be larger, equal, or smaller than the BSi’s
height.

The path losses LL
iu and LN

iu are expressed as:

LL
iu =max{L′, 30.9 + (22.25− 0.5 log10(hu))

× log10(d
′

iu) + 20 log10(fc)},
(3)

and

LN
iu =max{LL

iu , 32.4 + (43.2− 7.6 log10(hu))

× log10(d
′

iu) + 20 log10(fc)},
(4)

where the carrier frequency fc is equal to 2 GHz. L′ = 15.3+
37.6 log10(d

′

iu) is the path loss for a carrier frequency of 2
GHZ in a free space, and d

′

iu is the distance between BSi and
u, as shown in Fig. 2. Pu is the position of u and Pi is the
position of the ith BS. Alternatively, the path loss model above
can be further extended into the Rician channel that includes
both large scale and small scale fading, following procedures
in [22]. It is worth mentioning that the Rician fading impacts
are insignificant thanks to the use of statistical methods on the
path losses.

d

Fig. 2. The illustration of the parameters diu , d
′
iu and hu .

It is notable that there are three unknown parameters in
(2), (3) and (4), i.e., the UAV height, the horizontal distance

between the target UAV and each BS, and the distance
between them. To obtain these three parameters, the edge
server need to know the locations of the UAV and BS, which
are obtained according to the Federal Aviation Administration
(FAA) regulation [45]. Under such a regulation, the target
UAV needs to broadcast its location for safety and security
purposes [45]. The edge server can also ask the location of
each BS from the mobile network operator. Based on the
locations of the UAV and BS, the edge server can obtain these
three parameters and also determine the theoretical path loss
between the target UAV and BS using the path loss model
of (2), (3) and (4). Furthermore, the edge server can obtain
the actual path loss based on the UAV transmit power and
the received signal strength at BS. This is because the edge
server can control the UAV transmission power through an
edge UAV flight controller [46] and also can get the received
signal strength through mobile network services defined by
3GPP [22].

C. Hypothesis Testing
Based on the observation that different UAV’s positions

generally result in different values of path loss between the
BS and the UAV, UTM uses the difference between the actual
path loss Liu and the theoretical one Liu to decide whether the
GPS position of UAV u is spoofed or not. Here, the actual path
loss and the theoretical path loss are determined according to
Subsection III-B. Thus, we have

∆Liu =
∣∣Liu − Liu

∣∣ , (5)

where ∆Liu denotes the absolute value of the difference be-
tween the actual path loss and the theoretical one. Notice that
an actual GPS position of a UAV corresponds to a theoretical
path loss nearly the same as the actual one. Meanwhile, a
spoofed GPS position corresponds to a theoretical path loss
deviating from the actual one, which means that a bigger ∆Liu



indicates a higher probability that the GPS position of the UAV
is spoofed. Therefore, the GPS spoofing detection problem can
be formulated as a threshold-based hypothesis testing given by{

H0 : ∆Liu > T,
H1 : ∆Liu ≤ T,

(6)

where T denotes a threshold of the hypothesis testing. The null
hypothesis H0 represents that the GPS position is spoofed. H0

is accepted if ∆Liu is above the threshold T . On the other
hand, a true alternative hypothesis H1 means that there is no
GPS spoofing.

Although the distance between UAV and BS is the main
factor affecting the path loss in the threshold based hypothesis
testing, other environmental factors (e.g., cloud, temperate
and vapor) can also impact the path loss, which may lead
to a wrong decision on the GPS spoofing. Accordingly, the
threshold based hypothesis testing for GPS spoofing detection
faces the following significant challenges. Firstly, the path loss
of a data transmission is more likely to be affected by the
environment, which may result in increased spoofing detection
errors. Secondly, the threshold value has a noticeable impact
on the accuracy of the hypothesis testing at different time
slots. Indeed, a bigger threshold value could lead to a higher
probability of miss detection, while a smaller threshold value
could result in a higher probability of false alarms. Thus,
determining the appropriate threshold value is crucial, yet a
difficult task. Thirdly, the hypothesis testing results reported
by different BSs should be given different weights to determine
the final decision. The rationale behind assigning different
weights is that a larger distance between a BS and a UAV
could lead to a higher error of hypothesis testing result.

To address the aforementioned challenges, we leverage the
potential of both statistical methods and ML to devise an
effective GPS spoofing detection approach. Three statistical
methods are used to extract the statistical properties of path
losses of multiple data transmissions, which allows to remove
the effects caused by the changing environmental conditions.
To deal with the threshold and weight setting issues, we
formulate them as a constrained optimization function and
propose a MLP-based ensemble approach to solve it.

IV. PROBLEM FORMULATION

In this section, we first introduce three typical statistical
methods to analyze the PL data and eliminate the negative
effect of environment on the spoofing detection. Based on
these PL data, we further formulate the spoofing detection
as a constrained optimization problem.

A. Statistical Methods

The following three statistical methods are provided to
calculate the statistical metrics of path losses of multiple data
transmissions.

1) Mean-Variance-Skewness-Kurtosis (MVSK): MVSK in-
volves important numerical characteristics into the analysis of
a path loss, including the Mean, the second central moment
Variance, the third standardized moment Skewness, and the

fourth standardized moment Kurtosis [47]. To obtain the
MVSK metrics of path losses, we assume that the number
of data transmissions that occur in a time interval t is E. The
corresponding actual path loss set Liu(t) is expressed as:

Liu(t) = {L1
iu(t), ..., L

e
iu(t), ..., L

E
iu(t)}, (7)

where Le
iu(t) denotes the eth path loss in the time interval t.

Similarly, the theoretical path loss set Liu(t) is defined as:

Liu(t) = {L1

iu(t), ..., L
e

iu(t), ..., L
E

iu(t)}, (8)

where L
e

iu(t) denotes the eth theoretical path loss in the time
interval t. According to the MVSK method, we have

LM
iu (t) =

1
E

E∑
e=1

Le
iu(t),

LV
iu(t) =

1
E

E∑
e=1

(Le
iu(t)− LM

iu (t))
2,

LS
iu(t) =

1
E

E∑
e=1

(
Le

iu(t)−LM
iu (t)√

LV
iu(t)

)3,

LK
iu(t) =

1
E

E∑
e=1

(
Le

iu(t)−LM
iu (t)√

LV
iu(t)

)4,

(9)

where LM
iu (t), LV

iu(t), LS
iu(t) and LK

iu(t) represent, respec-
tively, the mean, variance, skewness, and kurtosis values of
actual path losses in time interval t. Similarly, we can obtain
the theoretical ones L

M

iu (t), L
V

iu(t), L
S

iu(t) and L
K

iu(t).
The difference ∆Lx

iu(t) between the actual and theoretical
MVSK metrics is expressed as

∆Lx
iu(t) =

∣∣∣Lx
iu(t)− L

x

iu(t)
∣∣∣ , (10)

where x ∈ {M,V, S,K}. For each difference ∆Lx
iu(t), the

threshold introduced in the hypothesis testing in (6) is denoted
as T x

iu(t).
2) BOX: BOX is a method of descriptive statistics includ-

ing the minimum (Q0), the first quartiles (Q1), the sample
median (Q2), the third quartiles (Q3) and the maximum (Q4)
of the path loss set Liu(t) [48]. LQ0

iu (t) and LQ4
iu (t) denote,

respectively, the lowest and the largest path loss excluding any
outliers. LQ2

iu (t) and LQ3
iu (t) represent the median and the me-

dian of the upper half of the Liu(t), respectively. Here, outliers
represent the observations that fall below LQ1

iu (t)− 1.5 ∗ IQR
or above LQ3

iu (t) + 1.5 ∗ IQR, where IQR is the Inter-Quartile
Range and is equal to LQ3

iu (t)− LQ1
iu (t).

Similarly, the BOX descriptive statistics of theoretical path
losses are denoted as L

Q0

iu (t), L
Q1

iu (t), L
Q2

iu (t), L
Q3

iu (t) and
L
Q4

iu (t). Using (10), we can obtain ∆Lx
iu(t); the x quartiles

difference between the actual and theoretical values, where
x ∈ {Q0, Q1, Q2, Q3, Q4}. The corresponding threshold is
denoted as T x

iu(t) in the hypothesis testing for GPS spoofing
detection.

3) Wasserstein Distance (WD): WD is a metric to estimate
the distance between two probability distributions [49]. We
use ∆LW

iu (t) to denote the WD distance between the actual
path loss Liu(t) and the theoretical one Liu(t). Then, we have



∆LW
iu (t) = (

∫ 1

0

∣∣∣C−1
Liu(t)

(u)− C
−1

Liu(t)
(u)

∣∣∣2 du) 1
2 , (11)

where C−1
Liu(t)

and C−1

Liu(t)
are the corresponding inverse cu-

mulative distribution functions (CDFs) of Liu(t) and Liu(t),
respectively. The WD distance ∆LW

iu (t) can also be used to
detect the GPS spoofing according to the hypothesis testing
with the threshold TW

iu (t).

B. Optimization Problem

We use Fiu(t) to denote the weighted statistical feature that
represents the authenticity of the PL data provided by the ith

BS at time t. Since the PL differences under different statistical
methods have different influences on the spoofing hypothesis
testing results, we can define Fiu(t) as the weighted sum of
PL differences ∆Lx

iu(t), which is expressed as

Fiu(t) =
∑
x∈F

ωx
iu ×∆Lx

iu(t), (12)

where ωx
iu is the weight for the statistical feature x and F =

{M,V, S,K,Q0, Q1, Q2, Q3, Q4,W} is the set of statistical
features.

At time t, u broadcasts signals to its nearby n BSs located
at different positions. We know that a higher distance between
u and a BS can lead to a bigger error of PL value [34], and
thus it further incurs a bigger error of the ensemble statistical
features. We use Fu(t) to denote the ensemble feature of the n
BSs at time t. To reduce the ensemble error, we define Fu(t)
as the weighted sum of Fiu(t); i.e.,

Fu(t) =

n∑
i=1

Ωiu × Fiu(t), (13)

where Ωiu represents the weight of the ith BS ensemble
feature.

The threshold-based hypothesis testing given in (6) can be
rewritten as {

H0 : Fu(t) > Tu(t),
H1 : Fu(t) ≤ Tu(t),

(14)

where Tu(t) is the threshold of hypothesis testing.
To ensure the spoofing detection performance at UTM, our

objective is to minimize the total errors of the hypothesis
testing. This can be formulated as the following optimization
problem.

min
ω,Ω,T

n∑
i=1

∑
x∈F

ϕ(ω,Ω, T ), (15)

Subject to: 0 ⩽ ω ⩽ 1, (15a)
0 ⩽ Ω ⩽ 1, (15b)
1 ⩽ n ⩽ N, (15c)
ϕ(·) ∈ {0, α, β}, (15d)

where ϕ(·) is an indicator function of ω, Ω and T to measure
the error of the hypothesis testing. ω = {ωx

iu |x ∈ F , i ∈
[1, n]}, Ω = {Ωiu |i ∈ [1, n]}, and T = Tu(t). ϕ (·) = α is
used to measure the missed detection, i.e., if H0 is true but
UTM approves H1. ϕ (·) = β is used to measure the false
alarm, i.e., if H1 is true but UTM approves H0. Otherwise,
ϕ (·) = 0. Here, α > β, which indicates that the missed
detection is much more harmful than the false alarm because
the former can cause violation of no-fly zone regulation
and collision risks. Meanwhile, α + β = 1, which is to
let the objective function of Eq. (15) falls within a limited
range. Otherwise, ϕ(·) = 0. Constraints (15a) and (15b)
denote the range of the weights ωx

iu and Ωiu , respectively.
Constraint (15c) denotes the range of the number of BSs,
where N = 9 according to the 3GPP trials results in [22].
Constraint (15d) denotes that ϕ(·) is equal to 0, α or β.

Note that this is a nonconvex and nonlinear optimization
problem, which is generally challenging to be solved. ML,
particularly deep learning, is a promising direction to deal
with this challenging problem, owing to its ability of solv-
ing complex problems, while achieving the desired perfor-
mance/complexity balance. Thus, we propose a MLP-based
ensemble approach to solve the optimization problem in the
following section.

V. MLP-BASED ENSEMBLE APPROACH

This section elaborates on the structure and algorithms used
to build the multi-MLP ensemble model for GPS spoofing
detection.

…
…

…
…

…

( )

( )

( )

( )

y( )

Input layer Hidden layers Output layer

…
……………

( )

Fig. 3. The structure of the MLP.

A. MLP Model
As shown in Fig. 3, the MLP is a deep learning neural

network consisting of a set of interconnected nodes arranged
into multiple parallel layers; i.e., an input layer, an arbitrary
number of hidden layers and an output layer. Except for the
input layer nodes, each node is called a neuron that propagates
an output to the next layer through a nonlinear activation
function applied over the weighted sum of the received inputs
plus a bias factor. Mathematically, this can be formulated as

y(t) = f(
∑
x∈F

ωx
iu∆Lx

iu(t) + Tx), (16)

where the input element ∆Lx
iu(t) is the x path losses statistical

metric reported by the ith BS, and y(t) denotes the output
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Fig. 4. The MEC architecture for deep ensemble learning-based GPS spoofing detection.

prediction result at time t. Here, y(t) ∈ [0, 1] denotes the
probability whether the position is spoofed or not, where a
value close to 1 means that the GPS position is likely to be
spoofed. f(·) is the nonlinear activation function, where the
Rectified Linear Unit (ReLU) is set as a default activation
function. ωx

iu stands for the neuron that stores the weight
relationship among different statistical metrics and Tx is the
threshold Tu(t) of the hypothesis testing. The predication
result of each BS will be the input of the ML-based ensemble
method described in the next section.

B. Structure of Multi-MLP Ensemble Approach

We propose a MEC architecture that uses deep ensemble
learning to aggregate the individual prediction results of
the different BSs for GPS spoofing detection. As shown in
Fig. 4, this approach consists of four main processes, namely
data sampling, statistical analysis, individual prediction, final
prediction, in addition two extra processes for deploying and
consuming the spoofing detection service.

In the sampling phase, the actual path losses data and
the corresponding theoretical path losses are grouped into
different groups of E samples. Note that the theoretical path
losses are computed based on the reported UAV’s position
(Latu ,Lonu ,Altu ) and the BS’s position (Lati,Loni,Alti). A
statistical analysis is then performed using MVSK, BOX and
WD methods to extract the statistical characteristics of actual
and theoretical path losses data. Using the differences between
the actual and theoretical statistical metrics as inputs, the
trained MLP models will separately predict whether the GPS
position is spoofed or not. Finally, the MLPs’ prediction results
are integrated to provide the final decision on the presence
or absence of a spoofing attack based on a preset threshold
(See Section V-D1) or ML methods (See Section V-D2).
Specifically, the MEC servers are in charge of path loss data
collection, statistical analysis, and MLP predictions, while the
ensemble learning is conducted on the edge cloud server.

In practice, the spoofing detection service deployment and
consumption work in the background to support high predic-
tion performance for the spoofing detection. In fact, the UTM
service (UTMS) can deploy spoofing detection services to an

edge cloud server through the core and transport networks,
and also inform remote operators when the GPS is spoofed
through the Operator Command and Control Service (OCCS).
The Supplementary Data Provider Service (SDPS) provides
meteorological data and other information to the remote op-
erator and UTMS for UAV flight planning and management
[4].

In addition to the MLP-based ensemble approach, the Long
Short-Term Memory (LSTM) neural network is alternatively
used in ensemble architecture. The LSTM-based ensemble
architecture allows to extract of the temporal features from
path losses and can further improve the detection performance.
Compared with MLP-based ensemble architecture, the LSTM-
based ensemble approach needs more historical path losses
data to train a new model with a spoofing pattern. Moreover,
the inherent mobility of UAVs implants high dynamics in the
path losses data, which causes too much noise in the long-time
path losses spoofing feature and could decrease the detection
performance. Although the use of statistical methods can
remove the environmental impacts, the LSTM-based ensemble
approach needs to add an independent LSTM model after each
statistical feature, which increases the size of the LSTM-based
ensemble architecture and the storage usage in the MEC server.
Regarding the time-consuming and storage usage, the MLP-
based ensemble approach is more efficient than the LSTM-
based approach because MLP uses a small size of neural
network to learn the recurrent spoofing behaviors from the
path losses.

C. Statistical-MLP Approach

To eliminate PL data fluctuations caused by environmental
changes, we propose a statistical-MLP approach for GPS
spoofing detection at BS level. In this approach, a MLP model
is built at each BS by training the MLP neural network
on dataset comprising the differences of statistical metrics
collected locally. The training is carried out using the stochas-
tic gradient descent method for optimizing the MLP neural
network parameters (i.e., weights and bias) to minimize the
loss function. In this study, we adopt the Adaptive Moment



Estimation (Adam) optimizer [50]. Moreover, the binary cross-
entropy loss function is used to assess the performance of the
MLP model, which is expressed as

B = −
n∑

i=1

ŷi log yi + (1− ŷi) log(1− yi), (17)

where B is the binary cross-entropy loss, ŷi is the ith predicted
observation value, and yi is the ith real observation value. Note
that a smaller B corresponds to a better MLP model.

Algorithm 1 summarizes the full process of the proposed
statistical-MLP approach, including data sampling, data pro-
cessing, data labeling, and MLP training and selection. We use
the symbol ∥·∥ to denote the length of a set, the symbol |·| to
represent the absolute value of a number, and the symbol ⌈.⌉ to
denote the rounding up of a number to its nearest integer. The
data sampling procedure produces the grouped data. Initially,
the waypoints reported by an UAV and the position of the BS
(it connects to) are used to calculate the theoretical PLs (line
2). Thereafter, the PL differences ∆L between the actual PLs
reported by the BS and the theoretical PLs are computed (line
3). We assume that the planned waypoints P , the reported
waypoints R and the reported PLs are synchronous and have
the same length. The PL differences are evenly divided into
equal-sized groups, each of which consists of E values of
PL differences (line 4). To ensure that the size of the last
group is E, the indices of its elements are from (∥∆L∥ −E)
to ∥∆L∥. Besides, the distance between planned waypoints
and reported waypoints are calculated and grouped in order
to further decide whether the reported GPS is spoofed or
not (lines 5–6). The data processing procedure applies the
statistical methods defined in sub-section IV-A on each PL
differences group to alleviate the environmental impacts and
produce the data points for training and testing the MLP
models (lines 10–18). The data labeling procedure aims to
assign a label y (1/0) to each data point f according to
the relationship between the tolerated GPS error dE and the
distance between the reported and planned positions (line 21–
31). In fact, a data point is labeled as GPS spoofing (i.e.,
y = 1), if the average distance of the corresponding group is
greater than the tolerated GPS error. Otherwise, it is labeled
as legitimate GPS error (i.e., y = 0). It is well known that
the performance of a deep neural network model influenced
by the tuning of its hyperparameters (e.g., number of layers,
the number of neurons in each layer, the batch size, and the
learning rate) [51]). To find the most accurate MLP model, the
training and selection procedure (lines 34–46) applies a grid
search method [52] to determine the optimal hyperparameters’
values that lead to the smallest loss error. The search space
for finding the optimal hyperparameters for the MLP model is
defined in IV. For each combination of hyperparameters, the
corresponding MLP model is built on the training data set and
its performance is evaluated on the unseen testing dataset. The
MLP model with the smallest loss error B is used by the BS
for detecting GPS spoofing.

An important consideration for assessing the practicality of

Algorithm 1 Statistical-MLP Algorithm.
Input:

P: Planned way points, P = {P1, · · · , Pj , Pj+1, · · · } .
R: Reported way points, R = {R1, · · · , Rj , Rj+1, · · · } .
L: BS reported path losses, L = {L1, · · · , Lj , Lj+1, · · · }.
dE: System GPS error tolerance.
F : Statistical methods, F = {M,V,S,K,Q0,Q1,Q2,Q3,Q4,W}.
E: The number of data points in each group.
γ: Fraction to create bootstrapped training data.
A: hyper-parameters search space.

Output:
c: The final MLP model.

1: procedure PATHLOSSDATASAMPLING(P , R, L)
2: Compute the theoretical path losses L using the BS’s position, the

reported way points R and Eq. (1);
3: ∆L←

∣∣L− L
∣∣; ▷ Differences between the reported and the-

oretical path losses
4: L = {Li}

∥L∥
i=1 ← Divide(∆L, ∥L∥), where ∥L∥ =

⌈
∥∆L∥

E

⌉
5: ∆D = |P −R|; ▷ Distance between P and R
6: D = {Di}

∥D∥
i=1 ← Divide(∆D, ∥D∥), where ∥D∥ = ∥L∥

7: return L, D
8: end procedure
9: procedure STATISTICALANALYSIS(L, F )

10: X: Data points, X← {};
11: for each Li in L do
12: f ← {}; ▷ vector of statistical features
13: for each Fi in F do
14: f ← f ∪ ComputeStaticMetric(Li,Fi);
15: end for
16: X← X ∪ {f};
17: end for
18: return X
19: end procedure
20: procedure GROUPDATALABELING(D, dE)
21: Y: Data labels, Y ← {};
22: for each Di in D do
23: d = 1

∥Di∥
∑

dj∈Di
dj ;

24: if d > dE then
25: y = 1;
26: else
27: y = 0;
28: end if
29: Y ← Y ∪ {y};
30: end for
31: return Y
32: end procedure
33: procedure MLPTRAINING((X,Y), γ)
34: Divide (X,Y) into training data set (X̃, Ỹ) and testing data set

(X̂, Ŷ) according to γ;
35: C: Classifiers set, C← {};
36: for each combination ai ∈ A do
37: Create the MLP classifier Ci using the training data set (X̃, Ỹ);
38: C← C ∪ {Ci};
39: end for

▷ MLP model selection
40: B: The set of the loss values, B← {};
41: for each Ci in C do
42: Use (X̂, Ŷ) to evaluate Ci and obtain the average loss Bi;
43: B← B ∪ {Bi};
44: end for
45: Get the min loss index k, k = index(min(B));
46: return c← Ck .
47: end procedure



the proposed approach is its time complexity. To this end,
we theoretically analyze the time complexity for building the
statistical-MLP model. Theorem 1 provides the upper bound
of the statistical-MLP algorithm’s asymptotic time complexity.

Theorem 1. The time complexity of building the statistical-
MLP algorithm is O(5 × ∥P∥ + ∥L∥ × (∥F∥ + 1) + (γ ×
(▽MLP − 1)+1)×∥L∥×∥C∥+1), where ∥P∥ is the number
of way points in P , ∥L∥ is the number of PL data groups,
∥F∥ is the number of statistical methods, γ is the fraction
to create bootstrapped training data, ▽MLP denotes the time
complexity of training each MLP and ∥C∥ is the number of
the MLPs.

Proof. The time complexity of the statistical-MLP algorithm
is the sum of the computational complexities for performing
path loss data sampling, statistical analysis and labeling, as
well as MLP model training and selection. Thus, we need to
calculate the time complexity of each phase.

The time complexity of path loss data sampling is O(5 ×
∥P∥), which includes the time needed for computing the the-
oretical PLs, calculating and grouping the differences between
the theoretical and actual PLs, and finally calculating and
grouping the distances between the planned and reported way
points. The time complexity of statistical analysis and labeling
is O(∥L∥ × (∥F∥ + 1)), which equals to the sum of the
time complexity of computing the statistical features of each
group and that of labeling each group. Let I , q, and h denote,
respectively, the number of training iterations, the number of
hidden layers, and the number of neurons in each hidden layer.
The time complexity of MLP model training and selection is
O((γ × (▽MLP − 1) + 1)× ∥L∥ × ∥C∥+ 1), where ▽MLP ≈
O(I×∥F∥×qh) according to [53]. Here, the time complexity
of the training process is O(∥L∥×γ×▽MLP ×∥C∥), and that
of the selection process is O(∥L∥ × (1− γ)× ∥C∥+ 1).

Based on the time complexity of these three phases, we
obtain that the time complexity of the statistical-MLP is O(5×
∥P∥ + ∥L∥ × (∥F∥ + 1) + (γ × (▽MLP − 1) + 1) × ∥L∥ ×
∥C∥+ 1).

D. Multi-MLP Ensemble Approach

To provide the final decision on the presence or absence of
GPS spoofing with high accuracy, we propose a multi-MLP
ensemble approach for integrating the individual prediction
results issued by the MLP models deployed at the BSs. To this
end, we consider two strategies for aggregating the individual
predictions, namely: (i) A threshold based weighted aggre-
gation, where the final prediction is produced by comparing
the weighted combination of individual predictions to a preset
threshold; and (ii) a ML-based aggregation, where the final
decision is taken by combining the individual predictions
through a meta-learner built using different ML techniques.

1) Threshold-based Multi-MLP Ensemble Approach:
This approach aims at finding the best threshold for solving the
optimization problem defined in Eq. (15) based on a weighted
aggregation of individual predictions. As described in Algo-
rithm 2, the threshold-based multi-MLP ensemble approach

Algorithm 2 Threshold-based multi-MLP ensemble algorithm.
Input:

D: Data set. Each data point in D is a vector with size (n+ 1);
that includes n BSs’ MLP predictions and one label which is
set to 1 if spoofing and 0 if normal.

Θ: The thresholds set, Θ = {0.00, 0.01, 0.02, ..., 0.99};
α: The importance coefficient for missed detection.

Output:
T : The final ensemble threshold for the given date set D.

1: X: Data points, X = D[1 : n];
2: Y: Data labels, Y = D[n : n+ 1];
3: procedure DATAWEIGHTING(X)
4: D: The set of weighted MLP predictions, D← {};
5: for each Xi ∈ X do
6: W: The weights for Xi, W ← {};
7: for each xj ∈ Xi do
8: wj = xj/SUM(Xi);
9: W ←W ∪ {wj};

10: end for
11: Di = W

⊙
Xi;

12: D← D ∪ {Di};
13: end for
14: return D
15: end procedure
16: procedure THRESHOLDEVALUATION(D, Y, Θ)
17: R: The thresholds test results, R← {};
18: for each θ in Θ do
19: FP : False positives, FP ← 0;
20: FN : False negatives, FN ← 0;
21: Ŷ: The test results, Ŷ ← {};
22: for each Di in D do
23: if Di > θ then
24: ŷ ← 1;
25: else
26: ŷ ← 0;
27: end if
28: Ŷ ← Ŷ ∪ {ŷ};
29: end for
30: for each (ŷi in Ŷ) and (yi in Y) do
31: if (ŷi ̸= yi) and (yi = 1) then
32: FN ← FN + 1;
33: else if (ŷi ̸= yi) and (yi = 0) then
34: FP ← FP + 1;
35: end if
36: end for
37: Rθ = α× FN + (1− α)× FP ;
38: R← R ∪ {Rθ};
39: end for
40: return R
41: end procedure
42: procedure THRESHOLDSELECTION(R, Θ)
43: Get the min value index k, k = index(min(R));
44: return T ← θk .
45: end procedure

comprises three sequential procedures; i.e., the data weight-
ing procedure, the threshold evaluation procedure, and the
threshold selection procedure. The data weighting procedure
(lines 4–14) aims to assign a weight to the prediction of each
ensemble individual MLP model. The weight is proportional
to the prediction confidence score of GPS spoofing; that is, the
highest weight is assigned to the individual prediction with the
highest confidence score. The weights are normalized so that
their sum is equal to 1. The ensemble weighted prediction
Di is defined as the sum of the weighted predictions of the
individual MLP models (line 10). The threshold evaluation
procedure (lines 17–40) uses a set of thresholds and the
performance metrics (i.e., missed detection and false alarms)



defined in (15) to evaluate the ensemble weighted predictions.
For each threshold value θ, the procedure first tests whether or
not a GPS position is spoofed through the hypothesis testing
in Eq. (14), by comparing the ensemble weighted predictions
to the preset threshold. If the ensemble weighted prediction
is above the threshold, the spoofing hypothesis (i.e., null
hypothesis H0) is accepted and the label 1 is assigned to
the test data. Otherwise, the spoofing hypothesis is rejected
and the label 0 is associated to the test data. The testing
labels Ŷ are then compared to the actual data labels Y to
assess the detection performance of the multi-MLP ensemble
model under the preset threshold. The detection performance
is evaluated with respect to the number of false negatives
(FNs) and false positives (FPs). FNs refer to missed detections
(i.e., ŷi = 0) when the actual GPS positions are spoofed
(i.e., yi = 1), while FPs represent the false alarms (i.e.,
ŷi = 1) when the actual GPS positions are legitimate (i.e.,
yi = 0). The threshold selection procedure (lines 43–44)
uses the detection performance metrics to determine the best
threshold. According to Eq. (15), the best threshold is the one
minimizing both FNs and FPs. In the following Theorem 2,
we give the time complexity of the threshold-based multi-MLP
ensemble algorithm.

Theorem 2. The time complexity of building the Threshold-
based multi-MLP ensemble algorithm is O((n+ ∥Θ∥ × 2)×
∥D∥ + 1). Here, n denotes the number of BSs, ∥D∥ is the
number of prediction results in D obtained by Algorithm 1,
and ∥Θ∥ represents the length of the preset thresholds set.

Proof. The time complexity of the threshold-based multi-
MLP ensemble algorithm corresponds to the sum of the time
complexity of computing the ensemble weighted predictions
and that of thresholds evaluation and selection. The time
complexity of calculating the ensemble weighted predictions
can be determined as O(n×∥X∥). The time complexity of the
thresholds evaluation includes the time required for hypothesis
testing ∥Θ∥×∥D∥ and the time needed for assessing the detec-
tion performance ∥Θ∥ × ∥Y∥. The threshold selection incurs
O(1) time complexity. As ∥X∥ = ∥Y∥ = ∥D∥, we obtain
that the time complexity of building the threshold-based multi-
MLP ensemble algorithm is O((n+∥Θ∥×2)×∥D∥+1).

2) ML-based Multi-MLP Ensemble Approach: Finding
the best decision threshold to achieve the desired GPS spoofing
detection performance is a challenging task, which depends
on various factors, including the number of BSs, the training
data set and the FNs-FPs trade-off. Thus, an intelligent so-
lution to automatically learn the decision threshold is vital.
To this end, we propose a ML-based multi-MLP ensemble
approach for integrating the individual prediction results of
the MLP models using six different ML methods, including
MLP, Decision Trees (DT), Logistic Regression (LR), Support
Vector Machine Kernel (SVMK), Support Vector Machine
Gamma (SVMG), and Gaussian Naive Bayes (GNB) [53]–
[57]. Specifically, the individual prediction results from the
outputs of multi-MLPs are the inputs of these ML methods

and the trained model with the smallest binary cross entropy
loss B is adopted as the predicting model to make a decision
on whether the GPS provided by the UAV is spoofed or not.

The proposed ML-based multi-MLP ensemble approach is
summarized in Algorithm 3. In the following Theorem 3, we
give the time complexity of the ensemble algorithm.

Algorithm 3 ML-based multi-MLP ensemble algorithm.
Input:

D: Data set. Each data point in D is a vector with size (n+ 1);
that includes n BSs’ MLP predictions and one label which is
set to 1 if spoofing and 0 if normal.

M: Ensemble ML methods, M = {MLP, DT,LR, SVMK, SVMG,
GNB}.

γ: Fraction to create bootstrapped training data
Output:

C: The final ensemble ML model.
1: X: Data points, X = D[1 : n]
2: Y: Data labels, Y = D[n : n+ 1]
3: Divide (X,Y) into training data set (X̃, Ỹ) and testing data set (X̂, Ŷ)

according to γ
4: procedure MODELTRAINING((X̃, Ỹ), M)
5: M: The set of ML meta-models, M← {}
6: for each Mi ∈ M do
7: Utilize the (X̃, Ỹ) to train Mi;
8: M←M∪ {Mi};
9: end for

10: return M
11: end procedure
12: procedure MODELEVALUATION((X̂, Ŷ), M)
13: B: The set of the Loss values, B← {}
14: for each Mi in M do
15: Use (X̂, Ŷ) to evaluate Mi and obtain the average loss Bi;
16: B← B ∪ {Bi};
17: end for
18: return B
19: end procedure
20: procedure MODELSELECTION(B, M)
21: Get the min loss index k, k = index(min(B));
22: return C←Mk

23: end procedure

Theorem 3. The time complexity of building the ML-based
multi-MLP ensemble algorithm is O(γ×∥D∥×

∑∥M∥
i=1 ▽Mi

+
(1−γ)×∥D∥×∥M∥+1). Here, γ is the fraction to create boot-
strapped training data from the MLPs’ prediction results D ob-
tained by Algorithm 1, ∥D∥ is the number of prediction results
in D, and ▽Mi denotes the time complexity of ith ML method
Mi where Mi ∈ {MLP, DT, LR, SVMK, SVMG, GNB}.

Proof. The time complexity of the ML-based multi-MLP
ensemble algorithm corresponds to the sum of the time com-
plexity of ML model training and that of ML model evaluation.
The time complexity of ML model training can be determined
as O(γ×∥D∥×

∑∥M∥
i=1 ▽Mi

), where γ×∥D∥ is the number of
the elements of the training data set, ▽MLP ≈ O(I × n× qh),
n is the number of features, ▽DT ≈ O(n × ρ), ρ is the
depth of the tree, ▽LR ≈ O(2 × n) for the classification of
two labels, ▽SVMK ≈ O(n), ▽SVMG ≈ O(n), and ▽GNB ≈
O(2 × n) [53]–[57]. The time complexity of ML model
evaluation is O(∥D∥ × ∥M∥). Besides, the time complexity
of preparing data and selecting ML model in the training and
evaluation processes is O(1). Thus, we obtain that the time



TABLE IV
HYPERPARAMETERS SETTINGS OF MLP MODELS.

Parameter Value(s)
Number of layers 1, 2, 3, 4, 5
Neurons per layer 10, 20
Activation function ReLU

Solver Adam
Learning rate 0.001, 0.005, 0.0001, 0.0005

Batch size 50, 100, 150

complexity of ML-based multi-MLP ensemble algorithm is
O(γ ×∥D∥×

∑∥M∥
i=1 ▽Mi

+ (1− γ)×∥D∥× ∥M∥+1).

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performances of the
statistical-MLP, threshold-based multi-MLP and ML-based
multi-MLP ensemble algorithms, respectively. We also con-
duct a performance comparison between the threshold and
ML-based multi-MLP ensemble algorithms.

A. Simulation Settings

We develop a simulator using Python 3.6 and Tensorflow
2.1 to evaluate the performances of the proposed algorithms. In
this simulator, Python is used to set up the simulation platform
and Tensorflow is applied to build the ML models. We consider
that the nine BSs are evenly distributed in an area of 300 ×
300 m2, where the distance between any two adjacent BSs is
150 m. The height of the BSs is set to 35 m. The flight height
of both the target UAV u and the aerial GPS spoofer is set
to 150 m. Initially, u is at the location above the center of
the area, and there are a total of 12 potential trajectories (i.e.,
flight paths) toward different directions. A polling strategy is
adopted to choose two alternative paths from the preset twelve
paths, and one of them is used as the planned trajectory while
the other one is assumed as real time trajectory that can be
spoofed or not. Meanwhile, we apply the path loss models
defined in [22] to generate the training and evaluating data
from the BSs to u . The channel frequency is set to 2.0 GHz.

In Algorithm 1, the number of data points E is drawn from
{100, 150, 200, 250, 300, 350, 400, 450, 500}. dE is preset as
{10, 15, 20, 25 , 30, 35, 40, 45, 50} to simulate the GPS error
tolerance of different scenarios. γ is 0.7, which means that
70% of the data in the data set is used for training the model,
and the other 30% is used for its evaluation. It is well known
that the performance of MLP is sensitive to hyperparameter
settings [58]. Thus, to find the best configuration of the dif-
ferent MLP models in our study, we carry out hyperparameter
tuning by varying the learning rate, the number of hidden
layers, the number of neurons per hidden layer and the training
batch size. Note that the batch size is the number of data
points used for each training iteration. The number of MLP
layers is varied from 1 to 5 layers, and the number of neurons
of the hidden layers is taken from {10, 20}. Specifically, all
MLP models have one input layer with 10 neurons and one
output layer with one neuron. The learning rate is drawn

from {0.001, 0.005, 0.0001, 0.0005}. In our simulation, the
MLP model with three hidden layers (10, 20, 10) using the
learning rate 0.005 achieved the best accuracy performance
on both training and validation datasets. All MLP layers use
Rectified Linear Unit (ReLU) as their activation function and
use Adam as the solver, where the ReLU is used in the hidden
layer to prevent the vanishing gradient problem and accelerate
the training processes while the Adam solver can work with
sparse gradients and use the average of recent magnitudes of
the gradients to mitigate noise impacts. The MLP models are
built using back propagation method on a data set containing
approximately 1 million samples, and each element of the data
set consists of a planned way point, a reported way point and
a BS position. We set PL observations as ∥L∥ ≈ 1 × 106.
∥P∥ = ∥R∥ = ∥L∥ ≈ 1 × 106. The training is performed
at most 200 epochs and an early stopping patience of 10 on
loss B is applied to prevent overfitting. The model’s loss B
defined in (17) is calculated for every epoch on a hold out
validation set.

In Algorithm 2, D is the data set of different BSs’ prediction
results, the size of D is equal to (∥P∥ × n/E), and the
importance coefficient for missed detection α is set to 0.9.
In Algorithm 3, the fraction γ is 0.7 for training data. For the
MLP ensemble algorithm, n neurons with one hidden layer
is used to integrate each BS decision. DT’s depth ρ has the
same size as the number of BSs n. According to the logistic
regression, the inverse regularization strength of LR is set
as 0.01 to reduce overfitting. SVMK model uses the linear
kernel with penalty coefficient σ = 0.025 to increase the fault
tolerance of the classifier and avoid overfitting, while SVMG
uses radial basis function kernel with parameters gamma = 2
and σ = 1, where gamma decides how much curvature in
a decision boundary. Here, a high gamma leads to higher
curvature.

B. Performance Metrics

We evaluate the effectiveness of the proposed algorithms
according to the commonly used performance metrics, includ-
ing the total error (TE) of the hypothesis testing (see Eq.
(15)), Accuracy, Recall, and F1. The performance metrics are
expressed as:

Accuracy =
TP + TN

TP + FP + FN + TN
,

Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
,

F1 = 2× Recall × Precision

Recall + Precision
,

(18)

where TP (True Positive) denotes the number of the spoofed
positions that are correctly detected, FN (False Negative) rep-
resents the number of the spoofed positions that are wrongly
detected as normal positions, FP (Flase Positive) is the
number of the normal positions that are wrongly detected as
spoofed ones, and TN (True Negative) denotes the number of



(a) The effect of E on accuracy under dE = 15m.

(b) The effect of dE on accuracy under E = 150.

Fig. 5. The accuracy performance of the statistical-MLP algorithm.

the normal positions that are correctly detected. The F1 metric
is used to characterize the trade-off relationship between the
precision rate and the recall rate.

C. Performance Evaluation of Statistical-MLP Approach

We first investigate the impact of the number of data points
E on MLP performance under the proposed statistical-MLP
approach. The results are summarized in Fig. 5(a) with a
setting of GPS error dE = 15m. It can be observed from
Fig. 5(a) that the MLP accuracy increases as E increases. This
is due to the fact that the MLP output performance mainly
depends on the input corresponding to these statistical results,
where a larger data set results in higher accuracy and precision.

Fig. 5(b) further illustrates how the GPS error dE affects
the accuracy under the setting of E = 150. We can see from
Fig. 5(b) that as GPS error increases, the accuracy decreases.
This is because in the environment with a high GPS error, it
is more easier for an attacker to counterfeit the GPS position.

A careful observation from Fig. 5(a) and Fig. 5(b) indicates
that the training and testing results have the same increas-
ing/decreasing trend, and the difference between these two
results is small. It is notable that a small difference between
training and testing results means that the model is well
trained without overfitting on testing. We can also observe
from Fig. 5 that the accuracy under the proposed statistical-
MLP approach is high up to more than 0.83 for all trials. In
the next subsection, we will show that this accuracy can be
further improved under the ML-based multi-MLP ensemble
approach.

D. Performance Evaluation of Multi-MLP Ensemble Ap-
proach

(a) False Positives (b) False Negatives

(c) Total Error (d) Alpha

Fig. 6. The performances of the threshold-based multi-MLP ensemble
algorithm under dE = 15m and E = 150.

1) Threshold-based Multi-MLP Ensemble Approach: Ac-
cording to the optimization problem in Eq. (15), the perfor-
mance of the threshold-based multi-MLP ensemble approach
depends on the number of BSs, the threshold value, and the
value of α. Fig. 6 illustrates the performance of the threshold-
based multi-MLP ensemble approach in terms of FP, FN and
total error. Fig. 6 shows also the influence of the number of
BSs and the value of the importance coefficient α assigned to
missed detections on the optimal threshold value that yields the
smallest total error. The results in Fig.6(a) and Fig.6(b) show
that an increase in the threshold value leads to a decrease in
FPs and an increase in FNs, respectively. The opposite trends
exhibited by FP and FN with respect to the threshold value
indicates the interrelation between these two measures. In fact,
with lower threshold values, the detection algorithm is likely
to detect all spoofed GPS positions, but at the expense of
erroneously classifying normal GPS positions as spoofed. On
the other hand, higher threshold values make the detection
algorithm more permissive, which reduces the number of false
alarms but at the price of rising the risk of missing the
detection of spoofed GPS positions. Another key observation
from Fig.6(a) and Fig.6(b) is that the increase in the number
of BSs can lower the FP and FN. This can be explained
by the fact that involving more BSs in the detection process
will provide more data points which naturally improves the
credibility of the ensemble predictions. As introduced in
Eq. (15), obtaining the optimal threshold that gives the best
detection performance (i.e., the smallest TE) depends on the
relative importance of detecting all spoofed positions versus
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(a) The effect of the number of BSs on FP
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(b) The effect of the number of BSs on FN
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(c) The effect of the number of BSs on TE
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(d) The effect of the number of BSs on accuracy
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(e) The effect of the number of BSs on recall
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Fig. 7. The performances of multi-MLP ensemble algorithm under dE = 15m and E = 150. The thresholds θ = [0.76, 0.73, 0.70, 0.66, 0.63, 0.6, 0.58, 0.56]
with the setting α = 0.90, where θ[i] is the threshold for i BSs scenario.

keeping the number of false alarms low. From results depicted
in Fig. 6(c) and Fig. 6(d), it is clear that increasing the
importance coefficient of missed detections α leads to lower
threshold values to achieve the smallest TEs. Indeed, lower
threshold values are required to reduce the FN which allows to
minimize their influence on the TE. The results show also the
positive impact that the number of BSs have on lowering the
TE. As demonstrated in Fig. 6(a) and Fig. 6(b), this positive
impact is due to the decrease of FN and FP with the increase
in the number of BSs.

2) ML-based Multi-MLP Ensemble Approach: To evaluate
the effectiveness of the ML-based multi-MLP ensemble algo-
rithm in detecting the GPS spoofing attack, we measure the
fundamental performances in terms of FP, FN, TE, as well
as Accuracy, Recall, and F1 using the test data set under the
setting of dE = 15m and E = 150.

We summarize the performance results in Fig. 7. As with
the threshold-based multi-MLP ensemble approach, the results
depicted in Fig. 7(a) and Fig. 7(b) show that the same
observation about the impact of the number of BSs on FP
and FN applies; that is, increasing the number of BSs yields
to reduced FP and FN. In fact, a higher number of BSs allows
to provide more data to the ML meta-model aggregating the
individual predictions, which improves the ensemble decision
about the spoofing or not of a GPS position. It is worth
noting that an exception is noticed for the GNB meta-model,
where the increase in the number of BSs slightly increases
the generated FP. The reason behind this trend is that GNB is
achieving the highest performance in terms of FP, with a value

less than 0.01, which makes it sensitive to potential errors in
predictions provided by some far BSs. Indeed, more the UAV
is far away from the BSs, higher the error in the path losses
values will be [32].

It can be observed from Fig. 7(d) that the Accuracy per-
formance can be significantly improved. For instance, the
Accuracy is nearly 0.97 using the ensemble model with two
BSs, while it is below 0.90 when only using the statistical-
MLP algorithm. The reason behind the phenomenon is that the
ensemble algorithm takes more evidences from different BSs,
which enriched the knowledge for the ensemble algorithm
making the final decision. We can also obtain the same
conclusion in terms of Recall in Fig. 7(e) and F1 in Fig. 7(f).
Furthermore, we observe that the GNB meta-model exhibits
the worst performance among the six meta-models. This can
be explained by the fact that GNB makes a very strong
assumption on the normal distribution of data, which may not
necessarily hold for the individual prediction results fed into
the GNB meta-model, leading to incorrect detection decisions.
For the dataset under study, GNB generates the highest number
of missed detections.

We further compare the ML-based algorithms to the
threshold-based algorithm as illustrated in Fig.7. It is worth
noting that for the threshold-based algorithm, we represent
the performance results of the optimal threshold value selected
for a given number of BSs when the importance coefficient
α is set to 0.9. For instance, the performance results when
3 BSs are considered are the ones obtained with θ = 0.73,
while those for 4 BSs are the ones achieved with θ = 0.70.



The results in Fig. 7 indicate that the threshold-based al-
gorithm achieves its optimization goal defined in Eq. (15)
of minimizing the FN , which also influences positively the
Recall metric. Although the threshold-based algorithm can
reduce the missed detections, it fails in achieving a trade-off
among FN , FP , Accuracy and Recall. Such a balance can be
measured using the F1 score, which represents the harmonic
mean of precision and recall. The F1-score values in Fig. 7(f)
show that ML-based algorithms outperform the threshold-
based algorithm in achieving a better precision-recall balance
when the number of BSs is more than 5. From Fig. 7(b), it can
be observed that the FN rate for most ML algorithms is less
than 2%, which demonstrates the effectiveness of ML-based
multi-MLP ensemble approach in protecting the system from
GPS spoofing attack while achieving a good balance between
precision and recall.

E. Time Complexity Comparison

The time for building the detection model (i.e., training
time) and the time needed by a trained model to take decision
(i.e, testing time) are critical indicators of performance evalu-
ation [51]. Specifically, a longer training time will bring more
latency for updating the threshold value or the ML model in
a dynamic environment in order to adapt to changes in the
path loss model, while a longer testing time introduces more
latency for the spoofing detection. In what follows, we discuss
and compare the training and testing time complexity of the
proposed multi-MLP ensemble approaches. For the threshold-
based approach, the training time represents the time required
to find the optimal threshold.

From the theoretical analysis conducted in Section V, the
time complexity of the threshold-based algorithm is O((n +
∥Θ∥×2)×∥D∥), and the complexity of training and testing an
ML-based algorithm is of O(γ×∥D∥×▽Mi+(1−γ)×∥D∥),
where ▽Mi is of O(n) for SVMG and SVMK, O(2 × n)
for LR and GNB, O(n × ρ) for DT, and O(I × n × qh)
for MLP. It can be seen that the time complexity of the
threshold-based algorithm is much higher than that of the ML-
based algorithms excluding the MLP-based algorithm. This is
because the number of thresholds ∥Θ∥, equal to 100 in this
study, is much bigger than 2× n and still higher than n2 for
n ∈ [1, 9]. The higher complexity of MLP-based algorithm is
due to the fact its training time depends not only on n, but also
on the number of hidden layers q, the number of neurons per
layer h, and most importantly the number of training epochs
I (set to 200 in our simulation).

We also measured the training time and testing time via
simulations using a physical machine with 4-cores Intel’s Core
1.6Ghz CPU and 16GB RAM. Fig. 8 illustrates the obtained
results. One interesting finding observed from Fig. 8(a) indi-
cates that the training time of the MLP model is significantly
higher than that of the other ML-based algorithms. An intuitive
explanation is that the MLP model may need more time to
update the neurons parameters to provide a better performance.
Another important finding from Fig. 8(b) is that the testing
time of the SVMK and SVMG is higher than that of the

other ML-based algorithms. This is because these SVMK and
SVMG models are not incremental; i.e., all the test data are
analyzed at once. Regarding the threshold-based algorithm, it
spends 1400ms each time on finding the best threshold, which
is also much higher than the training time consumed by most
of the ML-based algorithms, except the MLP. For the testing
time, the threshold-based algorithm only needs to compare the
test values with the thresholds, which is of lower complexity
compared with all ML-based algorithms.
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Fig. 8. Training and testing time consumption of MLP ensemble algorithms.

Based on the above performance evaluations, we find that
the ML-based multi-MLP ensemble approach could achieve a
significant improvement on the GPS spoofing detection perfor-
mance compared with the statistical-MLP algorithm and the
threshold-based multi-MLP ensemble approach. Meanwhile,
a flexible combination of the statistical-MLP algorithm and
other ML methods could reduce the spoofing detection latency,
and achieve a real time GPS spoofing detection.

VII. CONCLUSION AND FUTURE WORK

This paper explored the spoofing detection performance
for cellular-connected UAV based on the ML methods. To
this end, a constrained optimization problem was proposed to
formulate it. To solve the nonlinear and nonconvex optimiza-
tion problem, we first proposed a statistical-MLP algorithm to
independently predict the spoofing probability of GPS position
at each BS. For an improvement of detection performance, we
further proposed a multi-MLP ensemble algorithm to integrate
these independent prediction results using six different ML
models, respectively. Remarkably, our proposed algorithm can
achieve above 97% accuracy rate under two BSs, while it can



still achieve at least 83% one under only one BS. Furthermore,
the testing time under the four types of ML models (i.e., DT,
LG, MLP, and GNB) is very short; less than 5 ms for 3× 104

test data points.
Despite its demonstrated effectiveness in detecting GPS

spoofing in an energy-efficient way, the proposed solution is
designed for one single cellular-connected UAV and does not
consider the case of a UAV swarm. Although our approach can
work with multi-UAVs, it requires running multiple spoofing
detection models on MEC and edge cloud servers, one per
UAV, which leads to less cooperation among the detection
procedures. When a large UAV swarm connects with one
single BS, it takes too much computation on the BS MEC
server and may lead to congestion in the detection system
due to the limited computation resources. To support the
swarm spoofing detection and further improve the detection
performance, the Graphic Neural Network (GNN) will be
introduced into the MEC server to detect the GPS spoofing
by checking the authenticity of the GPS positions reported
by the swarm. Specifically, the GNN is used to compute the
similarity between the swarm GPS formation and the swarm
communication formation. The swarm GPS location formation
is similar to the swarm communication formations without
GPS spoofing. Otherwise, the GPS is spoofed.
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