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Abstract—Service Function Chaining (SFC) is regarded as an
important concept for next-generation communication networks
because it can flexibly tackle diverse usage scenarios. Due to
SFC requests’ life-cycle and resource adjustment, the distribution
of the remaining physical resources may become unbalanced,
which brings negative effects to subsequent SFC requests as
well as network operators. In this paper, we investigate the
network SFC migration problem in the core cloud under the
premise of considering the migration cost and the balance of
physical resource distribution. We first model the SFC migration
problem as an integer linear program and propose an aggressive
migration strategy that can effectively reduce the imbalance of
physical resource distribution. Then, we employ two state-of-the-
art heuristics to allocate resources for subsequent SFC requests.
The simulation results show that migrating SFC requests in the
initial service queue can bring favorable feedback to subsequent
requests as well as network operators. Compared to the conser-
vative migration strategy, our proposed migration strategy can
mitigate the imbalance of physical resource distribution more
effectively, and thus the acceptance ratio of subsequent SFC
requests, physical resources utilization, and the long-term profit
of network operators can be further improved.

Index Terms—Network softwarization, Network function vir-
tualization, Service function chain migration, and resource allo-
cation.

I. INTRODUCTION

As technology evolves, a range of new vertical use cases
emerges [1], such as online education, virtual reality, and
autonomous manufacturing. However, today’s mobile com-
munication networks employ a one-size-fits-all approach to
providing services, regardless of the diverging requirements
of vertical services. In addition, some traditional network
functions, such as firewalls, load balancing, and deep packet
inspection, are mostly carried by specific physical devices.
Therefore, in order to meet the ever-increasing performance
demands of users, network operators have to spend expensive
capital to maintain old equipment as well as purchase new
equipment. Consequently, it is necessary to update the network
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architecture with the ability to address diverse application
demands and decrease network operators’ operation expenses.

Software Defined Networks (SDN) [2] and Network Func-
tion Virtualization (NFV) [3] have emerged as promising ap-
proaches to address the above limitations. As SDN decouples
the control plane and data plane, it can manage the network
in a centralized, flexible way. NFV utilizes virtualization tech-
nology to separate specific network functions from dedicated
devices to general-purpose commodity hardware. Thus Virtual
Network Functions (VNFs) can be placed dynamically at
appropriate locations on the network to provide services to
the users. Meanwhile, with the rapid development of NFV,
VNFs can not only scale dynamically under various traffic
conditions to avoid performance degradation and guarantee
users’ Quality of Experience (QoE) [4], [5], but can be also
deployed in clusters to overcome the shortcomings of single-
point failure and scalability [6].

Based on SDN/NFV technologies, Service Function Chain-
ing (SFC) [7], standardized by the Internet Engineering Task
Force (IETF), is regarded as an important networking concept
to provide users with flexible services. Typically, SFC com-
prises a sequence of VNFs and the traffic needs to be steered
to traverse these VNFs in a predefined order [8], [9]. As it is
essential to deploy SFC onto the physical network, at present,
there has been some research on the SFC deployment problem
[10]–[13] to focus on how to reduce network providers’ oper-
ational costs, increase resource utilization rate, and guarantee
users’ Quality of Service (QoS). When a SFC request is
received, the management and orchestration (MANO) layer of
the network system allocates resources and makes configura-
tions for it, and also takes responsibility for recycling resources
after the life-cycle of a request [14]. Furthermore, to avoid
QoE and Service Level Agreement (SLA) violations caused by
traffic load variations [15], [16], MANO should dynamically
adjust the allocated resources of SFC requests [17], [18]. In
addition, to save the allocated resources [19], and adapt to the
users’ mobility [20], MANO sometimes even has to migrate
some VNFs of a request. However, the above adjustment
process may result in the unbalanced distribution of physical
resources. Different from previous research work [18]–[22],
our work mainly answers the following two questions. A:
Will uneven distribution of physical resources adversely affect
subsequent SFC requests and network operators? B: Can we
reduce the potential negative impact of the uneven distribution
of physical resources by migrating SFC requests in the initial
service queue?

Due to resource adjustment and the departures of some SFC



requests, after a period of time, some VNF-enabled nodes and
links of the substrate network may be overloaded, which may
bring negative effects on the subsequent SFC requests and
network operators (e.g., lower request acceptance ratio, lower
long-term profit, ect.). Let us use the example in Fig. 1 to
illustrate the SFC migration problem in the core cloud. In the
initial service queue, there are a total of three SFC requests,
and the resource requirements of SFC request 1 and SFC
request 2 are small. Since it is easier to find viable candidate
resource allocation solutions for requests with small resource
requirements in this case, MANO can consider migrating SFC
request 1 or SFC request 2. We take the migration of SFC
request 2 as an example. As shown in Fig. 1, SFC request
2’s transmission path can be migrated from (S1 → V1 →
V2 → V4 → S5) to (S1 → V1 → V3 → S4 → V4 → S5),
and its VNF1, VNF2 can be migrated from V2, V4 to V1, V3,
respectively. Although SFC migration brings costs, it can make
the distribution of physical resources more balanced, which
may have a positive feedback on subsequent SFC requests
and network operators.
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Fig. 1. Illustration of network SFC migration

In this paper, we investigate the SFC migration problem
caused by the imbalanced distribution of physical resources
in the core cloud. We first use the standard deviation to
represent the physical resource distribution of the substrate
network, then, jointly considering the migration cost and
some constraints (e.g., resource limitation, latency constraint,
ect), we formulate the SFC migration problem as an Integer

Linear Programming (ILP) problem. Inspired by some relevant
work [20], [22], we design a conservative migration strategy
to mitigate the imbalance of physical resource distribution.
However, the above-mentioned work focused too much on the
migration cost. Consequently, only some VNFs (i.e., some-
times only the last VNF of the SFC) are migrated. Therefore, it
may not effectively balance the remaining physical resources.
To overcome this shortcoming, we propose an aggressive
migration strategy to migrate the whole SFC. After that, we
employ two state-of-the-art heuristics methods, BestFit [23],
[24], and CN [25] to allocate resources for the subsequent SFC
requests, and observe the changes in some metrics, such as the
acceptance ratio of subsequent SFC requests and the operator’s
long-term profit, before and after SFC migration. The main
contributions of this paper are summarized as follows:

• We formulate the SFC migration problem as an ILP with
the aim of minimizing the standard deviation of physical
resource distribution as well as the migration cost.

• We propose an aggressive SFC migration strategy that
prioritizes mitigating imbalances in resource distribution
by migrating the total SFC. Then, we employ two state-
of-the-art heuristics to allocate resources for the subse-
quent SFC requests.

• Simulation results reveal that our proposed migration
strategy can alleviate the imbalance of initial network
resource distribution by 14.991% compared with the
benchmark strategy. For the different resource allocation
heuristics, after SFC migration, the acceptance ratio of
subsequent SFC requests increased by 11.75% and 6.84%
on average, respectively, and the long-term profit of
network operators increased by 9.49% and 7.84% on
average, respectively.

The remainder of this paper is organized as follows- Section
II reviews some related work. Section III formulates the
target problem. Section IV introduces our proposed heuristics.
Section V presents the obtained numerical results. Finally, the
paper concludes in Section VI.

II. RELATED WORK

Network slicing and SFC migration are two hot research
topics [26]. In some application scenarios, e.g., automated
driving, the location of a user’s terminal changes as per the
mobility of the user. Taleb et al. [27] introduced the Follow-
Me Cloud (FMC) concept and proposed its framework. Then,
they applied a Markov Decision Process (MDP) based method
to optimize migration decisions [28]. Aissioui et al. [29]
applied their Follow-Me edge Cloud solution in an automated
driving use case. When migrating the VNFs of SFC, operators
also need to consider reducing the migration time. Addad
et al. carried out related research work [30], [31] on this.
For applications depending on synchronization, they designed,
proposed and evaluated four SFC migration patterns [30],
and they found no clear winner in their presented patterns.
Further, they designed a shared file system-based method [31]
to decrease both the migration time and the service downtime.



Although some studies aim to support the mobility of
services, their ultimate optimization goals are different. In the
hybrid environment of the core cloud and edge cloud, Mada et
al. [19] formulated the SFC migration problem as an ILP and
used the Gurobi optimizer to solve it. In their work, researchers
focused on how to minimize the allocated resources to the
deployed services but ignored migration cost. Due to the high
computation cost of the Gurobi optimizer, their method is
infeasible in larger networks. Zhao et al. [20] investigated
the problem of SFC migration caused by user movement in
cloud-fog computing environments. They also formulated the
SFC migration problem as an ILP and proposed two heuristic
methods to solve it. Considering migration cost, their methods
migrate some VNFs of SFC. However, they ignored the life
cycles of SFCs and the distribution of the remaining physical
resources.

Some researchers employed Artificial Intelligence (AI)
methods to solve the slice and SFC migration problem. Ad-
dad et al. [21] designed, modeled, and evaluated two Deep
Reinforcement Learning-based algorithms to allocate band-
width resources for SFCs during migration. Their experiment
results showed that a Deep Deterministic Policy Gradient
(DDPG) had better performance than a Deep Q-Network
(DQN). However, their proposed AI agent can only detect
the required bandwidth for a given workflow, and their work
did not consider migration cost. Wei et al. [18] investigated
the problem of slice reconfiguration caused by fluctuations in
user resource requirements in core cloud environments. They
formulated the reconfiguration problem as a MDP problem and
proposed a discrete Branching Dueling Q-network to solve
it. Although their method took the reconfiguration cost into
account, their action set was designed for an individual slice,
and the trained network model was not universal for SFCs with
different resource requirements. For the above DRL-based
solutions, once the environment or action set changes, e.g.,
network topology, SFC requirements, etc., they must retrain
the AI agent [32]. As the training of deep network models
generally requires high computational and time overhead,
these methods have certain limitations. In addition, none of the
above research work considers the balance of physical resource
distribution after migration or reconfiguration.

Few researchers have considered migrating the VNFs run-
ning on overloaded nodes. Zhang et al. [22] first proposed an
adaptive interference-aware method to allocate resources for
slice requests, which can handle VNF interference [33] caused
by resource contention. Then, to further improve the long-term
total profit of slices and to cope with the migration cost, they
proposed a lazy migration strategy that migrates the last VNF
of slices to optimize physical resource distribution, so that
the network operator can accept slice requests that should be
rejected. Although their method can alleviate the burden of
high-load nodes to a certain extent, it does not consider the
balance of resource distribution from a global perspective.

At present, most of the research on slice and SFC migration
is related to supporting users’ mobility, and a small part [22]
to optimizing global resources. However, to the best of our

knowledge, there is no prior work that considers the impact
of initial physical resource distribution on subsequent SFC
requests and network operators’ long-term profit, which is the
focus of our work in this paper. A comparison of related works
is given in Table ??.

III. PROBLEM STATEMENT AND FORMULATION

In this paper, we study the SFC migration problem for SFC
requests in the initial service queue. In a physical network,
operators can allocate resources for users based on their
specific QoS requirements. The QoS requirements and life-
cycles of different requests are diverse. Furthermore, during
their life cycles, MANO may dynamically adjust the allocated
resources according to changes in demand. The above factors
cause the resources allocation solutions for the SFC requests in
the service queue to become unstable, resulting in the uneven
distribution of physical resources.

In this paper, we consider the following scenario. At the
initial moment, there are some permanent SFC requests in the
service queue, these requests occupy more physical resources
than normal requests, and the allocation solutions of their
resources are random. MANO needs to migrate these requests
under the premise of some constraints (e.g., the association
of VNF instances, bandwidth demand, etc.) to alleviate the
uneven distribution of physical resources.

Since the essence of the SFC migration problem is to cal-
culate new resource allocation solutions for the requests in the
service queue, we first describe the substrate network and SFC
request models and then propose a mathematical formulation
of the SFC migration problem. For ease of reference, the
notations used in this paper are summarized in Table II.

A. Substrate Network

Similar to some related work, we define the substrate
network as a weighted directed graph G = (N,E), where N
and E denote the sets of physical nodes and links, respectively.
Typically, a substrate network is composed of VNF-enabled
nodes NV and common nodes NF , so the set of physical nodes
can be further denoted as N = NV ∪NF . VNF-enabled nodes
can provide certain types of VNFs, such as Network Address
Translation (NAT) and Firewall; while common nodes can be
only used for packet forwarding. Note that the forwarding
function can be seen as a special network function [18] and
its resource consumption is relatively small, so the resource
consumption caused by the forwarding function is ignored in
our work.

We indicate the total computational resource capacity of
the VNF-enabled node i ∈ NV as Ci, while other resources
(e.g., memory resources, storage resources) are sufficient. Each
physical link (i, j) ∈ E has the limited bandwidth of Bi,j , and
the propagation delay of a physical link (i, j) is denoted as
τi,j .

B. SFC Request

In this paper, we define a SFC request r as a linear
chain, and it can be denoted as r = (sr, dr,Fr, τr, cr, br),



TABLE I
COMPARISON OF RELATED WORKS

Literature Applicable
scenario

Motivation for
migration

Migration
target Methodology Consider

migration cost

Consider
life-cycle

of services
Computing costs migration magnitude

Mada et al. [19]

Hybrid
environment
of core cloud

and edge cloud

Users’ mobility
save the
allocated
resources

ILP formulation
with Gurobi

optimizer
No Yes Massive with

large networks Not clear

Zhao et al. [20]
Cloud-fog
computing

environment
Users’ mobility

Guarantee
users’
QoE

ILP formulation
with heuristic

solver
Yes No Affordable Some VNFs

of SFC

Addad et al. [21]

Hybrid
environment
of core cloud

and edge cloud

Users’ mobility
save the
allocated
resources

DDPG and DQN No No Costly due to
model training Not clear

Wei et al. [18] core cloud
Fluctuations in
user resources
requirements

Guarantee
users’
QoE

MDP
formulation with
Reinforcement

Learning
based solver

Yes No Costly due to
model training Not clear

Zhang et al. [22]

Hybrid
environment
of core cloud

and edge cloud

Unbalanced
distribution

of remaining
physical
resources

Release
resources
of over-

loaded nodes

ILP formulation
with heuristic

solver
Yes No Affordable Only the last

VNF of SFC

Proposed Solutions core cloud

Unbalanced
distribution

of remaining
physical
resources

Balance the
distribution

of remaining
physical
resources

ILP formulation
with heuristic

solver
Yes Yes Affordable Total VNFs

of SFC

TABLE II
SUMMARY OF NOTATIONS USED.

Notation Definition

N,E
physical nodes (including forwarding nodes NF and
VNF-enabled nodes NV ) and links respectively

τi,j , Bi,j
transmission delay, bandwidth resources of link (i, j)
respectively

Ci computational resources of a VNF-enabled node i

sr, dr, τr
the source node, destination node, and delay require-
ment of SFC request r, respectively

cr, br
CPU resource requirement for a single VNF, and
bandwidth resource requirement of SFC request r

SQ service queue
Fr the set of VNFs of SFC request r
πr
m the mth VNF of SFC request r

Pr the transmission path of SFC request r
Mr the VNFs placement solution of Fr

(r, πr
m) the virtual link between virtual node πr

m and πr
m+1

hi(π)
binary variable, indicates whether or not node i is cap-
able of VNF π

Xi,r(π
r
m)

binary variable, indicates whether or not VNF πr
m is

placed onto physical node i

Zi,j(r, π
r
m)

binary variable, indicates whether or not virtual link
(r, πr

m) is mapped onto physical link (i, j)
β unit bandwidth consumption of per computational unit

Wcpu,Wbw
benefit of per bandwidth unit and per computational
unit, respectively

where sr, dr denote the source and destination of r, Fr

denotes the SFC requirement, and τr, cr, br denote the la-
tency requirement, the CPU resource requirement for VNFs,
and the bandwidth resource requirement, respectively. For
example, in Fig. 1, SFC request 3 can be denoted as r3 =
(S2,S6, {VNF1,VNF2,VNF3}, τ3, c3, b3).

C. Problem Formulation

Now we formally propose the mathematical formulation of
the SFC migration problem. We start with the constraints that
MANO should obey when recomputing the resource allocation
solutions for SFC requests in the service queue.

We first model the VNFs mapping SFC requests, and define
some binary variables. hi(π) indicates whether or not node i
is capable of VNF π. Xi,r(π

r
m) indicates whether or not VNF

πr
m is placed onto physical node i, where πr

m represents the
mth VNF of SFC request r. To ensure VNFs are placed onto
the VNF-enabled physical nodes, we have:

Xi,r(π
r
m) ≤ hi(π

r
m),∀i ∈ N, ∀r ∈ SQ,∀πr

m ∈ Fr. (1)

Referring to some relevant works [20], [22], VNFs are not
allowed to be split in our current work, so each VNF of a SFC
request can be only placed onto one VNF-enabled physical
node. Thus, we have the following constraint:∑

i

Xi,r(π
r
m) = 1,∀r ∈ SQ, πr

m ∈ Fr. (2)

In addition, we also require that each VNF-enabled physical
node provides at most one VNF for each Fr, and this can be
ensured if Eq. (3) holds.∑

πr
m∈Fr

Xi,r(π
r
m) ≤ 1,∀i ∈ NV , r ∈ SQ. (3)

Then we consider the virtual link mapping of SFC requests.
We do not allow path splitting for the purpose of avoiding
coordination overhead. Similar to [20], we denote Pr as
the transmission path of request r, and Mr as the VNFs
placement solution of Fr. Each transmission path should obey
the following constraints.



τr ≥
∑

(i,j)∈Pr

τ(i,j),∀r ∈ SQ. (4)

Mr ∈ Pr,∀r ∈ SQ. (5)

Constraint (4) is latency related. The total delay of the
transmission path should be less than the delay required by
the request. Constraint (5) requires that the transmission path
must pass through the physical nodes that provide the VNF
service for request r.

Finally, we consider the constraints of the resource upper
bounds. Similarly, we define a binary variable Zi,j(r, π

r
m) to

indicate whether (r, πr
m) is mapped on a physical link (i, j) or

not, where (r, πr
m) represents the virtual link between virtual

node πr
m and πr

m+1. Specially, (r, πr
0) represents the virtual

link from sr to the first VNF, and (r, πr
Lr

) represents the
virtual link from the last VNF to dr. As mentioned above, we
ignore the resource consumption of the forwarding function, so
the total computational resource consumed on a VNF-enabled
physical node i and the total bandwidth resource consumed
on a physical link (i, j) are:

RC(i) =
∑
r

∑
πr
m

Xi,r(π
r
m)cr (6)

and
RB(i, j) =

∑
r

∑
πr
m

Zi,j(r, π
r
m)br, (7)

respectively, where cr represents the CPU resource require-
ment for a single VNF of request r, and br represents the
bandwidth resource requirement of request r.

Similar to [10], [34], we assume that within a request r, the
computational resource requirements of VNFs are the same.
Thus, we have the following capacity constraints for VNF-
enabled physical nodes and physical links.

RC(i) ≤ Ci,∀i ∈ NV . (8)

RB(i, j) < Bi,j ,∀(i, j) ∈ E. (9)

Now, let us use the standard deviation σG to measure the
distribution of physical resources. σG can be calculated as:

σG =

√
1

NUM(NV )

∑
i∈Nv

(RC(i)−RC)
2
+√√√√ 1

NUM(E)

∑
(i,j)∈E

(RB(i, j)−RB)
2
,

(10)

where NUM(NV ) and NUM(E) represent the number of
VNF-enabled physical nodes and physical links in the sub-
strate network G, respectively. RC and RB represent the aver-
age value of the consumed resource in NV and E, respectively.
In Fig. 1, after migration, since the overloaded nodes and links
no longer exist in the substrate network, σG can be reduced.

During SFC migration, we also have to consider the migra-
tion cost. Referring to some related works [18], [20], [22], we

introduce the migration cost or of a SFC request r to represent
the extra cost of continuing processing the total amount of
the unprocessed packets of r. We use tr to indicate the time
when the migration of r starts, t

′

r to indicate the time when
the migration of r ends and ur(t) to represent the flow rate
of r at time t. Thus, during migration, the total amount of

the unprocessed packets of r can be calculated as
∫ t

′
r

tr
ur(t).

Referring to the definition of migration cost in [22], we also
use the bandwidth resource requirement of r to represent
ur(t). Since the flow of r should be orderly-executed based
on a set of VNFs, the further up in the SFC the VNFs we
intend to migrate are, the larger the effects they will bring
to the whole SFC [22]. We use Len(P o

r , P
m
r ) to denote how

many new virtual links of unprocessed packets of r should
be transmitted after migration. For example, in Fig. 1, the
original transmission path of SFC request 2 P o

2 is (S1 → V1
→ V2 → V4 → S5), and its transmission path after migration
Pm
2 is (S1 → V1 → V3 → S4 → V4 → S5). In such case,

Len(P o
2 , P

m
2 ) = 4, because after virtual node V1, subsequent

links begin to change. Therefore, we define or as:

or =

∫ t
′
r

tr

Len(P o
r , P

m
r )br. (11)

In addition, to calculate the total migration cost OG, we
need to accumulate the migration cost of each SFC request
in the service queue, and the total migration cost can be
represented as:

OG =
∑
r∈SQ

or (12)

Finally, taking the distribution of physical resources as
well as the migration cost into account, we define the SFC
migration problem as:

min σG +OG (13)
s.t. (1− 5), (9− 10) (13.1)

hi(π
r
m) ∈ {0, 1},∀i ∈ N, ∀r ∈ SQ, πr

m ∈ Fr (13.2)
Xi,r(π

r
m) ∈ {0, 1},∀i ∈ N, r ∈ SQ, πr

m ∈ Fr (13.3)
Zi,j(r, π

r
m) ∈ {0, 1},∀(i, j) ∈ E, r ∈ SQ, πr

m ∈ Fr (13.4)

IV. HEURISTICS FOR SFC MIGRATION

In this section, we elaborate on the conservative migration
strategy inspired by [20], [22] and our proposed aggressive
migration strategy, respectively.

A. A conservative migration strategy

To quickly restore the user’s service or reduce the effect
caused by migration on the whole SFC, some researchers [20],
[22] are prone to migrate only the last VNF of the SFC.
Inspired by this idea, we designed a conservative migration
strategy that is performed through the following steps.

Step 1: fetch request with low resource requirement. The
smaller the resource requirement of a request, the more candi-
date resource allocation solutions there will be. We calculate
the resource requirement of a request through Eq. (14) (In



this paper, we prioritize computational resources due to their
higher profit). Before migration, we sort all requests in SQ
by their Yr and select the request with the smallest Yr for
migration.

Yr =
∑
π∈r

cr (14)

Step 2: resource recovery. Before SFC migration, MANO
should recover the physical resources that have been allocated
to request r, including computational resources in the VNF-
enabled physical node and bandwidth resources in the physical
link.

Step 3: determine the stable section. Since the conservative
migration strategy only migrates the last VNF of the SFC,
MANO needs to determine the stable section of the original
resource allocation solution. We use ms

r, p
s
r to represent the

stable section of Mo
r and the stable section of P o

r , respectively.
Then we denote Lr as the length of Fr, mr

Lr
as the last

element of Mo
r , and denote mr

pen as the penultimate ele-
ment of Mo

r . Clearly, ms
r equals to Mr − mr

Lr
, and psr is

(sr → ... → mr
pen).

Step 4: recalculate the resource solution for the migration
section. This step needs to solve the following two problems.
(a) Where the last VNF of Fr should be migrated to. (b) Which
transmission path from mr

pen to dr should be chosen. We use
πr
Lr

to represent the last VNF of Fr, mre
r , prer to represent

the new resource allocation solution for πr
Lr

, and the new
allocation solution for the transmission path from mr

pen to dr,
respectively. To avoid loops, we first need to remove elements
of psr from G (except for mr

pen for the purpose of path calcu-
lation 1) and get the pruned substrate network Gp1 . Then, with
the constraints of (1), (3), we calculate the candidate physical
node set Nr for πr

Lr
. Typically, Nr = N

′

V − (N
′

V ∩ ms
r),

where N
′

V represent the set of VNF-enabled physical nodes
in Gp1 . Then, we select the physical node imost that not only
can provide service for πr

Lr
, but also with the most remaining

computational resource in Nr, and place πr
Lr

on imost. Next,
we remove the physical links that cannot meet the bandwidth
requirement of r in Gp1

, and get another pruned substrate
network Gp2 . We can get all paths from mpen to dr in Gp2

with a modified Depth First Search (DFS) method [35]. Then
we select the paths that obey constraint (4), (5) to form the
set Pr of feasible solutions to prer , and place the virtual path
from mr

pen to dr on the path pleast with the least standard
deviation of the remaining bandwidth resources in Pr. After
the above process, we get mre

r equal to imost and prer equal
to pleast.

Step 5: resource remapping. Once MANO gets psr, p
re
r ,

ms
r,m

re
r , it can determine a new resources allocation solution

for request r. Then, MANO should remap the resource for
request r based on Pm

r ,Mm
r .

Algorithm 1 shows the pseudo-code of the conservative
migration strategy. The Resources Recovery (RR) procedure is

1In the following step, MANO should calculate the paths from mr
pen to

dr in Gp1 , thus, mr
pen should be included in Gp1 .

used to carry out step 2, and the Recalculate Resource Solution
(RRS) procedure is used to carry out step 4. Step 5 is carried
out through line 8 to line 13.

In Fig. 1, since the resource requirements of SFC request 1
and 2 are relatively small, MANO will migrate them first.
Here, we use the migration process of SFC request 2 to
illustrate the conservative migration strategy. Firstly, MANO
needs to recover the physical resources previously allocated to
SFC request 2, as shown in Fig. 2(a). Secondly, MANO needs
to determine the stable section of SFC request 2’s original
resource allocation solution, as shown in Fig. 2(b), where ms

r

is (S1 → V1 → V2), and psr is {V2}. Thirdly, MANO has
to determine where the last VNF (VNF2) of F2 should be
migrated to, and which transmission path from m2

pen to d2
should be chosen. To solve the above problems, MANO first
removes some nodes and links in the substrate network to
avoid loops, as shown in Fig. 2(c). Then, since V3 has the
most remaining computing resources, MANO maps VNF2 on
V3 when constraint (1) is met and sets mre

2 to V3, as shown
in Fig. 2(d). After that, MANO calculates feasible paths from
m2

pen to d2 in the pruned substrate network. Under constraints
(4), (5), since the standard deviation of the bandwidth resource
distribution of path (V2 → V3 → S4 → S6 → S5) is the
smallest, MANO maps pre2 on it. Finally, MANO reallocates
the resource for SFC request 2 based on ms

2 ∪mre
2 , ps2 ∪ pre2 ,

and the migration effect is shown in Fig. 2(e).
Next, we analyze the complexity of the conservative mi-

gration strategy. First, sorting all requests (line 2) requires
O(|SQ| log2 |SQ|) computation. Then, the first while-loop
(line 3) terminates in |SQ| iterations. For the RR procedure, it
needs O(|E|+ |NV |) computation. For the RRS procedure, its
first for-loop (line 2) terminates in |psr| − 1 iterations, and its
second for-loop (line 8) terminates in |P c

r | iterations. In addi-
tion, for the modified DFS method, a simple path can be found
in O(|E| + |N |) [35], which thus causes O(|P | (|E| + |N |)
computation to calculate all the paths from node s to node d in
graph G, where P,E,N denote the set of candidate paths from
s to d, the set of physical links in G, and the set of physical
nodes in G, respectively. In our work, we let Er, Nr to
represent the physical links set and physical nodes sets in each
Gp2, and we let Econ = maxr=1 |Er|, Ncon = maxr=1 |Nr|,
Acon = maxr=1(|psr| − 1), Bcon = maxr=1 |P c

r |. Thus, the
computation of RRS procedure is O(Acon + Bcon(Econ +
Ncon) +Bcon). The last two for-loops (line 8 and line 11) in
the conservative migration strategy need to terminate in |Mm

r |,
|Pm

r | iterations, respectively. Since Bcon(Econ + Ncon) is
greater than log2 |SQ|, Acon, (|E|+|N |), |Mm

r |, and |Pm
r |, the

overall time complexity of conservative migration strategy is
O(|SQ| log2 |SQ|+|SQ| ((|E|+|NV |)+Acon+Bcon(Econ+
Ncon) + Bcon + |Mm

r | + |Pm
r |)) = O(|SQ|Bcon(Econ +

Ncon)).

B. An aggressive migration strategy

In order to reduce the migration cost, the conservative
migration strategy only migrates the last VNF of the SFC,
and this will cause overloaded nodes and links in the substrate



S1

S4
S6

V1
V2

V3

V4

S2

S VNF1 VNF2 D

S D

S D

SFC request 1

SFC request 3

VNF1 VNF2

VNF1 VNF2 VNF3

SFC request 2

S5
S

VNF1

VNF2

D
S

VNF1

VNF2

D

S

VNF1

VNF2

VNF3

D

S3

(a)

S1

S4
S6

V1
V2

V3

V4

S2

S5
S

VNF1

VNF2

D

S

VNF1

D

S

VNF1

VNF2

VNF3

D

S3

(b)

S1

S4
S6

V1
V2

V3

V4

S2

S5
S

VNF1

VNF2

D

S

VNF1

D

S

VNF1

VNF2

VNF3

D

S3

(c)

S1

S4
S6

V1
V2

V3

V4

S2

S5
S

VNF1

VNF2

D

S

VNF1

D

S

VNF1

VNF2

VNF3

D

S3

(d)

VNF2

S1

S4
S6

V1
V2

V3

V4

S2

S5
S

VNF1

VNF2

D

S

VNF1

D

S

VNF1

VNF2

VNF3

D

S3 VNF2

(e)

Fig. 2. Conservative migration process of a single SFC request

Algorithm 1 Conservative Migration Algorithm
Input: initial substrate network G, information of the requests
in service queue SQ, including cr, br,Fr, P

o
r ,M

o
r , sr, dr, τr.

Output: substrate network G′ after SFC migration, and mi-
gration cost OG.

1: Initialization: let OG = 0;
2: Sort all r ∈ SQ by its Yr in ascending order;
3: while SQ ̸= ∅ do
4: Select r with the minimal Yr, call RR procedure, then

let G = Grec, Mm
r ={}, Pm

r ={};
5: Let ms

r = Mr −mr
Lr

, psr = (sr, ...,m
r
pen);

6: Call RRS procedure, then get prer ,mre
r ;

7: Let Mm
r = ms

r ∪mre
r , Pm

r = psr ∪ prer ;
8: for each node i ∈ Mm

r do
9: Ci = Ci − cr;

10: end for
11: for each link (i, j) ∈ Pm

r do
12: Bi,j = Bi,j − br;
13: end for
14: Calculate migration cost or of request r according to

Eq.(11);
15: OG = OG + or, SQ = SQ − r, and then migrate the

next SFC request;
16: end while
17: return G′,OG.

Procedure 1 Resources Recovery (RR)
Input: G, br, cr, P

o
r ,M

o
r .

Output: Grec (substrate network after resources recovery).
1: for each link (i, j) ∈ E do
2: if (i, j) ∈ P o

r then
3: Bi,j = Bi,j + br;
4: end if
5: end for
6: for each node i ∈ NV do
7: if i ∈ Mo

r then
8: Ci = Ci + cr;
9: end if

10: end for
11: return Grec.

network to still exist after SFC migration, as shown in Fig.
2(e). To distribute physical resources more evenly, we propose
an aggressive migration strategy that migrates the total SFC,
which is performed through the following steps.

Step 1, Step 2 are the same as Step 1 and Step 2 of
conservative migration strategy.

Step 3:calculate a new resources allocation solution. To
solve the SFC migration problem, we split it into VNF
migration and virtual link migration. For VNF migration,
we greedily place VNFs on the physical nodes with the
most remaining resources. For virtual link migration, we first
remove the physical links that cannot meet the bandwidth
requirement of r and get a pruned network Gp1 , and then



Procedure 2 Recalculate Resource Solution (RRS)
Input: G, br, cr, p

s
r,m

s
r, dr.

Output: pmre, mre
r .

1: Initialization: let s
′

r equal the last element of psr, candidate
transmission path Pr={}, Nr = N

′

V − (N
′

V ∩ms
r);

2: for each node i ∈ (psr − s
′

r) do
3: Remove i and its directly connected links form G;
4: end for
5: Remove the physical links that can not meet the bandwidth

requirement of r.
6: Select the node imost with the most remaining resources

in Nr, let mre
r = imost;

7: Run modified Depth First Search with s
′

r, dr, G, then
generate a set P c

r of candidate paths;
8: for each path p ∈ P c

r do
9: if (p ∪ psr) allows constraints (4),(5) then

10: Pr = Pr + (p ∪ psr)
11: end if
12: end for
13: Select the path p with the smallest standard deviation of

the remaining bandwidth resources from Pr, then let pmr =
p;

14: return prer , mre
r .

we get all paths from sr to dr in Gp1
through a modified

DFS method and select the paths that obey constraints (4), (5)
to form the set Pr of feasible solutions to Pm

r . Finally, we
place Pm

r on the path p with the smallest standard deviation
of the remaining bandwidth resources in Pr.

Step 4: resources remapping. MANO needs to remap the
resources based on the new resources allocation solution
calculated by step 3.

The procedure of aggressive migration is shown in Alg. 2.
Line 5 to line 16 are used to calculate new resources allocation
solutions Pm

r ,Mm
r for request r. And step 4 is carried out

through line 17 to line 22. Similarly, we take the migration
process of SFC request 2 in Fig. 1 as an example and the
process shown in Fig. 3. Fig. 3(a) corresponds with the process
of resource recovery, Fig. 3(b) corresponds with the process
of VNF migration, and Fig. 3(c) corresponds with the process
of virtual link migration and resource remapping.

Similarly, we take the migration process of SFC request
2 in Fig. 1 as an example. As shown in Fig. 3(a), MANO
should also recover the physical computational and bandwidth
resources previously allocated to SFC request 2. Then, MANO
greedily places the VNFs of F2 on the physical nodes with
the most remaining resources, and sets Mm

2 to {V1, V2},
as shown in Fig. 3(b). After that, MANO first removes the
physical links that cannot meet the bandwidth requirement of
SFC request 2 in the substrate network, and then it calculates
the feasible paths from s2 to d2 in the pruned substrate network
under constraints (4), (5). Since the standard deviation of the
bandwidth resource distribution of path (S1 → V1 → V3 →
S4 → S6 → S5) is the smallest, MANO sets Pm

2 to it. Finally,

MANO reallocates the resource for SFC request 2 based on
Mm

2 , Pm
2 , and the migration effect is shown in Fig. 3(c). Note

that, after aggressive migration, overloaded nodes and links
no longer exist in the substrate network, so the aggressive
migration strategy is expected to make the distribution of
physical resources more balanced.

Likewise, we analyze the time complexity of our proposed
aggressive migration strategy. Similarly, the computation re-
quired for sorting all requests (line 2) is O(|SQ| log2 |SQ|),
the first while-loop (line 3) terminates in |SQ| iterations, and
the RR procedure needs O(|E|+ |NV |) computation. The first
(line 5), second (line 11), third (line 17) and fourth (line 20)
for-loops need to terminate in |Fr|, |P c

r |, |Pm
r |, and |M c

r |
iterations, respectively. Then, we also let Er, Nr to represent
the physical links set and physical nodes set in each Gp1,
and let F = maxr=1 |Fr|, Eagg = maxr=1 |Er|, Nagg =
maxr=1 |Nr|, Bagg = maxr=1 |P c

r |. Thus, the time complex-
ity of the aggressive migration strategy is O(|SQ| log2 |SQ|+
|SQ| (F + Bagg(Eagg + Nagg) + Bagg + |Pm

r | + |Mm
r |)) =

O(|SQ|Bagg(Eagg +Nagg)).
Note that, before running the modified DFS method, the

conservative migration strategy removes more nodes and links
from the substrate network, so its Bcon, Econ, and Ncon

are smaller than those of the aggressive migration strategy.
Therefore, the time complexity of the conservative migration
strategy is slightly smaller than that of the aggressive migration
strategy.

V. NUMERICAL RESULTS

In this section, we demonstrate the performance evaluation
of our proposed migration strategy. We first discuss the simu-
lation setup used to evaluate the algorithms in our work. We
then introduce the state-of-the-art heuristics for allocating re-
sources for subsequent SFC requests. Finally, we compare our
aggressive migration strategy with the conservative migration
strategy and describe our main simulation results and analysis.

A. Simulation settings

In our simulations, we construct a substrate network as is
shown in Fig. 4, which is widely used in network slicing and
SFC research, such as [17], [18]. The parameters of the sub-
strate network are listed in Table III. In the substrate network,
there are 7 VNF-enabled physical nodes, and they can provide
all kinds of VNF services. Currently, we do not consider
the difference in the resource upper limit between different
VNF-enabled physical nodes and physical links. Therefore, the
computational resources of VNF-enabled physical nodes are
set to 10000 units. As some researchers assume that processing
one unit of flow requires one unit of computational capacity
[38], we set the bandwidth resources of physical links to 10000
units too. In addition, the latency of physical links was set to
1ms.

The parameters of various SFC requests in our work are
shown in Table III. In real-world scenarios, there will be
permanent and temporary network service requests [36], [37].
Therefore, we designed a type of permanent request, which
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Fig. 3. Process of aggressive migration scheme

TABLE III
NETWORK PARAMETERS

Parameters Value
Number of nodes 15
Number of links 27
Number of VNFs 7

β 1
Capacity of VNF

enabled nodes 1× 104

Capacity of links 1× 104

Latency of links 1

Algorithm 2 Aggressive Migration Algorithm
Input: initial substrate network G, information of the requests
in service queue SQ, including cr, br,Fr, P

o
r ,M

o
r , sr, dr, τr.

Output: substrate network G′ after SFC migration, and mi-
gration cost OG.

1: Initialization: let OG = 0;
2: Sort all r ∈ SQ by its Yr in ascending order;
3: while SQ ̸= ∅ do
4: Select r with the minimal Yr, call RR procedure, then

let G = Grec, Mm
r ={}, candidate VNF-EN node set

Nr = NV , candidate transmission path Pr={};
5: for each VNF fi in Fr do
6: Select the node imost with the most remaining re-

sources from N ;
7: Mm

r = Mm
r + imost, Nr = Nr − i;

8: end for
9: Copy G, get duplicate Gp1

and remove the physical
links that can not meet the bandwidth requirement of
request r in Gp1 ;

10: Run modified Depth First Search with sr, dr, Gp1 , then
generate a set of candidate paths P c

r ;
11: for each path p ∈ P c

r do
12: if p allows constraints (4), (5) then
13: Pr = Pr + p;
14: end if
15: end for
16: Select the path p with the smallest standard deviation

of the remaining bandwidth resources from Pr, then let
Pm
r = p;

17: for each link (i, j) ∈ Pm
r do

18: Bi,j = Bi,j − br
19: end for
20: for each node i ∈ Mm

r do
21: Ci = Ci − cr
22: end for
23: Calculate migration cost or of request r according to

Eq.(11);
24: OG = OG + or, SQ = SQ − r, and then migrate the

next SFC request;
25: end while
26: return G′,OG.

will occupy a large amount of physical resources, but cor-
respondingly, their number was set to be scarce. The other
two types of requests are temporary requests. They take up
fewer physical resources than permanent requests, but their
number is very large. What is more, the bandwidth resource
requirement of request r is related to its computational re-
source requirement, so we get br = β · cr. As we also assume
that processing one unit of data flow requires one unit of
computational capacity [38], we set β = 1 in our current work.
The source and destination of all SFC requests are randomly
generated from the S and D nodes in the substrate network.

We assume that at the initial moment, there are 6 permanent
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TABLE IV
PARAMETERS OF SFC REQUESTS

Parameters Type1 Type2 Type3
Number of VNFs {2,3,4,5,6} {1,2,3} {2,3,4,5}

CPU resources requirement
cr for VNF (unit) U(900,1000) U(10,20) U(100,200)

Bandwidth resources
requirement br (unit) β · cr β · cr β · cr

Latency requirement (ms) ⩽20 ⩽30 ⩽ 40
Average lifetime (time slot) permanent ⩾100 ⩾100

requests in the service queue. Under the premise of satisfying
resource mapping constraints, the resource allocation solutions
of these requests are random, so as to simulate the randomness
of the initial physical resources distribution. After the initial
moment, we assume that the subsequent requests consist of
Type 2 and Type 3 requests randomly, and these SFC requests
are issued following a Poisson process of rate λ, where λ is
set to 5 in our work.

The migration strategies are evaluated using the Python
programming language and an extended package for graph
theory called networkx [39].

B. Heuristics for subsequent SFC requests

The BestFit [23], [24] and CN [25] heuristics are employed
for allocating resources for the subsequent SFC requests, and
below we give a brief description of them.

• BestFit: First, the physical node with the most remaining
computational resources is greedily selected to place the
VNFs requested by a request, and then the shortest path
between these nodes is calculated to connect these VNFs
in series under the premise of meeting the bandwidth
requirements.

• CN: CN similarly divides resource allocating into two
stages. First, it calculates the importance of each node
according to the degree, betweenness centrality of the
nodes, the remaining computational resources of the
nodes, and the remaining bandwidth resources of the
links to which the nodes are directly connected. Then,
the VNFs requested by SFC requests are greedily placed

on physical nodes with high importance. Finally, under
the premise of meeting the bandwidth requirements, the
shortest path between these physical nodes is calculated
to connect the VNFs in series.

C. Evaluation indicators

• Standard deviation of physical resources distribution:
The standard deviation of physical resource distribution
is used to measure the balance of physical resource
distribution, which can be calculated by Eq. (10).

• Total migration cost: The total migration cost is used to
measure the total cost of migrating the SFC requests in
the service queue, which can be calculated by Eq. (12).

• Acceptance ratio: The SFC request acceptance ratio at
time slot T can be defined as:

AC(T ) =

∑T
t=0 NUM NSR S∑T
t=0 NUM NSR

, (15)

where NUM NSR S and NUM NSR are the num-
ber of SFC requests that are successfully allocated re-
sources and the number of total SFC requests.

• Node utilization: The utilization of the computational
resource of VNF-enabled physical nodes at time slot T
can be defined as:

NU(T ) =

∑
r∈SQT

∑
π∈Fr

cr∑
i∈NV

Ci
. (16)

• Link utilization: The utilization of the bandwidth resource
of physical links at time slot T can be defined as:

LU(T ) =

∑
r∈SQT

∑
(i,j)∈Pr

br∑
(i,j)∈E

Bi,j
(17)

• Long-term profit: The total profit earned by the network
operator for serving SFC requests from the initial time to
time slot T can be defined as:

Pro(T ) =

∫ T

t=0

∑
r∈SQt

(Wcpu

∑
π∈Fr

cr +Wbw

∑
(r,πr

m)∈PV
r

br),

(18)
where Wcpu and Wbw represent the benefit of per com-
putational unit and per bandwidth unit, respectively, and
PV
r denotes the virtual path of request r. In our work,

Wcpu, and Wbw are set to 0.1, and 0.05, respectively.

D. Simulation results and analysis

We first compare the changes in resource distribution in the
substrate network after two different SFC migration strategies.
As shown in Fig. 5, in a single experimental instance, our
proposed migration strategy can make the initial physical re-
source distribution more balanced. We then randomly generate
20 other instances of the problem (13). Fig. 6 demonstrates
the effectiveness of our proposed strategy and compared with



the conservative migration strategy, the σG of our proposed
strategy is 14.991% lower on average.

Fig. 5. Different standard deviations of an experimental instance

Fig. 6. Std of 20 experimental instances

However, as our proposed strategy migrates the total SFC, it
causes more migration cost, as shown in Fig. 7. In 20 experi-
mental instances, the migration cost of our proposed strategy is
on average 25.5% higher than with the conservative migration,
as shown in Fig. 8. The above results are summarized in Table
V.

Fig. 7. Different migration cost for an experimental instance

TABLE V
AVERAGE STD AND MIGRATION COST OF 20 EXPERIMENTAL INSTANCES

Substrate
network state

Average std of
substrate network resources

Average
migration cost

Initial 2863.012 /
After conservative

migration 2379.958 44176.363

After aggressive
migration 1950.773 55441.179

Fig. 8. Migration cost for 20 experimental instances

Next, we compare the changes in the acceptance ratio of
subsequent SFC requests, the utilization of physical resources,
and the long-term total profit, before and after SFC migration.

We first analyze the simulation results for a single experi-
mental instance. As shown in Fig. 9, and 10, it can be seen
that as time goes by, MANO receives more and more SFC
requests, and the physical resources become more and more
strained. Therefore, after a period of time, the acceptance
ratio of SFC requests starts to decrease. By migrating SFC
requests in the service queue at the initial moment through our
proposed strategy, we can make the operators receive more
SFC requests, and thus increase the final acceptance ratio.
However, the conservative migration strategy has a negative
impact on the final acceptance ratio. We then analyze changes
in physical resource utilization. As shown in Fig. 11, 12,
and 13, for both “BestFit” and “CN” heuristics, our proposed
migration strategy improves final resource utilization and long-
term profit. The “BestFit” heuristic, although the conservative
migration strategy reduces the acceptance ratio of SFC re-
quests, improves the final resource utilization. For the “CN”
heuristic, the conservative migration strategy reduces both
the acceptance ratio of SFC requests and the final resource
utilization. Interestingly, however, the conservative migration
strategy advances the time when the physical resource uti-
lization reaches a plateau. From time slot 30 to time slot 44,
the resource utilization of the “Conservative Migration + CN”
strategy is higher than the pure “CN” strategy. Although the
resource utilization of the pure “CN” strategy exceeds that
of the “Conservative Migration + CN” strategy from time
slot 45, it still needs a long period of time for the pure
“CN” strategy to catch up with the long-term profit of the
“Conservative Migration + CN” strategy. From time slot 45 to
time slot 60, the gap between the pure “CN” strategy and the
“Conservative Migration + CN” strategy in long-term profit
gradually narrows, but until time slot 60, the long-term profit
of the “Conservative Migration” strategy is still higher than
that of the pure “CN” strategy.

According to Eq. (18), the long-term total profit defined
in our work is an obvious time-dependent monotonically
increasing function (unless there are no SFC services in the
service queue for a certain amount of time, which can be ruled
out in our work as there are some permanent SFC requests).
Therefore, if MANO no longer receives new SFC requests



and no SFC requests leave the service queue, the long-term
profits of different schemes will show perfect linear growth
with the time slots. In in Fig. 13, the slopes of some straight
lines change over time. For example, from time slot 40 to time
slot 46, the long-term profit of “Conservative Migration + CN”
is actually higher than the long-term profit of “Conservative
Migration + BestFit”. But after time slot 37, as shown in Fig.
11 and Fig. 12, both the node resources consumption and link
resources consumption of “Conservative Migration + BestFit”
are higher than that of “Conservative Migration + CN”, which
results in the long-term profit of “Conservative Migration
+ BestFit” surpassing the long-term profit of “Conservative
Migration + CN” after time slot 49.

Fig. 9. Number of SFC requests in the service queue over time

Fig. 10. Different acceptance ratios for an experimental instance

Fig. 11. Different link resources utilization for an experimental instance

We then analyze the simulation results for the other 20
experimental instances at time slot 60. As shown in Fig.
14, our proposed aggressive migration strategy improves the
acceptance ratio of subsequent SFC requests in most cases
(except for instances 4, 5, and 7). Sometimes, MANO may

Fig. 12. Different node resources utilization for an experimental instance

Fig. 13. Different long-term profit for an experimental instance

receive a Type 3 SFC request to earn more profit, and in this
case it would reject multiple Type 2 SFC requests. Therefore,
it is not weird that in a few cases, the acceptance ratio drops
after migration. For “BestFit”, the average improvement is
11.75%, and for “CN”, the average improvement is 6.84%.
As shown in Fig. 16, and 17, for all experimental instances,
the aggressive migration strategy improves node resource
utilization and long-term profit. For “BestFit”, node utilization
and long-term profit are increased by an average of 8.14%
and 9.49%, respectively. For “CN”, node utilization and long-
term profit are increased by an average of 4.65% and 7.14%,
respectively. In some cases (e.g., instance 3), the aggressive
migration strategy reduces link resource utilization, but this
does not negatively impact long-term profit because no matter
how many physical links a virtual link is mapped to, only one
virtual link is charged.

Likewise, for all experimental instances, the conservative
migration strategy can also improve the operator’s long-term
profit, but the improvement is smaller than that of aggressive
migration strategies. For “BestFit”, the average improvement
is 3.05%, and for “CN”, the average improvement is 4.62%.
Similar to the aggressive migration strategy, sometimes the
conservative migration strategy reduces the acceptance ratio
of SFC requests and physical resource utilization, but still
improves the final long-term profit. Overall, with “BestFit”,
the conservative migration strategy improves the acceptance
ratio of SFC requests, node resource utilization, and link
resource utilization by 1.82%, 1.59%, and 1.11% on average,
respectively. With “CN”, the conservative migration strategy
improves the acceptance ratio of SFC requests, node resource
utilization, and link resource utilization by 2.54%, 1.93%,



TABLE VI
AVERAGE RESULTS AND IMPROVEMENT OF 20 EXPERIMENTAL INSTANCES

Substrate network state
& Allocation method

Average acceptance
ratio (improvement)

Average node resources
utilization (improvement)

Average link resources
utilization (improvement)

Average long-term
profit (improvement)

Initial & BestFit (baseline) 0.5531 0.9117 0.5827 6303710.1509
Initial & CN (baseline) 0.6165 0.9243 0.5729 6268964.1997

After conservative migration
& BestFit 0.5713 (1.82%) 0.9276 (1.59%) 0.5938 (1.11%) 6496126.1533 (3.05%)

After conservative migration
& CN 0.6419 (2.54%) 0.9436 (1.93%) 0.5903 (1.74%) 6558302.0120 (4.62%)

After aggressive migration
& BestFit 0.6706 (11.75%) 0.9931 (8.14%) 0.6258 (4.31%) 6901688.4058 (9.49%)

After aggressive migration
& CN 0.6849 (6.84%) 0.9708 (4.65%) 0.6012 (2.83%) 6716408.8979 (7.14%)

and 1.74% on average, respectively. The above results are
summarized in Table VI.

Fig. 14. Acceptance ratio for 20 experimental instances

Fig. 15. Link resources utilization for 20 experimental instances

Fig. 16. Node resources utilization for 20 experimental instances

Compared with the conservative migration strategy, the
improvements in the evaluation indicators of our proposed mi-
gration strategy are better. For “BestFit”, the improvements in

Fig. 17. Long-term total profit for 20 experimental instances

average acceptance ratio for subsequent SFC requests, average
node resources utilization, average link resources utilization,
and average long-term profit are 9.93%, 6.55%, 3.2%, 6.44%
better than those for the conservative migration strategy. For
“CN”, these numbers are 4.3%, 2.72%, 1.09%, and 2.52%,
respectively. In addition, as shown in Fig. 16, in most cases,
node resources utilization rates are close to 100% (except for
instance 5, 7) after aggressive migration. Though the migration
cost of our proposed strategy is on average 25.5% higher,
the migration cost is much smaller than the final long-term
profit. For “CN”, the average migration costs caused by the
conservative migration strategy and the aggressive migration
strategy are only 0.7074% and 0.8844% of the original final
long-term profit. For “BestFit”, those numbers are 0.7008%
and 0.8795%, respectively. These migration costs are almost
negligible compared to the improvement in the final long-term
profit.

VI. CONCLUSION AND FUTURE WORK

This paper investigated the impact of the uneven distribution
of substrate network resources on network operators and
subsequent SFC requests. We first modeled the SFC migration
problem as an ILP, then, inspired by some outstanding rele-
vant works [20], [22], we designed a conservative migration
strategy and further proposed an aggressive migration strategy
to reduce the imbalance of network resources distribution.
After migration, we employed two state-of-the-art heuristics
to allocate resources for the subsequent SFC requests. The
simulation results not only demonstrated that the unbalanced
distribution of physical resources indeed affects both the



subsequent SFC requests and the network operators negatively,
but also showed the efficiency of our proposed strategy.

Yet, we still have to conduct further research to explore the
migration problem. Here, we list some aspects we need to
improve in the future.

A. More complex application scenarios

At present, we investigated the SFC migration problem
in the core cloud. But for some more complex application
scenarios, like network slices requests [40], both the edge
cloud servers and the core cloud servers should be considered,
as they can form complex graphs of VNFs with different
service chains. In such cases, the model we defined in current
work is not suitable to meet realistic situations. Therefore,
we should rethink some of the constraints and design a more
complicated model.

B. Further exploration of the optimization goal

As shown in Fig. 17, although in most cases eliminating the
unbalanced physical resources distribution does bring positive
effect on the network operators, in a small number of instances
(e.g., instance 7), the improvement is not obvious. In addition,
our current work does not consider the difference in the
resource upper limit between different physical nodes, physical
links and the potential effects that the topology structure may
cause to our optimization goal. Therefore, to study the specific
relationship between the unbalanced distribution of physical
resources and the long-term profit of network operators, ex-
tensive experiments should be carried out in the future. At that
time, we will also consider some interesting attributes of the
physical nodes and links, such as the degree of a node and
the betweenness centrality, to further adjust our optimization
goal.

C. Migration research with prediction mechanisms

In this paper, we do not fully take the volatility of ser-
vices’ resource requirements into account. To further guarantee
services’ QoE or utilize the physical resources, an effective
prediction mechanism is required. However, predicting vari-
ous kinds of services’ resource requirements is particularly
challenging, because their traffic characteristics are different.
To better carry out migration research, we will explore how
to design a general artificial intelligence model to predict the
resource requirements of various differentiated services in the
future.
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