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Abstract—We study transmitter authentication in massive
multiple-input multiple-output (MIMO) systems with non-ideal
hardware for the fifth generation (5G) and beyond networks.
A new channel-based authentication scheme is proposed by
taking hardware impairments into account. Based on signal
processing theory, we first formulate channel estimation under
hardware impairments and determine error covariance matrix
to assess the quantity caused by hardware impairments on
authentication performance. With the help of hypothesis testing
and matrix transformation theories, we are then able to derive
exact expressions for the probabilities of false alarm and detection
under different channel covariance matrix models. Extensive
simulations are carried out to validate theoretical results and
illustrate the efficiency of the proposed scheme. Impacts of system
parameters on performance are revealed as well.

Index Terms—Physical layer authentication, wireless security,
massive multiple-input multiple-output (MIMO), hardware im-
pairments, the fifth generation (5G) and beyond networks.

I. INTRODUCTION

The emerging massive MIMO system, with tens or hundreds

of base station antennas serving a large number of mobile

terminals, has recently attracted substantial interests from both

academic and industry societies [1], [2]. It is deemed as one

of the most promising techniques to support the increasing

demand for wireless services in the fifth generation (5G) and

beyond networks [3]. Compared to currently deploying MIMO

systems with a small number of antennas, massive MIMO

systems provide tremendous performance gains in terms of

energy and/or spectral efficiency by utilizing large-scale an-

tenna arrays with largely enhanced spatial resolution and array

gain [4], [5]. Also, channel random impairments such as

propagation losses and thermal noise can be easily mitigated
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by coherent beamforming/combining [6], [7]. Therefore, there

is no doubt that massive MIMO will be integrated in the

upcoming 5G and beyond standards.

Authentication serves as an unrivalled security service by

verifying entity identity to achieve secure communications

[8], [9]. Thus, providing flexible and cost-effective authen-

tication paradigms verifying the claimed identity of a legiti-

mate transmitter and refusing an adversarial impersonation is

becoming an increasingly urgent demand for massive MIMO

systems. This is because the open nature of wireless medium

makes wireless networks more vulnerable to impersonation

attacks [10]. Moreover, the increasingly dynamic mobile en-

vironments and the randomness of devices, joining in or

leaving the network at anytime, lead to a highly challenging

issue on cryptographic key distribution and management in

decentralized networks [11]. In other words, cryptographic-

based authentication is hard to be implemented in massive

MIMO systems. Although there has been important efforts on

massive MIMO research, authentication paradigms detecting

impersonation attacks.

Recently, physical layer authentication techniques, which

exploit the intrinsic and unique features of physical layer for

authentication, have received significant attention to enhance

the conventional cryptography-based authentication solutions

[12]–[23]. So far, extensive research efforts have been devoted

to the study of effective physical layer authentication methods

for non-massive MIMO systems. Those existing works can

be broadly divided into three categories: fingerprinting au-

thentication, watermarking authentication, and channel-based

authentication. The basic principle of fingerprinting authenti-

cation is that the radio frequency-distinct native attribute (RF-

DNA) can hardly be mimicked after being manufactured, such

that RF-DNA can be used to uniquely identify devices. The

authors in [12] explore the analysis of distortion signals result-

ing from hardware impairments to identify wireless devices.

Carrier frequency offset caused by hardware impairments is

investigated to identify wireless transmitters in [13]. The

authors in [14] examine the reliability and differentiability

of fingerprinting authentication via theoretical modeling as

well as experiment validation. In [15]–[17], watermarking

authentication is based on a secret tag that is superimposed

to the modulated signals to be transmitted. A watermarking-

based authentication scheme, which relies on a cryptography

secure low-power authentication tag hidden in the modulated

signals for authentication, is investigated in [15]. The authors

in [16] further conduct tag-based authentication experiments in

software defined radio systems. An extension of conventional
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watermarking methods is proposed in [17] to authenticate

wireless devices by jointly utilizing side-channel information

and tag selection.

Channel-based authentication [20]–[23] mainly utilizes the

inherent characteristics of wireless channels (e.g., location-

specific property) to identify wireless devices. The authors in

[20] present a channel-based authentication scheme by exploit-

ing spatial variability of channel frequency response over time-

varying channels in a rich scattering environment. The authors

in [22] propose a novel scheme jointly using location-specific

properties of both channel amplitude and multipath delay of

channels to identify transmitters. The authors in [23] propose a

logistic regression-based authentication by exploiting channel

state information (CSI) and multiple landmarks to improve the

spoofing detection accuracy.

It is notable that the above mentioned works mainly focus

on authenticating in non-massive MIMO systems. To sim-

plify performance analysis, the above studies assume that the

transceivers involved in communications are ideal hardware.

However, practical transceivers are commonly non-ideal, es-

pecially when a large number of cheap low-power hardware

is deployed in massive MIMO systems. It is proved that hard-

ware impairments such as power amplifiers non-linearities,

amplitude/phase imbalance in I/Q (in-phase and quadrature)

mixers, multiuser interference due to I/Q mismatch [24], and

mutual coupling hardware mismatches induced channel non-

reciprocity [25], are attributed to the use of inexpensive low-

power hardware [1], [5]–[7]. Although the impact of hardware

impairments can be substantially reduced by analog or digital

compensation algorithms, these approaches cannot completely

eliminate impairments. This is because physical transceiver

implementations are comprised of multiple modules such as

converters, amplifiers, and oscillators [26], and thus each

module distorts signals in its own way [6]. It is difficult (if not

impossible) to accurately estimate and analytically model the

characteristics of some impairments [27]. As a result, hardware

imperfections are unavoidable.

It is demonstrated that the presence of hardware impair-

ments not only limits capacity but also deteriorates channel

estimation accuracy in the high-power regime [6], [7]. There-

fore, channel estimation accuracy is affected by hardware

impairments, thermal noise, and multiuser interference. It is

worth noting that for overall system performance, consider-

ing aggregate effect of all impairments has more substantial

benefits than considering separately individual behavior of

each hardware module. Recently, increased attention has been

focused on a novel system model with aggregate residual

hardware impairment which is characterized by independent

additive distortion noise at base station and user terminals [6],

[27]–[29]. Based on this background, this paper focuses on

physical layer authentication for massive MIMO systems with

aggregate residual hardware impairments.

The main contributions of this paper are summarized as

follows:

• By utilizing location-specific property of wireless chan-

nels and considering hardware impairments to authenti-

cate transmitters, we develop a new channel-based au-

Fig. 1. System model.

thentication scheme for massive MIMO systems with

non-ideal hardware.

• To calculate the quantity caused by hardware impairments

on authentication performance, we formulate channel

estimation under hardware impairments and determine

error covariance matrix based on linear minimum mean

square error technique.

• Using the quantization result, matrix and hypothesis

testing theories, we analytically model the probabilities of

false alarm and detection under different channel covari-

ance matrix models. Simulation results are also provided

to validate theoretical modeling of the two probabilities.

• Through theoretical models, we further examine how

different levels of hardware impairments can impact on

authentication performance, and also determine how to

set antennas correlation pattern and the number of base

station antennas to achieve a required authentication

performance.

The remainder of this paper is organized as follows. Section

II depicts the envisioned system model. Section III presents the

proposed scheme. Formulations of the probabilities for false

alarm and detection is provided in Section IV, and numerical

results are shown in Section V. Finally, Section VI concludes

this paper.

Notation: Let (·)∗, (·)T , and (·)H denote conjugate, trans-

pose, and conjugate transpose operators, respectively. | · |
denotes absolute value operator. ‖x‖ denotes L2-norm of a

vector x. CM×K represents the set of complex-valued M×K
matrices. Cov(·) denotes covariance operator. det(·) denotes

determinant operator. A circularly symmetric complex Gaus-

sian random vector x with zero mean and covariance matrix R

can be denoted by x ∼ CN (0,R). Identity matrix is denoted

by I. E(·) and Pr(·) represent expectation and probability

operators, respectively. ,, and tr(·) represent definitions and

matrix trace function, respectively. diag[λ1, ..., λM ] represents

a diagonal matrix with λ1, ..., λM on the main diagonal. exp(·)
denotes exponential function. Γχ2

i
(·) denotes the right-tail

probability function for a χ2
i random variable with i degrees

of freedom.

II. SYSTEM MODEL

A. Network Model

As illustrated in Fig. 1, we consider an uplink massive

MIMO system consisting of three different entities: one M -

antenna base station (namely Bob), two single-antenna mobile

terminals (namely Alice and Eve). To ensure independent

fading channels, any two entities are assumed to be far
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away from each other, with a distance far more than spatial

separation of a wavelength (e.g., 6 cm for a typical 5 GHz

RF system). This assumption is reasonable because when the

distance between entities is less than one wavelength, they

will fail to work well due to strong interference [21], [22].

Alice is a legitimate transmitter to the intended receiver Bob.

Eve serves as an adversary who attempts to steal some useful

information and/or to inject his own aggressive signals into the

network by impersonating Alice. Suppose that Bob receives

two messages (also referred to as frames) at time k − 1 and

time k. We assume that the first one is confirmed as being from

Alice by using a standard higher-layer protocol [21], and Bob

stores the channel information connecting Alice with him. The

other one, received by Bob at time k, is either from Alice or

Eve. Therefore, Bob is supposed to differentiate between Alice

and Eve. The message to be authenticated is not expected to be

sent continuously but it is necessary to ensure the continuity of

authentication process by probing the channel at time intervals

smaller than the channel coherence time [20].

B. Channel Model

We first introduce the following definitions on fading chan-

nels:

• Spatial channel correlation: A fading channel h ∈
CM×1 is spatially uncorrelated, if channel gain ‖h‖2 and

channel direction h/‖h‖ following uniform distribution

over unit-sphere in CM×1 are uncorrelated random vari-

ables. Otherwise, it is spatially correlated.

• Temporal channel correlation: A fading channel h ∈
CM×1 is temporally correlated, if each channel compo-

nent remains constant over one frame and is continuously

varying from one frame to the next due to the relative

motion between entities and such temporal variations are

correlated.

Similar to the works in [18], [20], [22], we assume that

channels from the same transmitter-receiver pair are tempo-

rally correlated and follow Rayleigh fading. The temporally

correlated channel may be spatially independent or correlated.

We use the subscripts A, B and E to denote the terms

associated with Alice, Bob and Eve, respectively. Then, let

subscript t denote an unknown transmitter, i.e., t = {A,E}.

The channel vector between t and Bob at time k is denoted

by ht[k] = [ht,1[k] · · ·ht,M [k]]T ∈ CM×1 with ht,m[k]
representing the mth component of ht[k], and then we have

ht[k] ∼ CN (0,Rt) where Rt = E{ht[k]h
H
t [k]} ∈ CM×M is

a symmetric positive semi-definite matrix. Following existing

related literature [21], it is assumed that the statistical infor-

mation of channel can be available at Bob. This assumption

is generic and has been adopted in [17].

Here, we exemplify temporal channel variations. We first

focus on the time-autocorrelation of channels, which is caused

by the Doppler rate. Similar to [20], we assume that the

temporal variations of the channel between Alice and Bob are

mutually independent and the normalized maximum Doppler

frequencies are identical. Let f denote the normalized maxi-

mum Doppler frequency. According to the well-known Jakes’

model [30], the time-autocorrelation matrix of hA[k] for an

arbitrary time lag ks can be written as

ΨA[ks] = E{hA[k]h
∗
A[k + ks]}

= RAJ0(2πfks), (1)

where J0(·) is the zeroth order Bessel function of the first

kind.

Similar to [18], a first-order Gauss-Markov process is em-

ployed to model the fluctuation of channel state. According to

[18], correlation coefficient matrix of hA[k] can be defined as

ΨA(ks)R
−1
A . Thus, we have

hA[k] = αhA[k − 1] +
√

1− α2eA[k], (2)

where α is temporal correlation coefficient and eA[k] ∼
CN (0,RA) is independent of hA[k − 1].

C. Communication Model with Hardware Impairments

In practical applications, transceivers always suffer from

hardware impairments. The impact of hardware impairments

on signals mainly includes two aspects: 1) the signal that is

actually generated and transmitted, does not agree with the

intended one; and 2) the received signal is distorted during

reception processing. Such impairments are treated as the

inclusion of additional distortion noise sources which are in

general relevant to signal power and channel gain. Various

sources of impairments (e.g., I/Q imbalance and phase noise)

result in distortion noise [6].

In order to characterize non-ideal hardware impairments

more accurately, we adopt the communication model with the

aggregate residual hardware impairments, which are character-

ized by independent additive distortion noises at the transmitter

and receiver as in [6]. For the authentication performance

investigation, this is reasonable because considering the ag-

gregate effect of all residual hardware impairments is more

significant than considering them separately/individually.

Frame-by-frame transmission is considered. A transmission

frame consists of deterministic pilot symbols used for channel

estimation and stochastic data symbols. Suppose an unknown

mobile transmitter t tries to send a frame to be authenticated

to Bob at time k. Let s[k] ∈ C denote the deterministic pilot

signal transmitted by t at time k and let p = E{|s[k]|2} denote

the average power of s[k]. Let ν[k] ∈ CM×1 denote an ergodic

process comprised of zero-mean complex additive white Gaus-

sian noise (AWGN) νN [k] ∼ CN (0, σ2
NI) and interference

from other simultaneous transmissions νI [k] ∼ CN (0, σ2
I I),

which is independent of s[k]. Then, the signal received by Bob

at time k can be written as

yBt[k] = ht[k](s[k] + ηt[k]) + ηB[k] + ν[k], (3)

where ηt[k] ∈ C denotes the independent additional distortion

noise at t and ηB[k] ∈ C
M×1 denotes that at Bob. According

to [6], ergodic stochastic processes can model aggregate

residual impairments. Note that distortion noise caused by

hardware impairments is irrelevant to s[k], but statistically

depends on channel realizations. Also, this distortion noise

follows a complex Gaussian distribution for a given channel
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TABLE I
EVM REQUIREMENTS FOR DIFFERENT MODULATION METHODS

Modulation scheme Required EVM
QPSK 0.175
16-QAM 0.125

64-QAM 0.080

256-QAM 0.035

realization, which is verified experimentally and supported

by several theoretical results [6]. Specifically, under a given

ht[k] the conditional distributions are ηt ∼ CN (0, ςt) and

ηB ∼ CN (0,ΥB), respectively, wherein ςt and ΥB can be

modeled as

ςt = κtp, (4)

ΥB = κBpdiag[|ht1 [k]|2, ..., |htM [k]|2], (5)

where both κt, κB ≥ 0 characterize levels of hardware im-

pairments at t and Bob, respectively. They commonly remain

constants and are closely related to error vector magnitude

(EVM), which is in general used to measure the quality of

hardware. The relationship between EVM and κ-parameters

is illustrated by an example: EVM at t can be formulated as

EVMt =

√

E{|ηt[k]|2}
E{|s[k]|2} =

√
κt. (6)

Remark 1. A small EVM result is required in the transmitter

and receiver for correct demodulation when modulation den-

sity increases. Table I illustrates how 3GPP LTE standard

EVM requirements for terminal equipment get tighter as

modulation density increases. We also notice that for QAM

(quadrature amplitude modulation) in 5G (256-QAM initially

and up to 1024-QAM in the future), the constellation points

are much closer to each other, so a better EVM performance

is required. However, this paper focuses on the impact of

different levels of hardware impairments (for different modu-

lation densities) on authentication performance. Therefore, we

set κ-parameters in the range [0, 0.152] (large κ-parameters

correspond to low-cost constrained devices) to clearly present

authentication performance of the proposed scheme.

III. PROPOSED PHYSICAL LAYER AUTHENTICATION

SCHEME

The basic principle for the proposed scheme is that channels

are location-specific, which has been widely adopted to au-

thenticate transmitters to complement and improve traditional

security approaches [20]–[22], [31]. More importantly, this

is supported by the well-known Jakes model [30], which

states that the received signal rapidly decorrelates over a

distance of half a wavelength, and that spatial separation of

one to two wavelengths leads to independent fading channels.

Therefore, it is difficult (if not impossible) for an attacker

to generate or accurately model the signal that is transmitted

and received by entities. In other words, the channels between

different geographic locations decorrelate rapidly in space

due to path loss and fading [20], [30], [32]. Moreover, Eve

cannot arrive at Alice’s previous location for a typical moving

speed 1 m/s and time interval of probing channel 3 ms

(please refer to [21]). Consequently, the channel between

Alice and Bob is independent of that between Eve and Bob,

i.e., hA[k] is independent of hE [k]. Meanwhile, the channel

for the same transmitter-receiver pair is correlated over time.

Hence, location-specific channel can be used to authenticate

transmitters. The proposed scheme includes channel estimation

with hardware impairments and decision criterion.

A. Channel Estimation

If Rt,diag = diag[r11, ..., rMM ] consists of diagonal ele-

ments of Rt, the covariance matrix of yBt[k] according to (3)

is denoted as

RyBt
= E{yBt[k]y

H
Bt[k]}

= p(1 + κt)Rt + pκBRt,diag + (σ2
I + σ2

N )I. (7)

Let ĥt[k] denote the estimation of ht[k] and then by using

linear minimum mean square error estimator [6] we have

ĥt[k] = s∗[k]RtR
−1
yBt

yBt[k]. (8)

Based on (7) and (8), we can establish the following lemma

on channel estimation with hardware impairments. The proof

is straightforward, and a similar one can be found in [6].

Lemma 1. ĥt[k] can be decomposed as

ĥt[k] = ht[k]− ǫt[k]. (9)

where ǫt[k] ∈ CM×1 ∼ CN (0,Rǫt
) is estimation error vector

and uncorrelated to ht[k]; and Rǫt
is given by

Rǫt
= E{ǫt[k]ǫHt [k]} = Rt − pRtR

−1
yBt

Rt. (10)

As observed from (7) and (10), levels of hardware impair-

ments of different transmitter-receiver pairs lead to different

error covariance matrices under the same AWGN and interfer-

ence. More precisely, a larger level of hardware impairments

will lead to a worse estimation error. It is also notable that

when κ equals zero, i.e., for ideal hardware, estimation error

only results from AWGN and interference.

B. Decision Criterion

Based on the above results, Bob can utilize a binary hypoth-

esis test to decide whether the current message is still from

legitimate transmitter Alice. In other words, it helps to test

whether the current channel estimation at time k is analogous

to previous ones at time k−1. We use “≃” to denote similarity

and “¬” denotes negation. Therefore, the hypothesis test can

be formulated as

H0 : ĥt[k] ≃ ĥA[k − 1],

H1 : ĥt[k]
¬≃ĥA[k − 1],

(11)

where the null hypothesis H0 represents that the current

transmitter is still Alice, i.e., t = A. In contrast, the alternative

hypothesis H1 represents that the current transmitter is adver-

sary Eve, i.e., t = E. To evaluate performance analysis, we
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use PF to denote the probability of false alarm (i.e., a signal

transmitted by legitimate transmitter (Alice) is mistakenly re-

garded as unauthentic). We use PD to denote the probability of

detection (i.e., a signal originated from illegitimate transmitter

(Eve) is successfully judged as unauthentic).

The proposed scheme utilizes location-specific channels to

authenticate transmitters, by comparing the difference between

the previous and the current channel amplitude with a thresh-

old. This paper considers that Bob receives two messages (i.e.,

frames) at time k − 1 and time k. The first one at time k − 1
is validated as from Alice by using a standard higher-layer

protocol, and thus Bob estimates the channel connecting Alice

with him. At time k, Bob can estimate channel connecting a

current transmitter (i.e., Alice or Eve) with him through pilot

signals. Although the proposed scheme relies on other higher-

layer protocols to validate the identity of the previous legit-

imate transmitter, for subsequent authentications it enables a

receiver to quickly differentiate between legitimate and illegiti-

mate transmitters without complete higher-layer processing. In

this paper, both channel covariance matrices (statistical CSI)

associated with Alice and Eve are available for Bob by using

some techniques such as geographical information systems

and remote sensing information of interest. Then, Bob will

implement authentication by comparing the difference between

ĥA[k − 1] and ĥt[k] with a threshold.

To achieve effective authentication, it is of great signif-

icance to establish the likelihood ratio test (LRT) for the

developed hypothesis test. For notational convenience, let

x = [x1 · · ·xM ]T denote the difference between the current

and the previous channel estimations with xm representing the

mth component, i.e., x = ĥt[k]− ĥA[k− 1], where ĥA[k− 1]
is stored by Bob at time k−1. We use Ci (i = 0, 1) to denote

covariance matrices of x on the two hypotheses. Based on

Lemma 1, we can explore the distribution of x on the two

hypotheses. Using (2) and (9) on H0, we have

x = hA[k]− hA[k − 1] + ǫA[k − 1]− ǫA[k]

= (α− 1)hA[k − 1] +
√

1− α2eA[k] + ǫA[k − 1]− ǫA[k].
(12)

From (12), we can see that x is a zero-mean complex Gaussian

random vector with covariance matrix 2(1−α)RA+2(RA−
pRAR

−1
yB,A

RA). This is because hA, eA and ǫA are mutually

independent zero-mean complex Gaussian random vectors.

Similarly, x on H1 can be written as

x = hE [k]− hA[k − 1] + ǫA[k − 1]− ǫE [k]. (13)

Since hE , hA, ǫA and ǫE are mutually independent zero-

mean complex Gaussian random vectors, x on H1 is also a

zero-mean complex Gaussian random vector with covariance

2RA−pRAR
−1
yBA

RA+2RE−pRER
−1
yBE

RE . Based on (12)

and (13), Ci can be expressed as (14).

We can see from (14a) and (14b) that C1 can be decom-

posed as

C1 = C0 +K. (15)

where K is

K = 2RE − pRER
−1
yBE

RE + pRAR
−1
yBA

RA − 2(1− α)RA.
(16)

For simplicity, we define the inverse of Ci as Qi, that is,

Qi , C−1
i . Note that both RA and RE are nonsingular due to

the assumption of complex Gaussian random channel vector,

so C0, C1, and K are also nonsingular. Therefore, we can

always find Q0 and Q1. Let ∆Q = Q0 −Q1, which can be

further written by applying matrix inversion lemma stated in

[33, Lemma 2.3] as ∆Q = C−1
0 KC−1

1 , and then the LRT for

the hypothesis test in (11) can be summarized in the following

lemma.

Lemma 2. The LRT for the hypothesis test in (11) can be

written as

L(x) = xH∆Qx
H1

≷
H0

δ, (17)

where L(x) is sufficient statistic and δ is a decision threshold.

Proof: See Appendix A.

It is important to note that L(x) is a function of x and

∆Q, which has the property that L0(x) can be determined as

a function of L(x). Thus, based on the value of L(x), Bob

can discriminate between Alice and Eve.

Remark 2. To meet extreme data demand growth, it is

a promising solution for future wireless systems (e.g., 5G

network) and mmWave communication systems to operate

in the frequency range of 30–300 GHz. Higher frequencies

adopted in these systems will require shorter inter-site dis-

tances to ensure message transmissions, causing changes in

fading characteristics, and eventually even to lack of fast

fading in line of sight dominated cases. The proposed scheme

utilizes location-specific channels to authenticate transmitters.

Therefore, slower fading or without fading might contribute to

improving the authentication performance. This will be verified

by numerical results in Section V-C.

Remark 3. In massive MIMO systems, spatial diversity leads

to channel hardening, meaning that a fading channel behaves

as if it were a non-fading channel (please refer to [34] for

details). Channel hardening has two significant advantages.

One is the improved reliability of having a nearly determin-

istic channel. The other is almost little estimation error for

channels realization. Therefore, these advantages allow us to

completely exploit location-specific wireless channels to dif-

ferentiate between legitimate and illegitimate transmitters, by

taking aggregate residual hardware impairments into account.

As shown in Section V-C, less fluctuation in channel gain

(i.e., tending to hardening) will lead to better authentication

performance.

IV. MODELING OF PROBABILITIES FOR FALSE ALARM

AND DETECTION

In this section, we first explore the behaviors of the LRT in

(17) for diverse channel covariance models, and then utilize

these behavior results to derive analytical expressions of PF

and PD for the proposed scheme.

According to Section II-B, the channel for the same

transmitter-receiver pair can be either spatially independent

(uncorrelated) or correlated. Against this backdrop, we need
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Ci =

{

2(1− α)RA + 2(RA − pRAR
−1
yB,A

RA), i = 0, (14a)

2RA − pRAR
−1
yBA

RA + 2RE − pRER
−1
yBE

RE, i = 1. (14b)

to analyze each case in detail to find analytical expressions

for PF and PD .

A. Spatially independent Channel Components

Spatially independent channel components may be either

independent and identically distributed (IID) or independent

with unequal variances (IUV). We give the following lemmas

on distributions of eigenvalues of Ci under IID and IUV

channel components.

When the temporally correlated channel components are

spatially IID (i.e., spatio-temporal), Rt can be denoted as

Rt = σ2
t I, where σ2

t is the variance of ht,m. Then, substituting

Rt into (7), RyBt
becomes

RyBt
= λyBt

I, (18)

where λyBt
=

(

p(1 + κt + κB)σ
2
t + σ2

I + σ2
N

)

. Based on

(18), we have the following lemma.

Lemma 3. When the temporally correlated channel compo-

nents are spatially IID, Ci given in (14) can be further written

as

Ci =

{

λC0
I, if i = 0,

(λC0
+ λK)I, if i = 0.

(19)

where

λC0
= 2(1− α)σ2

A + 2(σ2
A − pσ4

A/λyBA
), (20a)

λC1
= λC0

+ λK, (20b)

λK = 2σ2
E − pσ4

E

λyBE

+
pσ4

A

λyBA

− 2(1− α)σ2
A. (20c)

Proof: When the temporally correlated channel com-

ponents are spatially IID, RA, RE , RyBA
, and RyBE

are

diagonal matrices. Based on (14), (18), and (15), one can see

that Ci are also diagonal matrices. Substituting Rt = σ2
t I and

RyBt
= λyBt

I into (14) yields (19).

When the temporally correlated channel components are

spatially IUV, Rt can be denoted as

Rt = diag[σ2
t,1, ..., σ

2
t,M ]. (21)

Substituting (21) into (7), RyBt
becomes

RyBt
= diag[λyBA,1

, ..., λyBA,M
], (22)

where λyBA,m
=

(

p(1 + κt + κB)σ
2
A,m + σ2

I + σ2
N

)

. Based

on (21) and (22), we have the following lemma.

Lemma 4. When the temporally correlated channel compo-

nents are spatially IUV, Ci given in (14) can be written as

Ci = diag[λCi,1, ..., λCi,M ], (23)

where

λC0,m = (4 − 2α)σ2
A,m −

2pσ4
A,m

λyBA,m

, (24a)

λC1,m = λC0,m + λK,m, (24b)

λK,m = 2σ2
E,m − 2(1− α)σ2

A,m −
pσ4

E,m

λyBE,m

+
pσ4

A,m

λyBA,m

.

(24c)

Proof: When the temporally correlated channel compo-

nents are spatially IUV, all RA, RE , RyBA
, and RyBE

are

diagonal matrices. Thus, based on (14), (18), and (15), we

know that Ci is also diagonal matrix. Substituting (21) and

(22) into (14), we can obtain (23).

Let am =
λK,m

λC0,m+λK,m
and cm =

λK,m

λC0,m
, in which λC0,m

and λK,m are given in Lemma 4. Further let δ denote a

decision threshold, and λC0
and λK are defined in Lemma 3.

Based on the above lemmas, we have the following theorem.

Theorem 1. For the proposed physical layer authentication

scheme, PF under IID and IUV channel components can be

given in (25) and PD in (26).

Proof: See Appendix B.

These results show that we can calculate PF and PD

through standard mathematical functions under the temporally

correlated and spatially independent channel components. It

is interesting that ∆Q is a diagonal matrix (due to Ci

being diagonal matrices). These analytical results enable us

to evaluate the performance of the proposed scheme taking

hardware impairment into account under spatially independent

time-varying channel components.

B. Spatially Correlated Channel Components

In practice, channels between different antennas are spa-

tially correlated due to the following reasons: first, it is well-

known that spatial correlation is relevant to antenna separation,

which is rarely larger owing to large-scale nature of massive

MIMO systems; second, channels may tend to a point in some

directions [6]; and third, for antenna, there exists spatially

dependent patterns when setting short antenna space and large

angular spread, causing channels between adjacent antennas

spatially correlated [6], [35], [36]. Therefore, for massive

MIMO systems, spatial correlation properties of channels

between adjacent antennas always exist. We generate channel

covariance matrix Rt (t = {A,E}) via exponential correlation

model in [35]. In fact, it is expressed by a M ×M complex

Toeplitz matrix [33]. That is,

Rt = σ2
t











1 ρ∗t · · · (ρ∗t )
M−1

ρt 1 · · · (ρ∗t )
M−2

...
...

. . .
...

ρM−1
t ρM−2

t · · · 1











, (27)
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PF =



























Γχ2

2M

((

λC0

λK

+ 1

)

δ

)

, if IID, (25a)

M
∑

m=1







M
∏

i=1
i6=m

am
am − ai






exp

(

− δ

am

)

, if IUV. (25b)

PD =



























Γχ2

2M

(

λC0

λK

δ

)

, if IID, (26a)

M
∑

m=1







M
∏

i=1
i6=m

cm
cm − ci






exp

(

− δ

cm

)

, if IUV. (26b)

where σ2
t is arbitrary scaling factor and ρt (0 < |ρt| ≤ 1) is

correlation coefficient between adjacent antennas. When |ρt| =
0, channel components are spatially uncorrelated. Note that the

eigenvalue spread in Rt depends on |ρt|. Hence, we need to

consider different |ρt| to derive exact expressions for PF and

PD .

When the temporally correlated channel components are

fully correlated in space (i.e., |ρt| = 1), we have Rt =
σ2
t ρtρ

H
t , where ρt = [1 · · · 1M−1]T . We use λt,m to denote

the mth eigenvalue of Rt, and then we have λt,1 = Mσ2
t and

the remaining eigenvalues are zero, i.e., λt,2 = · · · = λt,M =
0. Thus, we have

Rt = diag[Mσ2
t , 0, ..., 0], (28)

and then RA = diag[Mσ2
A, 0, ..., 0] and RE =

diag[Mσ2
E , 0, ..., 0]. Substituting RA and RE into (7) yields

λyBt,1
= p(1 + κt)Mσ2

t + pκBσ
2
t + σ2

I + σ2
N . (29)

Combining (14) and (16), we can get the following lemma.

Lemma 5. When the temporally correlated channel compo-

nents are fully correlated in space (i.e., |ρt| = 1), Ci given in

(14) becomes

Ci = diag[λCi,1, 0, ..., 0], (30)

where

λC0,1 = (4− 2α)Mσ2
A − 2pM2σ4

A

λyBA,1

, (31a)

λC1,1 = λC0,1 + λK,1, (31b)

λK,1 = M

(

2σ2
E − 2(1− α)σ2

A − pMσ4
E

λyBE,1

+
pMσ4

A

λyBA,1

)

.

(31c)

Proof: When the temporally correlated channel compo-

nents are fully correlated in space, i.e., |ρt| = 1, according to

(28) and (14), Ci have one non-zero eigenvalue and M−1 zero

eigenvalues. Combining (28) and (29), we can obtain (30).

When 0 < |ρt| < 1, the eigenvalues of Rt are distinct and

can be found numerically. Let the eigendecomposition of Rt

be

Rt = utΛtu
H
t , (32)

where ut is an M × M matrix [37]; and Λt =
diag[λt,1, ..., λA,M ] with λt,m denoting the mth eigenvalue

of Rt. From (7), we can see that the eigendecomposition of

RyBt
is

RyBt
= utΛyBt

uH
t , (33)

where ΛyBt
= diag[λyBt,1

, ..., λyBt,M
] with

λyBt,m
= p(1 + κt)λt,m + pκBσ

2
t + σ2

I + σ2
N . (34)

To analyze the behavior of the LRT defined in (17) under the

non-diagonal channel covariance model, we need to transform

∆Q to a diagonal matrix by a two-step transformation due to

different correlation coefficients for RA and RE (i.e., |ρA| 6=
|ρE |).

We first carry out eigendecomposition for C0, that is,

C0 = uAΛ0u
H
A , (35)

where Λ0 = diag[λC0,1, ..., λC0,M ] with λC0,m representing

the mth eigenvalue of C0. It can be easily seen from (27) that

the rank of Λ0 is M . We define decorrelating transformation

wH , [Λ0]
− 1

2uH
A , and then apply it to x on H0 to obtain

xw = wHx. Since RA is Hermitian, we have uH
A = u−1

A . The

covariance matrix of xw on H0 is I. On H1, its covariance

matrix is denoted by

R1w = E{xwx
H
w |H1} = wHC1w = wHDw + I. (36)

Let RDw = wHDw, and it is a non-diagonal matrix be-

cause D contains RE and thus wH can not decorrelate D.

Therefore, we now need to carry out an eigendecomposition

of RDw:

RDw = uDwΛDwuH
Dw, (37)

where uDw is an M × M modal matrix; and ΛDw =
diag[λDw,1, ..., λDw,M ] with λDw,m denoting the mth eigen-

value of RDw. It is noticed that RDw may not be a full rank

matrix. Hence, we augment the eigenvectors if its rank is not

M . The eigendecomposition of R1w is

R1w = uDw[ΛDw + I]uH
Dw = uDwΛ1wu

H
Dw, (38)
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where

Λ1w = diag[λDw,1 + 1, ..., λDw,M + 1]. (39)

Let λwu,m =
λDwm

λDw,m+1 , and then based on the above

lemmas, PF and PD under spatially correlated channel are

summarized in the following theorem.

Theorem 2. For the proposed physical layer authentication

scheme, PF under spatially correlated channel components

can be given in (40) and PD in (41).

Proof: See Appendix C.

This indicates that we can evaluate the authentication per-

formance of the proposed scheme for the channel following

the zero-mean complex Gaussian distribution with an arbitrary

covariance matrix. The key to deriving the closed-form expres-

sions for PF and PD is that complex eigenvalue corresponds to

two equal real eigenvalues. Also, utilizing eigendecomposition

and diagonalizing operations we can transform an arbitrary

channel covariance matrix model to the case in which ∆Q is

a diagonal matrix whose elements are functions with respect

to eigenvalues. By studying various models, we can obtain

analytical performance results that enable us to understand

how channel models (or channel covariance matrix models)

can affect authentication performance.

C. Unknown Parameters

If Bob has no knowledge of parameters such as RA, RE , α,

κA, κE , and κB , he can exploit the following LRT to identify

the current transmitter.

L(x) = 1

σ2
N + σ2

I

M
∑

m=1

|xm|2

=
1

σ2
N + σ2

I

M
∑

m=1

|ĥt,m[k]− ĥA,m[k − 1]|2
H1

≷
H0

δ. (42)

In this case, we only have numerical results for PF and PD

(which will be illustrated in Section V-C).

V. NUMERICAL RESULTS

In this section, we verify the theoretical results through

simulations and reveal how the system parameters can impact

the authentication performance of the proposed scheme.

A. System Parameters and Simulation Setting

System parameters that determine authentication perfor-

mance (PF , PD) are listed in Table II. In particular, signal

to interference plus noise ratio (SINR) is defined as SINR =
p tr(R)
M(σ2

I
+σ2

N
)
. The ratio of the levels of hardware impairments

for Alice and Eve is defined as κ = κE

κA
. According to the EVM

ranges introduced in Section II-C, we consider four typical

levels of impairments: κA, κB , κE ∈ {02, 0.052, 0.12, 0.152}.

Therefore, if we fix κA, we can adjust κE to achieve a

specified κ. Moreover, γ = tr(RE)
tr(RA) denotes the ratio of

locally averaged channel gains for Alice-Bob and Eve-Bob.

In addition, α is temporal correlation coefficient of hA, and

ρA is spatial correlation coefficient between adjacent antennas

for hA and ρE is that for hE . In our simulation, we assume

ρA = ρE = ρ.

To validate the derived results of PF and PD, we develop a

dedicated simulator based on Matlab. The simulation method

of [38] and the exponential correlation model of [35] are

exploited to generate time-varying MIMO channels and co-

variance matrices of such channels, respectively. The quantity

of temporal correlation of underlying channels depends on

normalized Doppler frequency, which is determined by the

speed of entities and carrier frequency. Therefore, for a given

carrier frequency, the normalized Doppler frequency is a

function of the transmitter speed only. We consider three

fading channels (case I: slow-fading with α = 1; case II: fast-

fading with α = 0.9; and case III: faster-fading with α = 0.8)

[39]. For Monte-Carlo experiments, 105 independent trials are

conducted to obtain average results.

B. Models of PF and PD Validation

For simplicity, we assume κA = κB = κE . To verify our

analytical results, we plot the receiver operating characteristic

(ROC) curves in Fig. 2. Fig. 2 shows that the simulation results

match nicely with the theoretical ones for spatially indepen-

dent (IID, IUV) and spatially correlated channel components,

so our theoretical results can be used to accurately model

PF and PD for an arbitrary channel covariance matrix. As

observed from Fig. 2, for three different channel covariance

matrix models, PD improves as PF increases. According to

Neyman-Pearson criterion, it is required to make PD as large

as possible for a given PF constraint (commonly below 10−1).

Also, we can see from Fig. 2 that for three channel

covariance matrix models, PD decreases with the levels of

impairments when PF is fixed. In particular, when κA =
κB = κE = 0 (i.e., ideal hardware), we have the largest PD

for three channel covariance matrix cases; when κA = κB =
κE = 0.152, we have the smallest PD; for a fixed PF , the

difference between the largest PD and the smallest one can

approach 0.3 under the same channel covariance matrix. This

clearly reveals that hardware impairments greatly deteriorate

authentication performance.

Another important observation from Fig. 2 is that the choice

of covariance model has a large impact on performance. The

reason is that: for the spatially uncorrelated covariance model

(Fig. 2(a) and Fig. 2(b)), we have 2M real observations of

channel component estimation; decreasing ρ results in lower

spatial correlation and thus improves PD; and for the spatially

correlated covariance model (Fig. 2(c)), we have no more than

2M real observations, especially when ρ = 1 we only have

two real observations. It is proved in [40] that the quantity of

spatial correlation determines the number of observations for

channel component estimation and this is consistent with our

results.

C. Authentication Performance Analysis

Based on theoretical models for PF and PD , we explore

how the system parameters (e.g., κ, SINR, γ, α, and M )

affect the authentication performance under diverse channel

covariance matrix models. Meanwhile, we also examine the
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PF =



























exp

(

−δ

(

1 +
λC0,1

λK,1

))

, if |ρA| = |ρE | = 1, (40a)

M
∑

m=1







M
∏

i=1
i6=m

λwu,m

λwu,m − λwu,i






exp

(

− δ

λwu,m

)

, if 0 < |ρA|, |ρE| < 1. (40b)

PD =



























exp

(

−δλC0,1

λK,1

)

, if |ρA| = |ρE | = 1, (41a)

M
∑

m=1







M
∏

i=1
i6=m

λDw,m

λDw,m − λDw,i






exp

(

− δ

λDw,m

)

, if 0 < |ρA|, |ρE| < 1. (41b)

TABLE II
SYSTEM PARAMETERS

Parameter Description
SINR Signal to interference plus noise ratio
κ The ratio of the level of hardware impairment for Alice and Eve

γ The ratio of locally averaged channel gains for Alice-Bob and Eve-Bob

α Temporal correlation coefficient of hA

ρ Spatial correlation coefficient between adjacent antennas

M The number of base station antenna
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Fig. 2. ROC curves of the proposed scheme with the settings of (γ = 0 dB, κ = 1.02, M = 5, SINR = 10 dB, and α = 0.9).

performance under unknown parameters via numerical simu-

lations.

We first explore how κ can impact the performance for both

scenarios (i.e., spatially uncorrelated and correlated channel

components). We summarize in Fig. 3(a) the ROC curves with

some representative values of κ for spatially uncorrelated and

correlated channel components. As shown in Fig. 3(a), for all

channel covariance matrix models, the performance monoton-

ically improves as κ increases. In particular, when κ = 1.52,

we have the best performance of the proposed scheme; when

κ = 0.52, we have the worst performance. In other words,

comparing with the legitimate transmitter, the illegitimate one

with lager level of impairments is easier to be detected. This

suggests that we should choose hardware with smaller level

of impairments for secure wireless communications.
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(a) Impact of κ on performance under SINR = 10 dB
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(b) PD vs. SINR under κ = 1.02 and PF = 10−2

Fig. 3. Authentication performance with the settings of (γ = 0 dB, M = 5,
SINR = 10 dB, α = 0.9).

Next, we investigate the impact of SINR on PD for a

fixed PF . Fig. 3(b) illustrates how PD varies with SINR

with the settings of (γ = 0 dB, κ = 1.02, M = 5, and

PF = 10−2). We can see that under a fixed PF , increasing

SINR leads to different varying tendencies of PD for different

channel model. In particular, PD improves with SINR; the

curves for spatially uncorrelated channel model (i.e., |ρ| = 0
for IID and IUV) have a better slope than that for spatially

correlated channel models. For spatially correlated channel

model, the curves for ρ = 0.7 and ρ = 0.9 have the same

slope while the curve for ρ = 1 exhibits the smallest slope.

This is because more concentrated channel components in a

lower dimensional subspace lead to insufficient observations.

This reveals that a better PD performance is achieved as

|ρ| → 0, since channel components are more evenly distributed

throughout the M -dimensional observation space. Increasing

transmit power can improve performance for both spatially

uncorrelated and correlated models. It is notable, however, that

for general wireless network applications, transmit power is

limited to a certain level due to energy constraint.
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(a) Impact of γ on ROC curve under α = 0.9
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(b) Impact of α on ROC curve under γ = 0 dB

Fig. 4. Impacts of (γ, α) on ROC curve with the settings of (SINR = 10
dB, κ = 1.52, M = 5).

Fig. 4(a) shows how performance varies with γ ∈
{−8 dB, 0 dB, 8 dB}, given that SINR = 10 dB, κ = 1.52,

M = 5, and α = 0.9. It is interesting to see from Fig. 4(a) that

for both channel covariance matrix models, the performance

monotonically rises as γ increases. More specifically, when γ
= 8 dB, we have the best performance while when γ = −8
dB we have the lowest one. This clearly indicates that if Eve

is closer to Bob, she might be successfully detected by Bob.

Fig. 4(b) demonstrates the impact of channel fading status

on the authentication performance for spatial independence

(IID) and correlation (|ρ| = 0.8) models, given that γ = 0
dB, SINR = 10 dB, κ = 1.52, and M = 5. As seen

from Fig. 4(b), the authentication performance under case I

outperforms that under other cases (case II and case III), while

the scheme under case III provides the worst performance.

This indicates that channel-based authentication scheme can

effectively differentiate between Alice and Eve, while it might

not work well in a highly dynamic environment.

Now, we present in Fig. 5 the impact of M ∈ {10, 16} on

the authentication performance under IID channel components
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Fig. 5. Impact of M ∈ {10, 16} on performance, given that γ = 0 dB,
SINR = 10 dB, α = 0.9, and κA = κB = κE ∈ {0, 0.12, 0.152}.

and |ρ| = 0.8, given that γ = 0 dB, SINR = 10 dB,

α = 0.9, and κA = κB = κE ∈ {0, 0.12, 0.152}. The

main observation from Fig. 5 is that the choice of channel

covariance model has a large impact on the performance.

Moreover, for a given covariance model, the performance

improves as M increases. When M = 16 under IID channel

components, the proposed scheme has nearly indistinguishable

performance (PD approaching 1) for different levels of hard-

ware impairments, indicating that performance degradation

due to hardware impairments vanishes asymptotically in large-

dimensional vector space.

Furthermore, we explore how PD varies with κA for IID

with the settings of (κ = 1.02, SINR = 5 dB, α = 0.9,

γ = 0 dB, and M = 5). Fig. 6(a) shows that for a given PF ,

PD reduces monotonously when κA varies from 0 to 0.152.

This reveals that within the range of κA, aggregate residual

hardware impairments can always be utilized to identify trans-

mitters, and a higher aggregate level of impairments leads to

a lower authentication performance.

Finally, we investigate the authentication performance of
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(b) PD vs. γ under unknown parameter case

Fig. 6. Authentication performance with the settings of (SINR = 10 dB,
M = 5).

the proposed scheme under the unknown parameter case in

Fig. 6(b) via numerical simulations. Fig. 6(b) demonstrates

that PD varies with γ under the unknown parameter case with

the settings of (SINR = 10 dB, M = 5). At low γ, PD tends

to zero for a given PF . However, at high γ, PD rises when γ
increases for a given PF . This means that when Eve is close to

Bob, she might be easily detected by Bob; when being away

from Bob, she might impersonate Alice successfully to send

possible aggressive message into the network without being

detected. In other words, although Bob has no knowledge of

the system parameters (such as RA, RE , α, κA, κE , and κB),

she could still identify the current transmitter by using the LRT

given in (42) when γ is above a certain value. It shows that

the proposed scheme has a certain scalability in the case when

the base station is unaware of some systems parameters. We

also notice that by setting a high PF , we can obtain a high

PD for the unknown parameter case. Nevertheless, a high PF

implies low robustness of the proposed scheme. Therefore,

we should set PF properly to achieve a desired authentication
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performance in specific massive MIMO applications.

VI. CONCLUSION

We proposed an improved channel-based authentication

scheme for massive MIMO systems with different levels

of hardware impairments, and investigated its authentication

behaviors. False alarm and detection probabilities were the-

oretically analyzed with hypothesis testing and matrix trans-

formation approaches. Analytical results were validated via

Monte Carlo simulations, showing that analytical and numer-

ical results match each other well under different channel

covariance matrix models. Our results show that authentication

performance is clearly deteriorated by hardware impairments,

with a nontrivial impact from the choice of antenna patterns.

Notice that multiple hardware impairments (such as I/Q

imbalance and phase noise) can be effectively utilized to au-

thenticate transmitters, which is demonstrated in the literature.

In this paper, their effects have been taken into account by

using κ-parameters. Nevertheless, considering a single specific

(rather than the aggregated) hardware impairment (e.g., I/Q

imbalance) for authentication is an interesting research topic

for our future work to further explore how these hardware

impairments can be individually used to improve the security

of massive MIMO systems.

APPENDIX A

PROOF OF LEMMA 2

Using (14a) and (14b), the probability density functions

(PDFs) of x on the two hypotheses can be written as

f(x|Hi) =
1

πMdet(Ci)
exp(−xHQ−1

i x), i = 0, 1. (43)

We use L0(x) to denote a LRT and δ0 for threshold.

Neyman–Pearson Criterion in [40] leads to a LRT, which can

be written as

L0(x) ,
f(x|H1)

f(x|H0)
=

det(C0)

det(C1)

exp(−xHQ1x)

exp(−xHQ0x)

H1

≷
H0

δ0. (44)

Taking logarithms and retaining only data-dependent terms,

we can obtain logarithmic LRT as (17).

APPENDIX B

PROOF OF THEOREM 1

Proof of Theorem 1 for IID: Using (14), we can obtain

the LRT in (17) under IID channel components as

L(x) , λD

λC0
(λC0

+ λD)

M
∑

m=1

|xm|2
H1

≷
H0

δ. (45)

Based on the above results, we now derive expressions for

PF and PD under IID channel components. Since xm/
√

λC0

on H0 is independent zero mean complex Gaussian vari-

able with variance 1,
∑M

m=1 |xm/
√

λC0
|2 is a chi-square

random variable with 2M degrees of freedom, that is,

∑M

m=1 |xm/
√

λC0
|2 ∼ χ2

2M . Under IID channel components,

PF can be given by

PF = Pr(L(x) > δ|H0)

= Pr





M
∑

m=1

∣

∣

∣

∣

∣

xm
√

λC0

∣

∣

∣

∣

∣

2

>

(

λC0

λD

+ 1

)

δ|H0



 . (46)

Substituting the right-tail probability function of chi-square

random variable into (46) yields (25a).

Following the same steps, we can obtain PD under IID

channel components as

PD = Pr(L(x) > δ|H1). (47)

Substituting the right-tail probability function of chi-square

random variable into (47) yields (26a) under IID.

Proof of Theorem 1 for IUV: Using (23), we can obtain

the LRT in (17) under IUV channel components as

L(x) , λDm

λC0,m(λC0,m + λDm)

M
∑

m=1

|xm|2
H1

≷
H0

δ. (48)

Under H0, the characteristic function of |xm|2 is

M|xm|2|H0
(jω) = E{exp(jω|xm|2)|H0}

=

∫ ∞

−∞

exp
(

(jω − 1
λC0,m

)|xm|2
)

πλC0,m

dxm

= (1− jωλC0,m)−1. (49)

Let am =
λK,m

λC0,m+λK,m
. Thus, we can obtain the characteristic

function of L(x) on H0 as

ML(x)|H0
(jω) =

M
∏

m=1

(1 − jωam)−1. (50)

We use a partial fraction expansion [41] of (50) to obtain

ML(x)|H0
(jω) =

M
∑

m=1

bm(1− jωam)−1, (51)

where

bm =

M
∏

i=1
i6=m

am
am − ai

. (52)

As observed from (51), the characteristic function of L(x)
is a weighted superposition of exponentially distributed char-

acteristic functions. After taking inverse Fourier transform for

(51), we can see that the PDF of L(x) is also a weighted

superposition of exponentially distributed PDFs [40], that is,

f(L(x)|H0) =

M
∑

m=1

bm
am

exp

(

− L
am

)

. (53)

Under IUV channel components, PF can be obtained by

integrating the following formula as follows

PF = Pr(L(x) > δ|H0) =

∫ ∞

δ

f(L(x)|H0)dL(x). (54)

Then, substituting (51) into (54) yields (25b).
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Similarly, the characteristic function of L(x) on H1 can be

expressed as follows

ML(x)|H1
(jω) =

M
∏

m=1

(1 − jωcm)−1. (55)

Following the same steps, we can obtain PD as (26b) inte-

grating the following formula (56).

PD = Pr(L(x) > δ|H1) =

∫ ∞

δ

f(L(x)|H1)dL(x). (56)

APPENDIX C

PROOF OF THEOREM 2

When |ρA| = |ρE | = 1, the characteristic functions of L(x)
on the two hypotheses can be obtained by using Lemma 31

as

ML(x)|H0
(jω) =

(

1− jω
λ21

λ01 + λ21

)−1

, (57)

ML(x)|H1
(jω) =

(

1− jω
λ21

λ01

)−1

. (58)

We can see that L(x) is an exponentially distributed random

variable. Similar to the derivations of (25b) and (26b), we can

obtain (40a) and (41a).

When 0 < |ρt| < 1, using uH
Dw, we transform from xw to

xwu = [xwu,1 · · ·xwu,M ]T , which is denoted by

xwu = uH
Dwxw = uH

Dww
Hx. (59)

Now, we explore the covariance matrices of xwu on the two

hypotheses. On H0, its covariance matrix is given by

Cov(xwu|H0) = E{xwux
H
wu|H0} = E{uH

DwxwxH
wuDw|H0}

= uH
DwIuDw = I. (60)

Similarly, on H1 the covariance matrix of xwu is given by

Cov(xwu|H1) = E{xwux
H
wu|H1} = uH

DwR1wuDw

= uH
DwuDw[ΛDw + I]uH

DwuDw

= ΛDw + I. (61)

We define a diagonal matrix Qwu as follows

Qwu , diag

[

λDw,1

λDw,1 + 1
, ...,

λDw,M

λDw,M + 1

]

= diag [λwu,1, ..., λwu,M ] . (62)

Applying some derivations similar to that in [40, Chapter 3],

under spatially correlated channel components, the LRT L(x)
in (17) becomes

L(x) , L(xwu) = xH
wuQwuxwu

=

M
∑

m=1

λDw,m

λDw,m + 1
|xwu,m|2

=

M
∑

m=1

λwu,m|xwu,m|2
H1

≷
H0

δ. (63)

Note that x is linearly transformed to xwu, and the effect

of this transform is to decorrelate x. Therefore, xwu,m also

follows zero-mean complex Gaussian distribution and thus

|xwu,m|2 follows exponential distribution. When 0 < |ρt| < 1,

PF and PD can be evaluated as follows

PF = Pr(L(x) > δ|H0) =

∫ ∞

δ

f(L(x)|H0)dL(x)

,
∫ ∞

δ

f(L(xwu)|H0)dL(xwu), (64)

PD = Pr(L(x) > δ|H1) =

∫ ∞

δ

f(L(x)|H1)dL(x)

,
∫ ∞

δ

f(L(xwu)|H1)dL(xwu). (65)

Following a similar method as that of in Section IV-A.

we can obtain PF and PD as (40b) and (41b) for

0 < |ρA|, |ρE| < 1.
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