
External Memories of PDP Switches for
In-Network Implementable Functions Placement:
Deep Learning Based Reconfiguration of SFCs

Somayeh Kianpisheh1 and Tarik Taleb2

1Centre for Wireless Communications, University of Oulu, Finland, 2 Ruhr University Bochum, Germany
Emails: somayeh.kianpisheh@oulu.fi, tarik.taleb@rub.de

Abstract—Network function virtualization leverages pro-
grammable data plane switches to deploy in-network imple-
mentable functions, to improve QoS. The memories of switches
can be extended through remote direct memory access to access
external memories. This paper exploits the switches external
memories to place VNFs at time intervals with ultra-low latency
and high bandwidth demands. The reconfiguration decision is
modeled as an optimization to minimize the deployment and
reconfiguration cost, while meeting the SFCs deadlines. A DRL
based method is proposed to reconfigure service chains adoptable
with dynamic network and traffic characteristics. To deal with
slow convergence due to the complexity of deployment scenarios,
static and dynamic filters are used in policy networks con-
struction to diminish unfeasible placement exploration. Results
illustrate improvement in convergence, acceptance ratio and cost.

Index Terms—In-network computing, Programmable data
plane, Network function virtualization, Service function chain

I. INTRODUCTION

By In-Network Computing (INC) network devices are pro-
grammed to perform computing tasks, in parallel with packet
switching; thereby reducing the processing latency and the
backhaul traffic [1]. INC has been leveraged to deploy VNFs
on FPGAs [2], Programmable Data Plane (PDP) switches [3],
[4], smart NICs [5], [6]. This trend has come up to hetero-
geneous Network Function Virtualization (NFV) environment
with hardware-based network devices and Virtual Machines
(VMs), to enhance QoS meeting and the cost efficiency.

Service Function chain (SFC) embedding over heteroge-
neous NFV environment has been investigated in [7], [6], [5].
While [7] focuses mostly on implementation of VNFs over
network elements, particularly TCAM of switches, studies in
[6], [5] provide optimization for SFC embedding with possible
deployment of VNFs in VMs and smart NICs. The study in [4]
models the reconfiguration of VNF service trees deployed over
VMs and PDP switches, as an optimization to minimize the
resource usage and the reconfiguration cost. The study in [8]
provides a method to upgrade the NFV substrate nodes with
INC including VNF processing in PDP switches, to maximize
the SFCs QoS meeting while maintaining an upgrade budget.

The memory extension of PDP switches has been studied in
[9], [10]. Fig. 1 illustrates an architecture, derived from [9],
[10]. External Memory Access Controller (EMAC) controls
the external memory access scheme. The processing of packets
are performed in switch pipeline, using the flow tables, PHVs

and registers. The space scarcity of TCAM/SRAM can be
addressed by remotely placing and accessing flow entries in
the external memories (on rack servers). Low-latency, table
lookup operations through Remote Direct Memory Access
(RDMA) can realize the remote access. Upon packets arrival,
in the case that the flow entries are in local memory, they
will be processed normally within the pipelines. Otherwise,
the miss is escalated to the EMAC. The external memory is
read with RDMA and the flow entries are fetched and the
actions are performed, leveraging RDMA table. P4 standards
and extern functions enable the capability of programming
switches for Network Functions (NF) e.g., stream transcoding
[11], firewall [12], data encryption/decryption [13] (See [1] for
in-network implementable functions). Like [7], [6], [5], [4], [8]
we focus on SFCs with in-network implementable functions.

To the best of our knowledge, exploiting external memories
for VNF placement in service composition has not been stud-
ied. This paper proposes a Service Reconfiguration method for
NFV environment enhanced with External Memories for PDP
switches i.e., SR-EM. To avoid detouring of traffic and INC
at intervals with ultra-high bandwidth demands, the external
memories of switches are exploited to place VNFs that can
not be hosted in the local memories due to the large size.
Optimization framework is proposed to reconfigure SFCs with
minimum deployment and reconfiguration cost, and adaptable
with variation of bandwidth and latency demands.

There is a gap in the literature, to study INC for SFCs
under dynamic chains’ traffic. Also, the external memory
incorporation involves new placement decision variables, SDN
controlling/programming, RDMA delay, cost/latency trade-
off in the optimization. To adopt in-network and server-
based processing of VNFs with dynamic network and traffic
characteristics, a Deep Reinforcement Learning (DRL) based
method is proposed. Results show the efficiency in conver-
gence, acceptance ratio and cost.

II. MOTIVATION

Let consider a scenario with VNF types: VNF1, VNF2,
VNF3. VNF3 is small and can be hosted at any resource.
VNF1 and VNF2 are large sizes and can be located on
the servers or external memories of switches. There are two
SFCs with the origin at source and destinations of 1 and 2:

Fig. 1. The local and external
memory in PDP switches.

(a) (b)

Fig. 2. The scenario for external memory usage. (a) The current configuration with two SFCs. (b) The new
configuration when the traffic rate of the second SFC increases so that VNF1 can not accommodate the traffic.

{VNF1, VNF2}, {VNF3, VNF1}. Fig. 2.a shows an initial
configuration at which VNF 3 is processed in the network
and prior to the servers, and VNF1 and VNF2 are processed
in Servers 1 and 2, respectively. At a time step, the traffic in
the second SFC increases, such that the capacity of VNF1 can
not accommodate the new traffic, due to server processing
limitation. Fig. 2.b, is a new configuration. The processing
demand of VNF1 can be provided by deploying it on the
switches, however due to its large size it only can be hosted on
external memories. Through programming the switch 1, VNF1
is migrated to its external memory. The traffic of both chains
can be accommodated due to high processing capability of
INC. Avoiding detouring of the traffic to the servers, makes the
routing paths shorter and saves the bandwidth consumption.

III. SYSTEM MODEL

The VNF types is F and there is If instances for VNF
type f with possibility of sharing among SFCs. When f
is implemented in the network and as a VM on a server,
respectively it consumes ϕsf and ϕmf storage. The traffic
processing capacity of VNF type f when deployed on a switch
and server are respectively Cs

f and Cm
f . Q = {q1, q2...q|Q|}

is the set of service requests. Request q is modeled as a SFC
Gq = (Fq, Lq, λq(t), oq, tq, dq(t)). Fq and Lq are the VNFs
and virtual links connecting them respectively. λq(t) is the
SFC traffic rate from a source node oq to a destination node
tq at time step t. The request deadline at time step t is dq(t).
The traffic rate and deadline varies in time slots.
G = (V ∪ {vc}, E) is the Substrate Network (SN). vc is

the SDN controller and V is the set of computing resources
including programmable switches S and servers M . E shows
connectivity with entry eu,v ∈ E to be 1 when node u is
directly connected to node v, with bandwidth capacity of Bu,v ,
and the cost per traffic unit transmission of γu,v . The delay
per traffic unit transmission is du,v . The bandwidth between
SDN controller and switch s is Bc,s, while γc,s is the cost for
transmission of unit of traffic.
Cm and γm respectively denote the capacity and the cost

per unit of storage usage of server m. The delay per unit-of-
traffic processing of VNF type f is dmf , when it is deployed
on server m. Let Cl

s, Ce
s , and CRA

s be the storage capacity of
respectively local, external memories, and RDMA table of the
switch s. The cost per unit of local and external memory usage
are respectively γls and γes . The cost for in-network deployment
of a VNF is higher than server-based deployment due to the
high speed of a switch. Also local memory usage of a switch is

more expensive than external memory due to the lower latency.
The amount of control traffic per deploying VNF type f in
switch s is ωs

f . The delay for processing unit of traffic of VNF
type f , in the local memory of switch s is ds,lf . The delay per
RDMA access for switch s is dsRDMA. ξf is the number of
RDMA accesses to fetch the required match-action entries of
VNF type f in RDMA table.

IV. OPTIMIZATION FORMULATION

The time-horizon of the system is T , and each time step
is t. Binary variables include: xmi,f (t) indicates placement of
instance i of VNF type f in server m at time step t. xs,ei,f (t)
indicates placement of instance i of VNF type f in external
memory of switch s. ym,i,f

q,n (t) indicates allocation of instance
i of VNF type f which is in server m to the n− th VNF of
service request q. ys,e,i,fq,n (t) shows allocation of instance i of
VNF type f which is in external memory of switch s to the
n − th NVF of service request q. zpq,l(t) indicates mapping
of l − th virtual link of request q to the path p. slpp(u,v)(t) is
1 when link (u, v) is on the path p at time slot t. Similar to
external, we have variables for local memories. We follow a
reconfiguration approach for placement of VNF instances on
substrate nodes and steering the traffic.
A. Objective

The configuration cost, is due to the resource usage and
reconfiguration cost. The objective function is defined as (1).
R(t) and B(t) are respectively the cost for IT resources and
bandwidth usage at time slot t. G(t) is the reconfiguration cost
due to the migration of VNFs among servers or programming
the switches, and α, β are the balancing coefficients.

min
∑
t∈T

α.(R(t) + B(t)) + β.G(t), (1)

The IT Resource cost as calculated in (2) is the cost for
deploying VNFs on the servers and local/external memories
of the switches. The bandwidth cost is calculated by (3):

R(t) =
∑
f∈F

∑
i∈If

∑
m∈M

xmi,f (t).γm.ϕ
m
f +

∑
f∈F

∑
i∈If

∑
s∈S

xs,li,f (t).γ
l
s.ϕ

s
f +

∑
f∈F

∑
i∈If

∑
s∈S

xs,ei,f (t).γ
e
s .ϕ

s
f .

(2)

B(t) =
∑
q∈Q

∑
p

∑
l∈Lq

∑
(u,v)∈E

zpq,l(t).slp
p
(u,v)

λq(t).γu,v . (3)

The reconfiguration cost is the cost for the migration of
VNF instances among servers (M(t)), as well as the cost for
programming the PDP swtiches (N (t)), as below:

G(t) =M(t) +N (t), (4)

where M(t) and N (t) are calculated as below:

M(t) =
∑
f∈F

∑
i∈If

∑
u∈M

∑
v∈M,u̸=v

xui,f (t).x
v
i,f (t− 1).ϕmf .γu,v , (5)

N (t) =
∑
f∈F

∑
i∈If

∑
s∈S

∑
m∈M

(xs,li,f (t) + xs,ei,f (t)).x
m
i,f (t− 1).ωs

f .γc,s+

∑
f∈F

∑
i∈If

∑
s∈S

∑
s′∈S,s ̸=s′

(xs,li,f (t) + xs,ei,f (t)).x
s′,l
i,f (t− 1).ωs

f .γc,s+

∑
f∈F

∑
i∈If

∑
s∈S

∑
s′∈S,s ̸=s′

(xs,li,f (t) + xs,ei,f (t)).x
s′,e
i,f (t− 1).ωs

f .γc,s

(6)
These deployment scenarios will be involved in programming

cost calculation in (6): The local/external memories program-
ming cost with the previous deployment on the servers; and the
local/external memories programming cost with the previous
deployment either in local or external memory of a hosting
switch different than the current host.
B. Constraints:

By (7), the storage occupancy in the external memory of a
switch is bounded with the existing capacity. Similarly, capac-
ity constraints for local memories and servers are defined:

∀s ∈ S :
∑
f∈F

∑
i∈If

xs,ei,f (t).ϕ
s
f ≤ C

e
s . (7)

By (8) each VNF instance will be deployed in one substrate
node either a server, external/local memory of a switch:

∀f, i ∈ If :
∑

m∈M

xmi,f (t) +
∑
s∈S

xs,li,f (t) +
∑
s∈S

xs,ei,f (t) = 1. (8)

By (9), each VNF of a service request will utilize one VNF
instance for the traffic processing:

∀q, n :
∑
i∈If

∑
m

ym,i,f
q,n (t) +

∑
i∈If

∑
s∈S

ys,l,i,fq,n (t) +
∑
i∈If

∑
s∈S

ys,e,i,fq,n (t) = 1.

(9)
By (10), the traffic processing at each VNF instance de-

ployed on a external memory of a switch will be bounded by
corresponding capacity. Similarly, the constraints are defined
for instances hosted on local memory of a switch or a server.

∀f, i ∈ If , s :
∑
q∈Q

∑
n=1..|Fq|

ys,e,i,fq,n (t).λq(t) ≤ Cs
f . (10)

By (11) the link consumption meets the link capacity. By
(12), for each service request, the in-flow and out-flow on each
intermediate substrate node are equal, except the source and
the destination nodes.

∀uv ∈ E :
∑
p

∑
q∈Q

∑
l∈Lq

zpq,l(t).slp
p
(u,v)

(t).λq(t) ≤ Buv . (11)

∀q ∈ Q,∀u ∈ V :
∑

v∈nb(u)

∑
p

∑
l∈Lq

zpq,l(t).slp
p
(u,v)

(t)−

∑
v∈nb(u)

∑
p

∑
l∈Lq

zpq,l(t).slp
p
(v,u)

(t) =

 1 u = oq
−1 u = tq
0 otherwise

(12)

The traffic processing delay of each service request q i.e.,
Dq(t) should meet the deadline i.e., ∀q ∈ Q : Dq(t) < dq(t).

C. Delay Calculation

Intra-Server Migration Delay. As the VNF migrations
among servers can be performed in parallel, the maximum
migration time specifies the migration delay:

ψM
q(t) = max

n

∑
f∈F

∑
i∈If

∑
u∈M

∑
v∈M,u̸=v

yu,i,fq,n (t).yv,i,fq,n (t− 1).
ϕmf

Bu,v
.

(13)

SDN Controller Programming Delay. The maximum com-
munication time with SDN controller to program switches to
process the VNFs, specifies the programming delay as calcu-
lated by (14). Under any reconfiguration scenario described in
(6), the delay is calculated as the ratio of the traffic required for
programming the switches and the bandwidth between SDN
controller and switches.

ψN
q(t) = max

n∑
f∈F

∑
i∈If

∑
s∈S

∑
m∈M

(ys,l,i,fq,n (t) + ys,e,i,fq,n (t)).ym,i,f
q,n (t− 1).

ωs
f

Bc,s
+

∑
f∈F

∑
i∈If

∑
s∈S

∑
s′∈S,s ̸=s′

(ys,l,i,fq,n (t) + ys,e,i,fq,n (t)).ys
′,l,i,f

q,n (t− 1).
ωs
f

Bc,s
+

∑
f∈F

∑
i∈If

∑
s∈S

∑
s′∈S,s ̸=s′

(ys,l,i,fq,n (t) + ys,e,i,fq,n (t)).ys
′,e,i,f

q,n (t− 1).
ωs
f

Bc,s
.

(14)
RDMA Delay. (15) calculates the delay of processing the unit

of traffic in external memory. The function flow table entries
are fetched ξf times and are applied on the traffic (Fig. 1):

ds,ef = ξf .(d
s,l
f + dsRDMA) = [

ϕsf

CRA
s

].(ds,lf + dsRDMA) (15)

Traffic Processing. Delay includes the reconfiguration delay
(ψq(t)), the VNF processing delay (Sq(t)), and the transmis-
sion delay (Tq(t)), as defined below:

Dq(t) = ψq(t) + Sq(t) + Tq(t). (16)

The reconfiguration delay for SFC q is due to the migration of
required VNF instances among servers, as well as the delay for
programming the swtiches to process the required VNFs. As
both migration of VNFs and reprogramming of switches can
be performed in parallel, the maximum of the caused delays
specifies the reconfiguration delay:

ψq(t) = max(ψM
q(t), ψ

N
q(t)). (17)

Processing delay in (16) is calculated as sum of the the
traffic processing delay in the VNFs of the chain hosted either
in the servers, or local/external memories of switches:

Sq(t) =
|Fq|∑
n=1

λq .[
∑

m∈M

∑
f∈F

∑
i∈If

ym,i,f
q,n (t).dfm+

∑
s∈S

∑
f∈F

∑
i∈If

ys,l,i,fq,n (t).ds,lf + ys,e,i,fq,n (t).ds,ef],

(18)

Traffic transmission delay in (16) is calculated as below:

Tq(t) =
|Lq|∑
l=1

λq(t).
∑
p

∑
(u,v)∈E

zpq,l(t).slp
p
(u,v)

.du,v (19)

V. DRL BASED SFCS RECONFIGURATION

The basic problem of SFC provisioning is NP-hard [5]
and MDP/RL as advocated in solutions for dynamic network
situations, can be used for formulation since: (i) Function (1)
is the sum of the function value at t − 1 and the cost at t.
Thereby, having the memory-less property; (ii) Considering
the parameters determining the current state e.g., resources
storage, bandwidth status, association of VNF instances to
nodes, every action that is performed by the agent ends to
a new state transition, that only depends on the current state;
(iii) The function (1) is in the form of accumulated rewards.
Through an iterative process of observing the state, choosing
an action, and receiving a reward, the state-action Q-values
are estimated by Bellman equation [14]. The high dimensions
of the states/actions and the dynamicity in state transitions
makes observing all states and actions in training impossible,
thereby inefficiency of conventional RL. To deal with this
problem, we adapt DRL [14], that generalizes experienced
states/actions to non-observed ones through a neural network-
based approximation of Q-values.

A. MDP Elements

State: The state features at time step t, are as below:
(i) The remained storage capacity of servers: rc(t) =
[rc1(t)...rc|M |(t)].
(ii) The remained storage of external memories in switches:
rces(t) = [rce1(t)...rc

e
|S|(t)]. Similarly rcls(t) is defined.

(iii) The remained capacity of VNF instances: matrix rcf (t),
at which the entry at row i, and column j is the remaining
capacity of instance i of VNF type j.
(iv) Let the sum of adjacent links’ remained bandwidth
of substrate node v be rbv(t). The vector of rb(t) =

[rb1(t), ...rb|M|+|S|(t)] are in state features.
(v) The current placement of VNF instances on servers, local
and external memories of switches: {xmi,f (t), x

s,l
i,f (t), x

s,e
i,f (t)}

Action: Actions are the placement of VNF instances over
servers, local and external memories of switches for the next
time step. (values of xmi,f , xs,li,f , xs,ei,f for the next time step).
Reward: To ensure the validity of deployment, the reward
will have 0 value if the capacity constraints 7, 10 be violated.
Otherwise, to ensure high acceptance ratio, while optimizing
the objective function the reward is calculated as (20). acr(t)
is the ratio of requests that meet their deadline. αr and βr are
the weights defining the priority of acceptance ratio and cost.

R(s(t), a(t)) = αr.acr(t) +
βr

α.(R(t) + B(t)) + β.G(t)
(20)

By optimizing cumulative reward in lifetime of SFCs, the in-
network or server-based processing will automatically be ad-
justed considering the dynamicity in the SFCs traffic rates/QoS
variation and available processing (See Fig. 2 and 6.c).
B. Policy Network and Training

Fig. 3 illustrates the policy networks, according which the
decision policy is derived by training them. There are |F |.|If |
Neural Networks (NNs), each representing the placement
policy for one VNF instance. The input neurons of each NN

are the state features. In an abstract view, there is a Fully-
Connected layer, with Softmax activation function. The output
neurons of each NN, with size |M |+ 2|S| indicate the prob-
ability of deployment of the associated VNF instance on the
servers, the local and the external memories of switches. Since
the incorporation of external memories makes deployment
scenarios complex, it needs more exploration and slows down
the convergence. Partially connected layers are emulated by
adding the below filtering layers in training:

• Static Filtering: There is connectivity between state
features and a neuron if the storage capacity of the
associated server or switch local memory or external
memory can accommodate the storage demand of VNF.

• Dynamic Filtering: It is applied dynamically at every
time interval according to the state feature values. For
a migration decision, only the servers or memories of
switches are explored that their current remaining storage
can accommodate the VNF instance. The sign + in Fig.
3 activates the output neuron in exploration.

The filters block the exploration of unfeasible policies and
reduce the number of weights, to speed up convergence.
Algorithm 1 is the implementation. Output neurons are labeled
so that in the case that they are deactivated to be distinguished
for VNF placement, by their node type (’s’ for switch, and ’m’
for server), index, and memory type (’EM’ and ’LM’). In an
episode, the networks are trained to automatically adjust in-
network and server based processing within the lifetime of
services for an initial configuration selected randomly from a
set of configurations in the train set. Training is done through
three steps performed at every time interval of an episode:
(i) Action Selection: By ϵ−greedy policy, with a ϵ probability,
a random placement of VNFs over servers, local/external
memories of switches is selected. Otherwise, the current state
features are given as input to the NNs. At each NN, the
server or local/external memory of a switch, with the highest
probability at output layer, will be selected for the placement
of the associated VNF instance.
(ii) Link placement: A Dijkstra-based shortest path method at
which the load of links are the weights for load-balancing, is
used to map the virtual links to the physical routes. When a
VNF instance is migrated between servers or programmed on
a switch, the same service requests as previous time step are
assigned to the VNF instance (ensuring constrain 9).
(iii) Updating the weights: After the VNF instances placement
and link mapping, reward is calculated for the new configu-
ration by (20), accordingly the NNs’ weights are updated by
Gradient Descent method and Bellman equation [14].

VI. EVALUATION RESULTS

The network topology is a fat-tree with 10 switches and 12
servers (Fig. 4). The storage capacity of the servers, Local
Memories (LM) and External Memories (EM) of switches
are random in the ranges of [10, 40] GB, [10, 35] MB, and
[100, 500] MB, respectively [1]. The RDMA tables’ sizes are
the same as LMs. The links bandwidth are within [30, 50]
Gbps. The bandwidth between SDN controller and switches

Fig. 3. Policy networks. For each switch there are 2 neurons indicating
Local Memory (LM) and External Memory (EM).

Fig. 4. Topology of fat
tree. Fig. 5. Reward variation within training.

Algorithm 1: Static and Dynamic Filtering
1 Static Filter
2 for NNi,f associated with instance i of VNF type f do
3 Ni,f ← 0 lables← {}
4 {Similarly for LM}
5 for each switch s do
6 if ϕsf < Ce

s then
7 Ni,f ← Ni,f+ 1
8 labels← lables ∪ {<′ s′, s, ′EM ′ >}
9 for each server m do

10 if ϕsf < Cm then
11 Ni,f ← Ni,f+ 1

labels← lables ∪ {<′ m′, m, ′m′ >}
12 Deploy each NNi,f with hidden neurons count of Ni,f

13 Dynamic Filter
14 Actions← {}
15 for each neuron in output layer of NNi,f do
16 if at previous interval, instance i of f was not placed on the

associated node (defined by the neuron label) then
17 {Similarly for LM and server}
18 if label of neuron is ’s’ and is of type EM then
19 if rces(t) > ϕsf then
20 Actions← Actions ∪ {index in label i.e., s}

is 50 Gbps. The propagation delay of the links are in [0.5, 1]
ms. There are 4 VNF types, each with 2 instances. The VNFs
storage demands are in [10, 50] MB. The data for programming
a VNF in a switch is the same as its size [11]. The traffic
processing capacity of VNFs are in [25, 40] Mbps and 100
Gbps, when they are deployed respectively in the servers and
switches. The delay per MB processing of chains traffic is in
[0.1, 0.3] ms for servers [15], and [0.01, 0.03] ms for switches.
The RDMA delay is in the range of [50, 150] ns per access.

The cost per GB memory consumption at servers are in
the ranges of [0.002, 0.003] of unit of currency, while it is
in [0.0021, 0.0024] per MB local memory storage utilization
in switches. The costs are reduced per MB external memory
usage in switches with amount in the range of [0.0002, 0.0004]
of unit of currency, due to RDMA delay. The cost per GB
transfer is in proportion with BW and in the range of [0.8, 1].

SFCs include up to 4 random subset of VNF types. Sources
and destinations are random switches. For each SFC, the
traffic flow is generated from 10 AM to 22 PM, with a
pattern of traffic higher during the working hours till 4 PM,
in the range of [15, 35] Mbps, and lower after 4 PM, in the
range of [200, 500] Kbps (according to the demand of Web
service, VoIP, and online Gaming [16]). The peak SFC-traffic
at working-hours is consistent with the analysis in [17].

The processing deadlines are in the ranges of [3, 8] and
[8, 12] ms, respectively for non-working-hours, and working

hours. Train and test set consists of 1200 and 300 instances,
respectively. Each instance has placed 90 SFCs in the network.
Initially, VNF instances are deployed on the servers with
minimum cost that can provide the required storage. Then,
a VNF in a request is mapped to a random VNF instance that
can accommodate the chain traffic flow. For each train/test
instance, VNFs deployments are reconfigured every two hours,
due to the SFC’s traffic load/deadline variations. More ex-
plorations at early iterations of DRL has been used, while
the exploitation increases up to 98%-greedy selection at the
last episode. The values of 0.2 and 0.3 respectively for GD
optimization learning rate and discount rate, operated efficient.
We have set: αr = 0.8, βr = 0.2, α = 1, β = 1. Each episode
is assigned with a random instance in the train set.

As shown in Fig. 5, inclusion of only dynamic filters
achieves more reward than having only static filters. Since,
dynamic filtering is more general than static filtering to prune
unfeasible placements explorations during training. In the
hybrid case, by exploiting reduction of weights count by static
filtering and the capability of pruning unfeasible exploration of
dynamic filtering the gained rewards and convergence status is
enhanced, as it is stable after episode 7000. Benchmarks are:
a) RANDOM: it migrates the VNF instances randomly among
servers, LM and EM of switches which can accommodate the
instance; b) DDQN-CM [18]: it migrates VNFs among servers
to minimize the delays and migration cost. The state of MDP
indicates the placement of VNFs in servers. The actions are
possible servers for VNF migration. The reward is the accu-
mulation of chains’ delay and migration cost. DDQN (a DRL
method) with the same learning parameters in [18], is trained
12000 episodes for reconfiguration; c) LAG [4]: it considers
an environment with servers and switches with LMs. The
heuristic in [4] is applied, for SFC requests reconfiguration
to minimize the total cost (IT/bandwdth/reconfiguration cost).
A SFC is divided into several segments, each representing
the connection between two adjacent VNFs. Duplication of
Substrate Network (SN) topology, called as LAGs and repre-
sented with graphs, are utilized to map each segment to SN.
In reconfiguration, for each LAG, the servers/switches that
can not provide the latency (dq/|Fq|) or bandwidth demands
are removed. For each VNF at a LAG, a node that can host
the VNF with the smallest cost is selected. The VNFs among
LAGs are connected by the shortest path.

Fig. 6.a shows the acceptance ratio for the test set. In all

Fig. 6. Evaluation results. (a) Mean acceptance ratio. (b) Mean total cost. (c)
In-network and server based processing adaption in SR-EM.
methods, the acceptance ratio is lower in working hours due to
the higher traffic load. DDQN-CM has accepted lower requests
than LAG. Since LAG exploits high-speed processing of VNFs
in LMs of switches. SR-EM has increased acceptance ratio up
to 29% and 40% in comparison with LAG and DDQN-CM,
due to enhancing the in-network processing of VNFs through
exploiting both LMs and EMs for VNFs deployment. Low
performance of RANDOM illustrates the efficiency of DRL
in SR-EM for optimal configuration.
Fig. 6.b shows the cost. In working-hours cost is higher than
non-working-hours due to high bandwidth usage. In working
hours with high traffic load, the dominant cost is the bandwidth
cost. In comparison with DDQN-CM, INC reduces bandwidth
cost, and accordingly the total cost, by avoiding detouring of
data to the distant servers (sources/destinations are closer to
the switches.) SR-EM that adds EM as another opportunity for
INC has the lowest cost (up to 0.53 unit of currency decrease).
Random exploitation of EM is not as efficient as DRL-based
placement in SR-EM. In the non-working-hours, the IT-cost is
the dominant cost. LAG that utilizes more expensive resources
than the servers needs more cost than DDQN-CM (up to 0.03
unit of currency increment). In comparison with LAG, SR-EM
has slightly reduced cost, almost 0.01 unit of currency, due to
a cheaper resource price of EMs.
Fig. 6.c shows adoption of in-network and server based pro-
cessing in various traffic loads in SR-EM. For non-working-
hours, servers that are cheaper are utilized more than LMs
of switches. LMs of switches with less delay, is used more
than EMs, to meet the low latency requirements. The usage of
EMs has complemented LMs to enhance acceptance ratio. It is
used more in working-hours, since large-size VNF instances
deployed over the servers may not have enough capacity in
high traffic loads and EMs can host those VNF instances.

ACKNOWLEDGMENT

This work was supported in part by the EU’s pro-
gramme HORIZON-JU-SNS-2022 under the 6GSandbox

project (Grant No. 101096328). The paper reflects only the
authors’ views. The Commission is not responsible for any
use that may be made of the information this paper contains.

VII. CONCLUSION AND FUTURE WORK

This paper studies service function chain reconfiguration
problem in NFV environment while exploiting the external
memories of PDP switches and adoptable with dynamic net-
work and chains’ traffic characteristics. The reconfiguration is
modeled as an optimization that minimizes total deployment
and reconfiguration cost while meeting the time and resources
constraints. A converged-enhanced DRL based method is
proposed to solve the optimization while considering dynamic
nature of the network and SFCs traffic. Results illustrates the
improvement in acceptance ratio and total cost. Assessing the
efficiency of INC in power saving is a future work.

REFERENCES

[1] S. Kianpisheh and T. Taleb, “A survey on in-network computing:
Programmable data plane and technology specific applications,” IEEE
Communications Surveys & Tutorials, vol. 25, pp. 701–761, 2023.

[2] F. B. Lopes, G. L. Nazar, and A. E. Schaeffer-Filho, “VNFAccel: An
FPGA-based platform for modular VNF components acceleration,” in
Symp. on Integrated Network Management, 2021, pp. 250–258.

[3] D. Moro, G. Verticale, and A. Capone, “A framework for network
function decomposition and deployment,” in Conf. on the Design of
Reliable Communication Networks DRCN 2020, 2020, pp. 1–6.

[4] T. Li and Z. Zhu, “QoS-aware management reconfiguration of vNF
service trees with heterogeneous NFV platforms,” IEEE Trans. on
Network and Service Management, 2022.

[5] L. Dong, N. L. da Fonseca, and Z. Zhu, “Application-driven provisioning
of service function chains over heterogeneous NFV platforms,” IEEE
Trans. on Network and Service Management, vol. 18, 2020.

[6] L. Dong et al., “On application-aware and on-demand service compo-
sition in heterogenous NFV environments,” in IEEE Global Communi-
cations Conf., 2019.

[7] C. Sun et al., “HYPER: A hybrid high-performance framework for
network function virtualization,” IEEE J. on Selected Areas in Com-
munications, vol. 35, no. 11, pp. 2490–2500, 2017.

[8] Y. Xue and Z. Zhu, “On the upgrade of service function chains with
heterogeneous NFV platforms,” IEEE Trans. on Network and Service
Management, vol. 18, no. 4, pp. 4311–4323, 2021.

[9] Yuhan and Zuqing, “Hybrid flow table installation: Optimizing remote
placements of flow tables on servers to enhance PDP switches for in-
network computing,” IEEE Trans. on Network and Service Management,
vol. 18, pp. 429–440, 2020.

[10] D. Kim et al., “Generic external memory for switch data planes,” in
Workshop on Hot Topics in Networks, 2018, pp. 1–7.

[11] F. Aghaaliakbari et al., “An architecture for provisioning in-network
computing-enabled slices for holographic applications in next-generation
networks,” IEEE Communications Magazine, vol. 61, pp. 52–58, 2023.

[12] P. Vörös and A. Kiss, “Security middleware programming using P4,”
in Conf. on Human Aspects of Information Security, Privacy, and Trust,
2016, pp. 277–287.

[13] Y. Qin et al., “Flexible encryption for reliable transmission based
on the P4 programmable platform,” in Information Communication
Technologies Conf., 2020, pp. 147–152.

[14] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[15] C. Mouradian et al., “Application component placement in NFV-based
hybrid cloud/fog systems with mobile fog nodes,” IEEE J. on Selected
Areas in Communications, vol. 37, no. 5, pp. 1130–1143, 2019.

[16] C. Pham et al., “Traffic-aware and energy-efficient vNF placement for
service chaining: Joint sampling and matching approach,” IEEE Trans.
on Services Computing, vol. 13, no. 1, pp. 172–185, 2017.

[17] S. Troia, R. Alvizu, and G. Maier, “Reinforcement learning for ser-
vice function chain reconfiguration in NFV-SDN metro-core optical
networks,” IEEE Access, vol. 7, pp. 167 944–167 957, 2019.

[18] S. N. Afrasiabi et al., “Reinforcement learning-based optimization
framework for application component migration in nfv cloud-fog en-
vironments,” IEEE Trans. on Network and Service Management, 2022.

