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Abstract—Unmanned aerial vehicles (UAVs) is one of the
promising technology in the future. A recent study claims that
by 2026, the commercial UAVs, for both corporate and customer
applications, will have an annual impact of 31 billion to 46
billion on the country’s GDP. Shortly, many UAVs will be flying
everywhere. For this reason, there is a need to suggest efficient
mechanisms for preventing the collisions among the UAVs. Tra-
ditionally, the collisions are prevented using dedicated sensors,
however, those would generate uncertainty in their reading due
to their external conditions sensitivity. From another side, the
use of those sensors could create an extra overhead on the
UAVs in terms of cost and energy consumption. To deal with
these challenges, in this paper, we have suggested a solution
that leverages the chance-constrained optimization technique
for avoiding the collision in an energy-efficient manner. Building
on the expressions for the non-central Chi-square CDF and
expected value, and through the convexification of the resulting
expressions, the chance-constrained optimization program is
transformed into a convex Mixed Binary Nonlinear one. The
resulting program allows us to find the optimal safety distance
that extends UAVs life-time and allows every UAV to move with
a guaranteed probability of collision between any pair of UAVs.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been recently
gaining momentum due to their high flexibility, low cost as
well as their multidisciplinary use[1]. The Flight American
Federation (FAF) envisions that about 2 million UAVs will
be in use by 2022. However, the proliferation of UAVs
will come with unavoidable challenges, such as collision
menaces. In this work, we are focusing on how to avoid
collisions among UAVs during their journeys.

Over the previous years, several solutions have been
proposed to tackle the UAVs collision problem. Most of those
solutions [2]–[4] have adopted a two stages approach namely,
sensing and avoiding [5]. The first stage consists in localizing
the coordinates of any intruder getting closer to a UAV
that carries a sensor equipment (e.g., camera,radar, etc.).
Meanwhile, the second stage consists in maneuvering a UAV
to a safe localization which is geometrically computed based
on intruder’s coordinates. Despite its simplicity, sense and
avoid collision approach exhibits the following limitations:
i) the high sensitivity of sensors to external-conditions (e.g.,
weather perturbations, noises, etc.) could impact negatively
on their accuracy, then UAV collision avoiding process could
be negatively impacted too; ii) the use of resource-greedy
sensors like camera could impact negatively on UAV’s bat-
tery life-time; iii) the high cost of sensors with high accuracy
(e.g.LIDAR); iv) the collision avoidance system,usually,is
limited only to two UAVs.

To address the problem of collision among a UAVs set,
authors in [6] have suggested EDC-UAV solution. EDC-UAV
allows to avoid collisions while UAVs life-time is extended.
Although EDC-UAV considers GPS’s margin error, it as-
sumes that the error is uniformly bounded within a circle
referred by its radius. However, it has been proven that GPS’s
margin error follows a Gaussian distribution [7], which
makes the assumption of EDC-UAV unrealistic and UAVs
could have an extra traveled distance which probably impact
negatively on their energy capacity. To avoid such issue, new
solutions [8], [9], have recently leveraged a stochastic ap-
proach aiming to devise a practical UAV collision avoidance
system. For instance, authors in [8] have proposed a chance-
constraint based (i.e., stochastic-based) optimization for self
path-planning while avoiding collisions with static obstacles.
Unfortunately, the suggested solution considers only a single
UAV. In [9], a chance-constrained solution is proposed to
avoid collision in a multi-agent system while taking into
account both static and dynamic obstacles. Then, they have
designed a model that supports only two agents that has been
tested with a scenario of two UAVs. This solution ensures
that the euclidean distance probability between a pair of
UAVs is less than a given probability. Since the derivation of
a chance-constrained is quietly hard, authors in [9] have been
transformed their problem to deterministic one using,only,the
expected value which is a precision-less method.

In this paper, we aim to overcome aforementioned limi-
tations by suggesting an energy-aware collision avoidance
solution among a UAVs set, and by considering realistic
collision scenario (i.e, GPS’s error follows a Gaussian dis-
tribution). To this end, we devise a chance-constrained opti-
mization model that could be deployed either by a ground-
controller or a mobile-controller (e.g., one of the UAVs or an
edge-controller). Unlike the previous cited solutions, which
use a predefined value of the threshold distance used to
increase the UAV safety. Our solution gives a new definition
to the threshold distance by considering that a collision
between any pair of UAVs is likely to happen when the
distance between them is closer to their dimensions.

Furthermore, in contrast to [9], based on the expressions
for the non-central Chi-square CDF [10] and expected value,
and through the convexification of the resulting expressions,
the chance-constrained optimization program is transformed
into a convex Mixed Binary Nonlinear one. The resulting
program allow us to find the optimal safety distance that
extends UAVs life-time and allows every UAV to move with



a guaranteed probability of collision.
The rest of the paper is organized as follows. In section

II a related work is presented. In section III our system
model and problem formulation are provided. In section IV
our solution description, derivation and performances are
presented. Finally, conclusions are drawn in section VI.

II. RELATED WORK

The problem of collision avoidance has been addressed in
the context of ground vehicles [11], [12] as well as in the
context of UAVs [2]–[4], [13]–[21] . Some solutions leverage
on camera sensors to detect obstacles around the UAV [3],
[4]. Nevertheless, the information provided by camera sen-
sors entails intensive processing in order to be converted into
useful data to control UAVs [5], making cameras inappropri-
ate for real-time applications. Similarly, the use of radar, as
in [2], is unsuitable for small-scale UAVs due to its size and
weight [5]. Moreover, most of the aforementioned solutions
assume that data captured by sensors and GPS is error-free.
However, in real-world scenarios such assumption cannot be
fulfilled due to external conditions (e.g., weather conditions)
affecting the precision of sensors and GPS. Authors in [6]
proposed EDC-UAV; a solution to avoid collisions within a
swarm of UAVs while taking into account the margin error
in GPS localization. Although EDC-UAV considers GPS’s
margin error, it assumes that the error is bounded following
a uniform distribution. The error uniformity assumption is
also unrealistic as the GPS error tends to be Gaussian
distributed [7]. Thus, a probabilistic characterization of the
uncertainty in GPS localization is necessary to provide
practical collision avoidance solutions. Chance-constrained
approach has been leveraged to formulate problems under
stochastic uncertainty (e.g., ). Blackmore et al. [8] used
a chance-constrained approach to plan autonomous aircraft
trajectory while avoiding obstacles. The authors focused
on one UAV and static obstacles. The work in Kothari13
proposes a real-time chance constrained solution for path
planning of a single UAV. Unlike [8], both static and dynamic
obstacles are considered.Lyons et al. [9] formulated the
problem of a chance-constrained model predictive control
for multi-agent systems then the transformation model is
designed only for two agents. Furthermore, the authors [9]
have transformed their model based on the expected-value
derivation which is precision-less method.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

Let us assume that we have a set of K UAVs fulfilling
the same mission M and move under the control of the
the same operator. During M , every UAV Uk ∈ K moves
following a straight-line path within a confined area of
dimensionX × Y . Independently of the UAVs’ shapes, we
assume that their shapes are inscribed in their circle of
radius r. Every UAV Uk, starts M from an initial position
Sk = (x0

k, y
0
k) to reach a target destination Ek = (xTk , y

T
k ).

The time-duration T of M is incremented progressively and
equitably at every time-step t by adding a time-slot τ until

every UAV Uk reaches its target. We denote V tk a UAV Uk
velocity at a time-step t. Every V tk is designed as vector with
x-axis V tk,x component and y-axis V tk,y component where,
V tk = V tk,x+V tk,y which assumed not exceeding a maximum
allowable velocity Vmax. In addition, we consider that a
controller tracks UAVs’ motions by receiving at each time-
step t their GPS localization Ltk = (xtk, y

t
k) for the UAV Uk.

Based on Ltk value and within a negligible time in τ , the
controller computes the position where UAVs should move
safely with minimal energy consumption at the next time-
step t + 1.The UAV’s safety is considered by keeping, at
each time-step t, a safety distance threshold Dth between
each pair of UAVs. Moreover, the UAV’s energy saving is
considered by reducing the traveled distance.

According to [7], the GPS sensor provides uncertain
data, following a Gaussian distribution. Thus, we assume
that for a GPS localization Ltk, the x-axis coordinate, xtk
is modelled as a Gaussian random variable with standard
deviation σk,x and mean µk,x; i.e., xtk ∼ N (µk,x, σ

2
k,x).

Similarly, y-axis coordinate, ytk is modelled as a Gaussian
random variable with standard deviation σk,y and mean µk,y;
i.e., ytk ∼ N (µk,y, σ

2
k,y).

B. Problem formulation

In this section, we will formally formulate our collision
avoidance problem for a set of K UAVs that move in a
stochastic environment. In literature, when distance between
two UAVs Uk and Ul is less than Dth, it means that
the instance of a collision threat occurs and probably the
collision can not be avoided. Indeed, the probability of
collision is the probability that distance between UAVs is
less than Dth. Formally, it is defined as follows:

Pr(Collision) = Pr(||Uk, Ul||≤ D2
th) (1)

Since the euclidean distance between two points Uk and Ul
is defined as follows:

||Uk, Ul||=
√

(xk − xl)2 + (yk − yl)2 (2)

where (xk, yk) and (xl, yl) are, respectively, the the co-
ordinates of Uk and Ul. Then, the equation (1) becomes as
follows:

Pr(Collision) = Pr((xk − xl)2 + (yk − yl)2 ≤ D2
th) (3)

In the scenario described previously, this work addresses
the collision avoidance problem that aims at allowing UAVs
to accomplish their mission with a minimum energy con-
sumption, while guaranteeing that the probability of collision
between any pair of UAVs Uk and Ul is kept below a distance
threshold Dth. Formally, our collision avoidance problem for
a set of UAVs can be formulated as follows:

min

{
E

[
K∑
k=1

((
xtk + vtk,x · τ − xTk

)2)
+
(
ytk + vtk,y · τ − yTk

)2)]} (4)



subject to:

[(xtk + vtk,x · τ)− xTk ]2 + [(ytk + vtk,y · τ)− yTk ]2 ≤
[(xtk − xTk ]2 + [(ytk − yTk ]2 ∀ k ∈ [1,K]

(5)

P
{

[(xtk + vtk,x · τ)− (xtl + vtl,x · τ)]2

+ [(ytk + vtk,y · τ)− (ytl + vtl,y · τ)]2

≤ ( Dth)2
}
≤ ε ∀ k, l ∈ [1,K] & k 6= l

(6)

vtk,x
2 + vtk,y

2 ≤
(
vk(max)

)2
(7)

The above problem is a chance-constrained optimization
program. As aforementioned, this is due to GPS uncertainty
which prevents the system from having an exact knowledge
of the current localization Ltk = (xtk, y

t
k) of every UAV Uk

at each time-step t. As already mentioned, the coordinates
xtk and ytk are modelled as a Gaussian random variables with
parameters N (µx, σ

2
x) and N (µy, σ

2
y), respectively. The de-

cision variables are the 2D velocity vector vtk = (vtk,x, v
t
k,y)

for every UAV Uk. The vector vtk fully describes the motion
of the UAV Uk in the next time-step t + 1. The problem’s
objective (4) is that every UAV gets as close as possible
to its target in the next time-step t + 1. In this way, the
mission duration and the travelled distance of every UAV are
minimized. The constraint (6) ensures that the probability of
collision between any pair of UAVs Uk and Ul at the next
time-step t+1 is kept below a given probability threshold ε.
Constraint (5) guarantees that every UAV moves forward to
its targeted position at the next time-step. Finally, constraint
(7) takes into account the speed limit of every UAV.

IV. ENERGY-AWARE COLLISION AVOIDANCE
STOCHASTIC OPTIMIZER FOR A UAVS SET

This section focuses on the description of the proposed
Energy-Aware Collision Avoidance Stochastic Optimizer
(ECASO). As stated above, ECASO aims to expand the
UAVs’ lifetime while ensuring that the probability of col-
lision between UAVs is kept below a given probability
threshold. Mainly, ECASO consists of two sub-modules,
Kalman-Filter and optimizer. ECASO uses Kalman-Filter
to localize UAVs with a high accuracy, whereas it solves
the previous chance-constrained designed problem. During
the mission, ECASO tracks UAVs motion by receiving at
every time-step the UAV GPS localization. At that time,
ECASO tests first, if all UAVs reach their targets. If it is
the case, then mission accomplished and ECASO stops run-
ning. Otherwise, the Kalman-Filter applies a set of filtering-
functions to remove the noises and reduce the uncertainty
from the GPS UAV’s localization. Therefore, the optimizer
gets the filtered localization to compute the optimal position
coordinates where UAV(s) can move at the next time-step.
The previous steps are repeated, at each τ , until all UAVs
reach their targets. More details about Kalman-Filter and
the optimizer sub-modules are involved within the following
sub-sections.
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Fig. 1. Kalman-Filter abscissa (left) and ordinate (right) estimations for a
standard deviation of 10 m for the GPS error.

A. Kalman-Filter

Kalman-Filter is widely used to reduce errors in GPS
localization [22]. Kalman-filtering methods consist of two-
stage recursive equations, namely: prediction and measure-
ment update equations. ECASO adapts the first-stage predic-
tion equations as follows:

Ŝ
t|t−1
k = F · Ŝt−1

k +G ·Atk
P
t|t−1
k = F · P t−1

k · (F )T +Q
(8)

where, Stk denotes the system term of interest vector (in our
case, it is the UAV’s GPS coordinates (xtk, y

t
k)), F is the

state transition matrix, G is the control input matrix, Q is
the process noise covariance matrix and Atk the control input
system. The matrix P is the state transition error covariance
matrix. The second stage Kalman-Filtering measurement
equations are given by:

Ŝ
t|t
k = Ŝ

t|t−1
k +KGtk · (Ztk −H · Ŝ

t|t−1
k )

P
t|t
k = Ŝ

t|t−1
k −KGtk ·H · P

t−1|t−1
k

(9)

where, Z is the GPS measurement vector. The Kalman-Filter
gain KG is given by:

KG
t|t
k = P

t|t−1
k +HT · [Rtk +H · P t−1|t−1

k ]−1 (10)

with Rtk is the measurement’s white noise covariance
matrix. The performances of Kalman-Filter are assisted via
simulation. The simulation results (See Fig.1) show that
Kalman-Filter estimation gets closer to the real UAV local-
ization better than GPS measurement.
B. Optimizer

The optimization formulated previously is a non-convex,
chance-constrained optimization problem, making its reso-
lution challenging and hardly tractable. Thus, the chance-
constrained optimization needs to be transformed into a
convex optimization through relaxation. The optimal solution
is then derived from the transformed optimization model. Let
us consider two UAVs, Uk and Ul. Their respective local-
ization coordinates Ltk = (xtk, y

t
k) and Ltl = (xtl , y

t
l ) follow

a Gaussian distribution; that is, xtk ∼ N (µk,x, σ
2
k,x), ytk ∼

N (µk,y, σ
2
k,y), xtl ∼ N (µl,x, σ

2
l,x) and ytl ∼ N (µl,y, σ

2
l,y).

Let (xt+1
k , yt+1

k ) and (xt+1
l , yt+1

l ) denote the coordinates
of, respectively, Uk and Ul at time-step t + 1, where,



xt+1
k = xtk+vtk,x ·τ ; yt+1

k = ytk+vtk,y ·τ ; xt+1
l = xtl+v

t
l,x ·τ ;

yt+1
l = ytl + vtl,y · τ . The coordinates xt+1

k , yt+1
k , xt+1

l

and yt+1
l follow also a Gaussian distribution with mean

(µk,x + vtk,x · τ ), (µk,y + vtk,y · τ ), (µl,x + vtl,x · τ ) and
(µl,y + vtl,y · τ ), and standard deviation σk,x, σk,y , σl,x and
σl,y, respectively.

Let us have the following denotations and assumption:

x = xt+1
k − xt+1

l and y = yt+1
k − yt+1

l

µx = (µk,x − µl,x) + (vtk,x − vtl,x) · τ with µx 6= 0
µy = (µk,y − µl,y) + (vtk,y − vtl,y) · τ with µy 6= 0
σ2
x = σ2

k,x + σ2
l,x with σx 6= 0

σ2
y = σ2

k,y + σ2
l,ywith σy 6= 0 and σx = σy .

Based on (3) and (1), the probability of collision will be
defined as follows:

Pr(collision) = Pr(x
2 + y2 ≤ D2

th) (11)

Thus, according to [10], the probability of collision is
computed as follows:

Pr(collision) = 1−Q2(
λ

σ
,
Dth

σ
) (12)

Subject to:
σ2 = σ2

x = σ2
y (13)

λ =
√
µ2
x + µ2

y (14)

Q2(
λ

σ
,
Dth

σ
) =

1

α

∫ ∞
Dth
σ

x2 exp(−
x2 + (λσ )2

2
)I, (

λ

σ
)xdx

(15)
Where, Q2(a, b) is the second order Generalized Marcum

Q function. Thus, the probability of collision follows a
second-degree non-central Chi-square distribution. By sub-
stituting (15) in (6), we obtain the following:

1−Q2(
λ

σ
,
Dth

σ
) ≤ ε (16)

Since it is difficult to get closed-form expression for λ via
derivation for second-order non-central Chi-square distribu-
tion. Then, we will first solve numerically (17) to obtain
λ that allows defining the safety distance threshold that
should separate any pair of UAVs. Regardless the literature,
ECASO considers that the collision happens probably when
the distance between any pair of UAVs Uk and Ul is less than
their dimensions referred by their radius rk and rl where,
Dth = rk + rl.

1−Q2(
λ

σ
,
Dth

σ
) = ε (17)

Therefore, a new constraint (18) is added to control the
UAVs’ motions according to λ.√

µ2
x + µ2

y ≥ λ (18)

where µx and µy include the decision variables of every
pair of UAVs. However, constraint (18) is non-convex and it

Δx = 100 m

Δ
y 

= 
10

0 
m

UAV 1
(0, 0)

UAV 4
(Δx, Δy)

UAV 3
(Δx, 0)

UAV 2
(Δx, Δy)

UAV 5
(0, Δy/2)

UAV 6
(Δx, Δy/2)

UAV 7
(Δx/2, 0)

UAV 8
(Δx/2, Δy)

v(max) = 5 m/s

Fig. 2. Experimental setup.

is difficult to get an optimal solution immediately. Thus, the
following relaxation is adopted:

µ̇x ≤ µx + B§ · M (19)

µx ≤ µ̇x + B§ · M (20)

µ̇x ≥ 0 (21)

µ̇x ≤ −µx + (1− B§) · M (22)

−µx ≤ µ̇x + (1− B§) · M (23)

µ̇y ≤ µy + B† · M (24)

µy ≤ µ̇y + B† · M (25)

µ̇y ≥ 0 (26)

µ̇y ≤ −µy + (1− B†) · M (27)

−µy ≤ µ̇y + (1− B†) · M (28)

−µ̇x − µ̇y ≥ λ2 (29)where µ̇x and µ̇y denote two real variables. B§ and B†
are Boolean variables, and M tends to infinity. The above
constraints ensure the following: constraints (19)–(23) ensure
that −µ̇x ≥ |µx|; while constraints (24) and (28) ensure that
−µ̇y ≥ |µy|. Constraint (29) ensures that |µx|+|µy|≥ λ2.

Indeed, the non-convex chance constraint (6) will be
replaced by the equation(17) as well as the constraints (19)–
(29). Furthermore, since the main objective (4) follows a
Gaussian distribution, it could be reformulated as follows:

min

K∑
k=1

σk,x(1 + (xtk − xTk + vtk,x · τ)2)+

σk,y(1 + (ytk − yTk + vtk,y · τ)2)

(30)

Finally, our initial non convex chance-constrained problem
(4) will be replaced by the following convex deterministic
one:

min

K∑
k=1

σk,x(1 + (xtk − xTk + vtk,x · τ)2)+

σk,y(1 + (ytk − yTk + vtk,y · τ)2)

(31)

Subject to:

(5),(7),(19), (20), (21), (22), (23)
,(24), (25), (26), (27), (28), (29)
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Fig. 4. Extra distance travelled versus the probability of collision ε.

V. RESULTS

This section includes the description of the experimental
setup employed to assess the performance of ECASO along
with the discussion of the respective simulation results.

A. Experimental Setup

In order to evaluate the performance of ECASO we
developed a simulator following a fixed-increment time
progression. At each time-step the following actions take
place: i) the current position provided by the GPS for each
UAV k is obtained by sampling a Gaussian distribution,
ii) the Kalman-Filter is applied to that data to refine the
position estimation, iii) the ECASO optimizer is run to get
the optimal velocity components for each UAV (i.e., vtk,x
and vtk,y ∀ k ∈ [1,K], and iv) the real position of the UAV
is modified according to the velocity vector provided by
ECASO for the next time-step. The previous procedure is
repeated until the stop condition, which is every UAV got
its corresponding target, is reached. It shall be noted that
when a given UAV reaches its corresponding target, ECASO
excludes it from the optimization process in the subsequent
time-steps.

Figure 2 depicts the simulated scenario considered in
this work. Specifically, we considered a squared area of
100 × 100 m2. The initial position of the UAVs is showed
in Fig. 2. The vectors in Fig. 2 represent the direction
each UAV hat to follow to reach its target position. More
precisely, the target positions for UAVs 1, 2, 3, 4, 5, 6, 7,
and 8 are (∆x, ∆y), (0, 0), (0,∆y), (∆x, 0), (∆x, ∆y/2),
(0, ∆y/2), (∆x/2, ∆y), (∆x/2, 0), respectively. The max-
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Fig. 5. Time to complete the mission versus the probability of collision ε.
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Fig. 6. Number of collisions versus the probability of collision ε.

imum velocity considered for every UAV was set to 5 m/s.
Each experiment was run fifteen times.

The different matrices of the Kalman-Filter for each UAV
k were initialized as follows:

F =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

 ; G =


∆T 2

2 0

0 ∆T 2

2
∆T 0
0 ∆T


R =

[
σx 0
0 σy

]
; Q = 04×4; KG = 04×2;

H =

[
1 0 0 0
0 1 0 0

]
; P =


σx
2 0 0 0
0

σy
2 0 0

0 0 0 0
0 0 0 0


where 0m×n denotes a matrix of all zeros with m × n

elements.

B. ECASO Performance

Figure 3 depicts the safety distance versus the probability
of collision ε for different GPS errors (denoted in the figure
as σ). As shown, the safety distance decreases with the
probability of collision and increases with the GPS error.
This suggests a tradeoff between the probability of collision
(reliability of the system) and the UAVs autonomy. That is,
the lower the probability of collision becomes, the lower
will be the UAVs autonomy as it is expected they will travel
longer distances. The previous hypothesis is supported by
the results shown in Figs. 4, 5, and 6. Interestingly, the
results suggest that, for any σ, the safety distance saturates,
i.e., converges to a maximum value, when decreasing the



probability of collision. Thus, it is possible to configure the
system in order to expect near zero collisions, which is an
interesting feature for applications that require a high level of
reliability. Regarding the GPS error, as expected, the lower
it is, the better. This motivates the use of approaches such
as Kalman-Filter to improve the accuracy of the estimated
position in order to build an energy-efficient system.

Figures 4, 5, and 6 show the impact of the tolerated prob-
ability of collision ε and the number of UAVs K involved in
a potential situation of collision on the extra distance, time to
complete the mission, and number of collisions, respectively.
As previously mentioned, these results confirms the lower
the ε is, the more reliable will be the system (i.e., lower
number of collisions) and the less energy-efficient it will
become (i.e., longer traveled distance and time to complete
the mission). Besides, the number of UAVs K involved in a
potential situation of collision decreases the energy efficiency
of the system as it is expected the UAVs will have to do
more complex maneuvers to overcome the collisions. In the
same, way the probability of collision will increase with the
number of UAVs K involved in a potential collision.

VI. CONCLUSION

In this paper, we have suggested a solution that aims
to prevent the collisions among UAVs using a realistic
scenario that considers the errors that could happen in the
GPS reading. We have considered that the GPS localization
error follows a Gaussian distribution that makes our solution
considers real scenario when preventing the collisions. We
have leveraged the strength of Kalman-Filter technique for
reducing the GPS reading errors. The proposed solution
uses a chance-constrained optimization technique for pre-
venting the collisions among the UAVs. The obtained results
demonstrate the efficiency of proposed solution in terms
of execution time and extra distance traveled (i.e., energy).
Also, we have shown that the increase in the probability of
collision has a positive impact on the former parameters,
however it becomes with unavoidable cost, which is the
probability of collisions among UAVs.
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