An Autonomous Network Orchestration Framework
Integrating Large Language Models with Continual
Reinforcement Learning

Masoud Shokrnezhad' and Tarik Taleb?
U ICTFICIAL Oy, Espoo, Finland; masoud.shokrnezhad @ictficial.com
2 Ruhr University Bochum, Bochum, Germany; tarik.taleb@rub.de

Abstract—6G networks aim to achieve global coverage,
massive connectivity, and ultra-stringent requirements.
Space-Air-Ground Integrated Networks (SAGINs) and Semantic
Communication (SemCom) are essential for realizing these
goals, yet they introduce considerable complexity in resource
orchestration. Drawing inspiration from research in robotics, a
viable solution to manage this complexity is the application of
Large Language Models (LLMs). Although the use of LLMs
in network orchestration has recently gained attention, existing
solutions have not sufficiently addressed LLM hallucinations or
their adaptation to network dynamics. To address this gap, this
paper proposes a framework called Autonomous Reinforcement
Coordination (ARC) for a SemCom-enabled SAGIN. This
framework employs an LLM-based Retrieval-Augmented
Generator (RAG), monitors services, users, and resources,
and processes the collected data, while a Hierarchical Action
Planner (HAP) orchestrates resources. ARC decomposes
orchestration into two tiers, utilizing LLMs for high-level
planning and Reinforcement Learning (RL) agents for low-level
decision-making, in alignment with the Mixture of Experts
(MoE) concept. The LLMs utilize Chain-of-Thought (CoT)
reasoning for few-shot learning, empowered by contrastive
learning, while the RL agents employ replay buffer management
for continual learning, thereby achieving efficiency, accuracy,
and adaptability. Simulations are provided to demonstrate the
effectiveness of ARC, along with a discussion on potential future
research directions to enhance and upgrade ARC.

Index Terms—o6G, Space-Air-Ground Integrated
Network (SAGIN), Semantic Communication (SemCom),
Network Orchestration, Large Language Model (LLM),
Retrieval-Augmented Generation (RAG), Chain-of-Thought

(CoT), Reinforcement Learning (RL), Mixture of Experts
(MoE), Few-Shot Learning, Contrastive Learning, and
Continual Learning.

I. INTRODUCTION

The requirements for sixth-generation (6G) networks
include global coverage, which necessitates integrating
diverse communication modalities through Space-Air-Ground
Integrated Networks (SAGINs). This integration ensures
seamless connectivity and consistent service quality in urban,
rural, and remote areas [1]. Additionally, 6G must enable
massive connectivity, ultra-high data rates, and ultra-low
latency. Semantic Communication (SemCom) addresses these
needs by focusing on message meaning and context rather
than bit-oriented transmission, optimizing bandwidth usage
and enhancing resource efficiency [2]. The problem of
orchestrating 6G networks, involving the allocation of
resources to users while considering quality of service
requirements and system-level objectives, presents inherent

complexity. The integration of domains such as space
within SAGIN further exacerbates this complexity, as the
dynamics of resources remain largely unknown. Furthermore,
the implementation of SemCom renders the evaluation of
service quality using conventional metrics unfeasible, thereby
complicating the problem further [2].

Generally, one potential solution to address decision-making
challenges in complex problems where the solution space
is excessively large, non-numeric, or characterized by
unknown dimensions—rendering algorithmic exploration
impractical—is the utilization of Large Language Models
(LLMs). This concept has been widely utilized in robotics
research, illustrating that LLMs can greatly improve
decision-making processes when specific objectives need
to be met by identifying an optimal sequence from an
infinite array of actions. [3]. However, the use of LLMs
in network orchestration remains at an early stage. For
instance, Qiu er al. [4] focused on optimizing the number
and placement of wireless access points with LLMs. Sun et
al. [5] adopted LLMs for trajectory planning and wireless
resource allocation in scenarios serving Unmanned Aerial
Vehicles (UAVs). Liu et al. [6] equipped Reconfigurable
Intelligent Surfaces (RISs) with LLMs to deduce optimized
strategies for wireless resource allocation and signal decoding
order. Mekrache et al. [7] and Rong er al. [8] expanded
this idea to multi-domain resource allocation, addressing
network and cloud as well as terrestrial and non-terrestrial
integrated infrastructures, respectively. Despite the high quality
claimed by these studies, all aspects of resource allocation are
exclusively determined by LLMs in their methods, increasing
the risk of hallucinations, particularly in expansive solution
spaces. Additionally, the adaptation of these LLM-based
mechanisms to probable fluctuations, especially unknown
ones, has not been investigated. Furthermore, SemCom is
entirely overlooked. The only solution superficially proposed
is fine-tuning; which is impractical in live setups due to its
resource- and time-intensive nature. Thus, the development
of a sophisticated LLM-based solution for 6G network
orchestration is essential [9], [10].

To address the gaps in existing research, we propose a
framework named Autonomous Reinforcement Coordination
(ARC) for a system of SemCom-enabled SAGIN. To
decompose the inherent complexity of the problem, the
resource allocation process is structured within a two-tier
component called the Hierarchical Action Planner (HAP). In

the outer tier, users and their corresponding actions (required
resource allocation decisions) are sequenced, while in the
inner tier, each action is executed in isolation, following
the Mixture of Experts (MoE) concept. The integration of
HAP with the system is facilitated by a Retrieval-Augmented
Generator (RAG), which gathers data from system elements
to prepare inputs for HAP. We utilize LLMs in both RAG, to
comprehend strategical textual commands and to evaluate the
quality of SemCom connections, and HAP, to derive efficient
sequences in the outer tier. For the inner tier of HAP, we
utilize pre-trained Reinforcement Learning (RL) agents to
minimize the computation and storage overheads associated
with training, with each agent assigned to a specific task.
While LLMs are reserved for high-level tasks, we implement
Chain-of-Thought (CoT) reasoning through few-shot learning
to reduce the likelihood of hallucinations to enhance accuracy.
To adapt ARC to system dynamics, RAG calculates rewards
for recent actions and incorporates them into the inputs of
HAP. These rewards are utilized through contrastive learning
to select the highest-reward exemplars in few-shot learning,
producing updated sequences, and through continual learning
to keep the RL agents updated via replay buffer management.

To the best of our knowledge, this is the first work
to employ LLMs and related techniques, such as few-shot
learning, to enhance continual RL-based resource allocation
for improved efficiency, accuracy, and adaptability. The
paper is structured as follows. Section II provides essential
background by describing the system model, formulating
the resource allocation problem, and outlining the associated
challenges. Section III details the solutions, including the main
components and workflows of ARC. An ablation study is
presented in Section IV, followed by potential directions for
future work in Section V. Concluding remarks are drawn in
Section VI.

II. PRELIMINARIES
A. System Model

In this paper, we consider a system following the SAGIN
model [1], which includes a bi-dimensional terrestrial network
layer augmented by a third dimension provided by two
non-terrestrial network layers—airborne and spaceborne—at
different altitudes and orbits (hereafter referred to as the
infrastructure). The ground layer, operating at or near the
surface of the Earth, consists of cellular and satellite ground
stations, interconnected through network nodes via fiber optic
and cable links. The air layer, operating in the stratosphere and
lower atmosphere, comprises high-altitude platform stations
and unmanned aerial vehicles, supporting both cellular and
satellite communication interfaces. The space layer, operating
in orbit around the Earth, consists of satellite constellations
in various orbits (i.e., geostationary, low Earth, medium
Earth, and highly elliptical). Furthermore, all nodes across
the three layers are equipped with computing resources,
collectively forming a distributed cloud that provides extensive
computational capabilities throughout the network [11]. The
infrastructure can be leveraged as a multi-layered, integrated
communication and computation platform to enable innovative
services for 6G and beyond.

We consider a set of predefined services (hereafter referred
to as the services), each represented by a directed graph of
functional blocks. The blocks receive input from a group of
active users (hereafter referred to as the users) and process
outputs sequentially, as specified in the graph, until the
desired outcome is achieved. The services are postulated to be
semantic-aware, capable of processing semantic segments (or
semantics, for the sake of simplicity) rather than conventional
bit-oriented traffic, thus enabling semantic communication
within the infrastructure. Given this semantic awareness,
service quality evaluation is conducted using Quality of
Experience (QoE) metrics defined in the semantic space. For
instance, in a holographic meeting service in the Metaverse,
users’ movements, shapes, and spoken words (semantic input
traffic) are transmitted to Machine Learning (ML)-based audio
generation and video rendering blocks (service graph), with
the temporal description of meeting scenes (semantic output
traffic) returned to the users for headset visualization. The
output quality can be semantically assessed using metrics such
as facial expression accuracy, body movement naturalness, and
lip sync precision, ensuring a high-fidelity user experience in
the metaverse.

B. Problem Formulation

To deliver services to users requesting specific
functionalities, the resources of the infrastructure must
be allocated to service graphs and semantic traffic to meet
QoE requirements, a process referred to as the resource
allocation process (hereafter the process). The system can be
modeled as a Markov Decision Process (MDP), encompassing
state, action, transition, and objective spaces, along with a
reward function. The state space indexes various quality and
quantity metrics for each [user, service, resource] triplet,
including request information that indicates the service
requested by the user and the network node connecting
the user to the infrastructure. The action space includes all
potential resource allocation decisions, such as path selection
or functional block replacement. The transition space
represents all possible dynamics governing state transitions,
reflecting environmental effects. The objective space outlines
system-level objectives guiding action selection, such as
minimizing cost or maximizing quality. Finally, the reward
function provides feedback by mapping a specific set of
actions and the resulting state (post-action application) to a
scalar value.

C. Challenges and Complexities

Suppose that for each objective defined in the objective
space, there exists a corresponding policy that governs the
selection of actions within the process. The process can then
be optimized for each objective by solving the problem of
identifying its optimal policy that maximizes the cumulative
reward over time (hereafter referred to as the problem). The
challenges in finding the optimal policy are as follows:

1) Combinatorial Nature

In the process as formulated above, the optimality of
an action is influenced by its preceding and subsequent
actions. Thus, identifying the optimal action at each step

requires examining all possible sequences of actions, and
determining the overall optimal policy necessitates applying
this exhaustive investigation to every possible state. This
combinatorial complexity renders the problem NP-hard.
Moreover, as the number of users, services, and resources
increases, the complexity grows exponentially. Consequently,
no polynomial-time algorithm can guarantee the discovery of
the optimal policy, rendering optimal allocation effectively
infeasible for large-scale systems.

2) QoE-based Evaluation

The NP-hardness of the problem may be mitigated using
conventional yet advanced mathematical techniques, but only
when the reward function is calculable, which is not the case
in this paper. Here, the reward function requires user feedback
as part of its input and returns a scalar value. Since this
feedback is defined in the semantic QoE space, which could
be a descriptive form, there is no closed-form mathematical
solution to compare it to the corresponding QoE requirements.
Furthermore, combining the outcome with the metrics related
to the system-level objective presents an additional challenge,
making it extremely difficult to devise the optimal policy.

3) Unknown Transition Dynamics

Addressing the mitigation of the complexity of the
problem also presents another challenge: unknown transition
dynamics. Part of our infrastructure resides in space, where
various factors can lead to situations affecting the behavior
of resources, following an unpredictable pattern. Solar flares
and geomagnetic storms can significantly impact satellite
trajectories. The behavior of the ionosphere can vary
unpredictably, causing rapid fluctuations in the amplitude
and phase of radio signals. Moreover, if we extend the
SAGIN model to other planets, following the concept of
a space internet, interference from unknown sources could
affect the dynamics. Furthermore, we have users who may
be mobile, with rapid and unpredictable demand shifts. These
sudden, unpredictable changes affect the transition dynamics
in ways that are difficult to anticipate. When the transition
dynamics are unknown, devising the optimal policy becomes
a formidable challenge.

III. SOLUTION

To address the challenges discussed, we propose a
framework called ARC, illustrated in Fig. 1. ARC
employs a two-tier hierarchical resource allocation mechanism
to effectively manage problem complexity, featuring an
LLM-based outer tier for high-level sequencing and a
RL-based inner tier for low-level execution of actions. This
two-tier orchestrator is integrated into the core of a closed-loop
control system through a RAG mechanism, where the state is
periodically gathered, resource allocation decisions are made
for users as actions, implemented within the infrastructure,
and subsequent rewards are assessed and integrated into the
process, thereby achieving autonomy. This is detailed in the
following two subsections: components and workflows.

Action Profiles
Service Specifications

2 @ »
I'.*’

aal 5
Objecti oE
2%‘”@ jective Q :
© Tracking Evaluation
Experience Reward
Augmentation Calculation

State
Indexing

Objective Profiles

Reasoning Exemplars

Generation

Allocation Prompt]

1

L

! H

: l l User : %
ACTION

i HAPR p

m——————eal
1

Action Executioner

RL Agent RLAgent RLAgent

The Infrastructure -

Fig. 1. The components of ARC.

A. Components

1) Static Knowledge Base (SKB)

SKB serves as the foundational database of the system,
utilizing a vector-based structure for efficient similarity search
of static data. It is designed to encompass the following
information:

Service Specifications: Detailed descriptions of the
services, with each record corresponding to a service and
outlining its directed graph of functional blocks, semantic QoE
requirements, and capacity requirements.

Objective Profiles: Three primary objectives, each designed
to optimize a specific system-level metric. Minimizing Cost
prioritizes users with lower capacity requirements and selects
resources with the lowest associated costs, where cost is
defined as a normalized sum of energy consumption and
monetary price. Maximizing Quality focuses on users with
stringent QoE demands by assigning them to resources that
offer superior performance. Lastly, Load Balancing ensures an
even distribution of resource usage across the infrastructure.
At any given time, exactly one of these objectives may
be activated and executed in tandem with the primary goal
of maximizing the number of supported users. This joint
optimization function ensures that a feasible solution is
always attainable while effectively managing trade-offs among
different performance metrics.

Action Profiles: All possible types of allocation decisions
that can be performed over the infrastructure. Concretely, these
decisions include choosing the computing resource to host
each functional block, allocating the necessary computing and
storage capacities, and determining the routing paths through
the network. In the space and air layers, this routing involves
selecting the next hop, assigning channels, and controlling
transmit power to satisfy data rate requirements. In the ground
layer, the path is formed by choosing the next hop and
allocating the required bandwidth over available links. The
overall action space is composed of both discrete elements
(e.g., selecting hosts, channels, or next hops from a finite set)
and continuous elements (e.g., computing capacity, storage
capacity, and power control within allowable ranges).

2) Dynamic Knowledge Base (DKB)

DKB functions as the adaptive repository of the system, and
it uses the same vector-based structure to facilitate efficient
storage and similarity retrieval. It is structured to incorporate
the following dynamic information:

State History: State records of the system, maintained with
a window size sufficiently long to capture the patterns of all
dynamic behaviors. For instance, starting with a relatively
large window assures comprehensive coverage of cyclical
patterns, yet the size can be adaptively adjusted—using
techniques such as e-greedy—by gradually decreasing it
until any performance degradation is observed. Examples of
collected metrics include, but are not limited to, available
cores and available memory for computing resources, available
bandwidth and live latency for network resources, and packets
per second and per hour burst traffic patterns for users.

Reasoning Exemplars: Triples [input, CoT, output], where
input is the combination of a state history and an objective;
CoT represents a specific sequence of users and actions to
support them in the given state history and objective [12]; and
output is the rewards obtained from applying those actions to
the infrastructure. This information is initialized by combining
the optimal allocations of solving the problem for different
state histories and objectives using mathematical optimization
solvers along with random and greedy action selections.

3) Retrieval-Augmented Generator (RAG)

At the heart of ARC lies a component named RAG,
which is responsible for coordinating the process of collecting
monitoring data from various system elements, processing
and enriching it, and subsequently feeding customized inputs
to other components. The specific functionalities of this
component are detailed as follows — these functions are
executed at each time slot:

Objective Tracking: RAG is designed to receive commands
from strategists to update the active system-level objective,
serving as a means to adjust the system strategy. Upon
receiving a command, RAG utilizes an LLM to generate a
step-back question to extract its key parts, retrieve its required
information, and transform it through expansion. Then, it
generates a vector representation and calculates similarity
scores (such as maximal cosine) with objective vectors in
SKB. The most similar objective is activated. If no command
is received, the current objective remains active. For instance,
the command “Implement a dynamic allocation scheme that
avoids bottlenecks during peak demand” corresponds to Load
Balancing.

QoE Evaluation: RAG utilizes an LLM to evaluate
the resources allocated to users. The LLM calculates a
similarity score by comparing user feedback with semantic
QoE requirements stored in SKB for their requested services.
If the score exceeds a predefined threshold, the requirement
is considered met; otherwise, it is not. By integrating the
reasoning capabilities of LLMs with structured semantic
data, RAG leverages its understanding of multi-modal
input to assess alignment and provides nuanced and
contextually relevant responses, whereas conventional quality
measurement techniques prove inadequate. This ensures that

user expectations are effectively aligned with the underlying
service quality.

State Indexing: RAG collects data from the infrastructure
and the users, extracts the current state in state space format,
and encodes it into vector representations for storage in DKB.
This process considers QoE evaluation results. If a user’s QoE
requirements are met, the allocated resources of that user are
reflected in the state; otherwise, resources are discarded, and
the user is marked as actively seeking resources by adjusting
the request info index in the state.

Reward Calculation: Considering the previous state, the
active objective, the current state (including QoE evaluation
results), RAG calculates the reward for the last actions. If
a user’s QoE requirements are unmet, the reward for the
actions of that user is 0; otherwise, the reward reflects how
the allocated resources contribute to optimizing the active
objective. RAG publishes this information in the form of a
specific prompt, named the update prompt.

Experience Augmentation: RAG updates the reasoning
exemplars in DKB, where input includes the state history
ending with the state of the previous time slot and the active
objective associated with it, CoT consists of an ordered list of
users and actions taken in the previous time slot along with
their corresponding rewards, and output is the overall reward,
which is the sum of the action rewards.

Allocation Prompt Generation: RAG uses an LLM to
publish a prompt, called the allocation prompt, indicating that
the resources of the infrastructure need to be allocated to a set
of users (new users or those with unmet requirements from
the previous time slot). This process considers the current
state history, the active objective, and the action profiles
(stored in SKB) required concerning the specifications of
requested services by the users. RAG aslo retrieves reasoning
exemplars from DKB with the highest similarity to the current
history-objective pair and attaches them to the prompt.

4) Hierarchical Action Planner (HAP)

Knowing the current state history, the active objective,
and the action profiles of the users, HAP is the component
responsible for actual resource allocation. It interfaces with
RAG on one end and connects to the infrastructure resources
on the other end. HAP comprises two main sub-components,
as follows:

User Sequencer: Our approach to attain optimal allocation
in each time slot is to find the optimal sequence of the
users such that allocating resources to each user in that
sequence in a greedy manner results in an optimal outcome.
To show that such a sequence exists, consider the optimal
allocation for users in the current time slot, where each
user is paired with a specific resource to maximize the total
reward. To construct the optimal sequence, start with any user
allocated the highest-reward resource in the optimal allocation.
Continue selecting users in the order of decreasing reward
of their allocated resources in the optimal allocation. Now,
if we follow this sequence and apply the greedy strategy
(i.e., always choosing the highest-reward available resource),
we will achieve the optimal allocation. Thus, an optimal
sequence exists. This sub-component utilizes the inherent

i . c (__Q_O_E_D_e_si:ggt_io_n_o_f_ ID and Action Profile of Requested)g (] [IMasked :I@Z
W E | SR e (- =) I R B i é
0 HE w ‘% .Requested Services Services. Ex: 59_ID: action_1 — action_9 g é_lfe_r_llz_s_e_”ﬂie_llj _ State > 2t 2 19
3 Feedback () ﬁ 5’ § é re. ,Sers P 2 w0 » 2 @ action_1| action 9|z |© ﬁ E‘ 5 '9‘ """""" > "g ---- > {ﬁi 2 g
= HNEEE Satlsfled?> S (2E2 13 - g lgds gy 3 NN
g Sata of -Lé-i-'— High-level ws |ST|ES Qoo EEEIS B2 a8 2 RL4 8
& |Monitoring Data of Users, 3 Command |2 £[0 |2 £| &, jaction.2 action_3 = 6_9 < > P Q=== > - > @Eé =
€ [Fr===== ——== € [2 S|3® QE S F===> = c ———- Bl 5
o | Services, and Resources i ol @ 5|" | |hehEr] rewerd |2 5 2| | currentState & |2 ©
;E > 2 Previous Current Py =B B O .= o ! tate 2 : ﬁ
g State State <-t § | Active Objective * RLY
A U)o v s B | S e s g e = o ot .
[=
ol L TT LTI LT RRARARANARAR-A . M i LJ L= > ?ﬁ?ﬁ% L

Fig. 2. The resource allocation workflow in ARC. Note that the color of each sub-component and functionality follows its parent component in Fig. 1.

comprehension capability of LLMs to use the current state
history and the active objective and derive such a sequence
for the users. Note that we need to produce the sequence
of requests in one shot and not user by user, as LLMs are
more adept at generating entire sequences than intermittently
pausing and re-initiating the token sampling process.

Action Executioner: This sub-component is responsible for
executing action selection for each user, considering the action
profiles. To accomplish this, a set of RL agents is employed,
with each agent specializing in a specific action. For each
user-required action, a masked version of the current state
history is generated to restrict the decision-making process
to the feasible solution space of the user and the specified
service, as well as to the active objective, and is then passed
to the respective agent. The resulting decision is subsequently
applied to the infrastructure. Decisions regarding the actions
of different users should be made in the order of the sequence
(after each user, the state history should be updated with its
allocation to be used for the next user). However, the strategy
for determining the actions of a single user can be selected
based on their action profile, allowing for either parallel or
serial execution when one action necessitates the outputs of
preceding actions.

B. Workflows
1) Resource Allocation

The main workflow of ARC is the process of resource
allocation, describing how the defined components coordinate
to allocate the resources of the users to provision their services.
At the begining of the process, illustrated in Fig. 2, the
infrastructure is monitored, and QoE evaluation is performed
for the users to discover those with broken QoE, shaping
the current state history and updating DKB. At the same
time, the proper objective is activated. Then, the allocation
prompt is created and published. Next, HAP receives this
prompt and extracts the users requesting a service from the last
state of the state history. The optimal sequence is predicted,
and the required actions of each user are executed by the
corresponding RL agents one by one. The final step is to
apply the allocated resources to the infrastructure. This loop
will persist in each time slot. Consequently, the policy defined
in Section II-C can be redefined as a combination of two
HAP-level policies: the sequencer policy and the execution
policy (as a function of the policies for each RL agent).

The design of ARC is highly efficient and adaptable,
effectively managing inherent complexity while addressing
computational overheads by leveraging the capabilities of
LLMs. Transforming raw information into a coherent sequence

of actions is accomplished by an LLM, which demonstrates
its ability to efficiently synthesize complex data without
introducing excessive computational burdens. Such mechanim
also promotes the integration of various systems with different
types of resources, enhancing practicality in aligning with
existing network architectures. To execute the extracted
actions, a MoE approach is utilized, where each action
is managed by a dedicated RL agent. This specialization
simplifies the agents, making them easier to debug and upgrade
while facilitating real-time feasibility in decision-making
processes. Such a design facilitates the scalability of ARC;
the exponential growth in LLM capabilities allows for the
expansion of infrastructure, resources, and services. New
objectives and actions can be also introduced, as they can be
managed by separate agents without altering existing ones.
Additionally, the incorporation of reward-enabled contrastive
and continual learning further enhances the adaptability of
ARC to changes in the environment.

2) Lifelong Adaptation

To optimize the resource allocation and maintain its
efficiency regarding the combinatorial nature of the problem
while addressing unknown transmission dynamics, the strategy
focuses on enhancing the sequencer and execution policies
through mechanisms of ARC, as detailed below.

Reward-based Few-Shot Learning: To improve the
sequencer policy, we employ few-shot learning. Using an LLM
as the user sequencer, few-shot learning involves adding a few
reasoning exemplars to the allocation prompt. As shown in
Fig. 2 and described in Section III-A2, the reasoning exemplar
includes a chain of thoughts demonstrating the sequence of
users and their corresponding actions selected for a specific
history-objective pair. Leveraging the vast training data by
LLMs, which provides a deep understanding of reasoning
patterns, they can utilize the reasoning chain in the exemplars
to infer the desired reasoning process and gravitate towards
prioritizing appropriate sequences for given state histories
and active objectives. Moreover, these exemplars serve to
reduce the likelihood of hallucinations by presenting the
model with numerous valid responses, thereby guiding it
toward more accurate outputs. Simultaneously, they increase
the probability of exploring the solution space effectively, as
the model is exposed to a diverse range of acceptable answers.
To further enhance the efficiency of few-shot learning, we
employ contrastive learning, where RAG selects two groups
of reasoning exemplars for the allocation prompt: one with
the highest rewards and one with the lowest. This approach
provides the LLM with updated instructions on what to pursue

. (__Q_O_E_El‘:"_st'E'_""‘_”_o_f___\ Service ID of Last Actions. Ex: S9_ID for action_9 Lol > GDSS-based
% g S 7 Requested Services o~ ¢ | Masked ~base
:‘"____ w g Update Prompt, including a row for each last | . . Replay Buffer
g U o SM-EEE | ObjectiveProfiles j~. ¥ | " . o ———————— > 8| o | (Action,
5|k ;t?r ‘ o] o ;y :I g\ Are Users - 6| action. Ex. Row: \ 5| 5 |Reward, Samples |
2 eedbac Wl 2" 888 satisfied? 5 & | !tsServiceID, Active 'é £ | Previous State, to Update:
] o mmsmmmms s 2 3 | Objective, Previous c . 2| & |Current State
£ |Monitoring Data of Users, & | State, Current State: o=l Y = I i)
o e e e LT S s s g|c < = Target DNN
o | Services, and Resources Reward. 2= slg gl |2 RL2
< — s gl F|e5| |8 Copy }
= 25 gé @@ Previous u%) e x|
2 S| o @EE " CVOUS 1B | state "HWHWY g m e -
52 == State_"_ 2_----_----_----_--_-::: P Online DNN
T o o o o o e o B B L

Fig. 3. The process of updating rewards in ARC to facilitate reward-based few-shot learning and gradient-based continual learning.

100
? M~ ANAA NN AMNANMN AN
% 80
(o]
(@]
®
'% 601 — Optimal
£ — ARC
S 407 — RU-ARC
0 200 400 600 800 1000
Time Slot x102
100
g 80
3 B
N 60
5 M AN AN NN AINANANNNAN]
£
2 40 — oOptimal —— ARC —— NR-ARC
0 200 400 600 800 1000

Time Slot x10?

Fig. 4. Two scenarios comparing the results of ARC with optimal, A)
reward-unaware, and B) non-reinforcement results. The normalized cost of
each allocation is calculated to ensure that allocations with lower costs receive
higher scores, and vice versa.

and what to avoid, helping it remain adapted to changes. This
is because reasoning exemplars are updated over time in DKB,
and those reflecting patterns valid for the current transition
dynamics are expected to yield higher rewards.
Gradient-Based Continual Learning: To enhance the
execution policy, we utilize Continual Reinforcement Learning
(CRL) with agents structured around two online and target
Deep Neural Networks (DNNs) and a replay buffer [13].
Model updates occur through batch training using the target
DNN and data from the replay buffer, which is refreshed
at each time slot via the update prompt, as illustrated
in Fig. 3. Action selection is performed by the online
DNN, which is replaced by the target DNN over a longer
period, allowing agents to adapt to system changes while
maintaining stability. To prevent catastrophic forgetting, we
implement Gradient-Based Sample Selection (GDSS) [14],
which effectively stores training data in the replay buffer
to represent the agent’s entire history. This method assigns
scores to new samples based on cosine similarity with existing
samples and replaces less effective ones, maximizing diversity
in the replay buffer. Alongside the modular design, which
simplifies the retraining processes, we further reduce the
computation and storage overheads of retraining with CRL
while enabling agents to retain past transition dynamics.

IV. EVALUATION

In this section, we evaluate ARC through numerical
simulations using an infrastructure of 10 nodes, half of which
are non-terrestrial and follow a predefined movement pattern

to maintain periodic connectivity and connect to three nearest
neighbors. Each node is equipped with computing resources
ranging from 10 to 100 MIPS (Million Instructions Per
Second). The characteristics of the links between these nodes
vary based on distance, with link latency ranging from 1 to 10
ms (milliseconds) and link capacities fluctuating between 10
to 100 Mbps (Megabits per second); the associated costs have
the same numerical values as the link capacities. We analyze a
set of 10 users requesting services involving a single functional
block, whose computing capacity is uniformly selected from
2 to 5 MIPS. The service processes images with a QoE
requirement that states: the image must be 1920x1080 to
be acceptable, with dimensions depending on the allocated
network link capacity. Users’ action profiles involve placing
the block on a node and establishing connections while
meeting their requirements. Our goal is to minimize allocation
costs, with rewards calculated by dividing the average resource
cost by each action’s allocated cost, thereby favoring low-cost
allocations. To initialize exemplars, we use mathematical
optimization solvers to determine optimal solutions at each
time slot, as described in Section III-A4. For simulations,
we employ LLaMA 3.1-8B without fine-tuning, implementing
the Double Dueling Deep Q-Learning (D3QL) technique for
reinforcement learning agents [13].

To evaluate ARC, we conduct an ablation study in two
scenarios: first, assessing the impact of incorporating rewards,
and second, examining the effect of integrating RL-based
low-level action execution. The results are shown in Fig. 4.A
and Fig. 4.B. In the first scenario, we compare ARC with
Reward-Unaware ARC (RU-ARC), which disregards reward
calculations and provides HAP with reasoning exemplars
based solely on similarity, without training RL agents, which
operate on pre-trained weights. The findings indicate that
ARC allocates resources efficiently, achieving near-optimal
cost outcomes. After a transition at iteration 30,000, during
which we modified the link latency calculation by swapping
low-latency links with high-latency ones to invalidate the
previous allocations and compel the framework to select new
actions, ARC exhibits a notable recovery capability, whereas
RU-ARC fails to demonstrate similar resilience. In the second
scenario, we implement Non-Reinforcement ARC (NR-ARC),
eliminating RL agents and allowing the LLM to manage
low-level allocations. Results show NR-ARC performs worse
than ARC, displaying greater fluctuations due to LLM
instability. These findings demonstrate that the components of
ARC work together effectively, enabling it to extract efficient
action sequences under stable conditions while also swiftly
adapting to dynamic challenges. This synergy underscores

ARC’s efficiency, accuracy, and adaptability, especially when
compared to prior approaches that employed LLMs for
resource allocation decision-making without incorporating
feedback mechanisms. Such capabilities are crucial for
the varied demands of 6G applications, reinforcing ARC’s
suitability for a wide range of use cases within 6G.

V. DISCUSSION

Prediction-based State Indexing: Explicitly predicting
future states and concatenating them with state history is
beneficial for preventing service disruptions, especially in
fluctuating environments where proactive decision-making is
essential. To achieve this, a Generative Adversarial Network
(GAN)-based solution can be employed, using a Long
Short-Term Memory (LSTM) network as the generator to
capture temporal dependencies from historical data, while a
Recurrent Neural Network (RNN) serves as the discriminator
to evaluate the predicted state.

Autonomous Service/Action Extension: By expanding the
coverage of the system into unfamiliar territories, it is expected
that users will request unknown services with new QoE
requirements, thereby necessitating the creation of unknown
action profiles across new resources. One potential solution
is to utilize an LLM-based approach to define the unknown
service as a combination of existing services. A similar
methodology can be applied to establish new action profiles
based on the existing ones.

Online LLM Training: Research indicates that few-shot
learning significantly enhances the reasoning capabilities of
LLMs, sometimes making them competitive with costly
fine-tuning approaches in terms of time and resources.
However, the efficiency of the user sequencer relies on the
quality of allocation prompts generated by RAG, which does
not impact fine-tuned LLMs. To address this dependency,
a potential solution is to use an online LLM for inference
alongside a target LLM trained with data collected from the
infrastructure.

Towards Algorithm-of-Thoughts (AoT): A fundamental
aspect of our proposed approach is the initial records
of reasoning exemplars, generated by solving the resource
allocation problem with mathematical solvers. Since the exact
step-by-step process for resource allocation is unknown,
this may result in unpredictability. When optimality can be
sacrificed for determinism, we can substitute CoT reasoning
with an Algorithm-of-Thoughts (AoT)-based approach [15].
This involves designing a heuristic algorithm tailored to each
objective and defining it in each exemplar with specific inputs,
enabling the LLM to internalize the algorithm and generate
responses that mimic algorithmic search.

VI. CONCLUSION

In this paper, we propose a framework named ARC for
a SemCom-enabled SAGIN, which utilizes a hierarchical
action planner supported by a retrieval-augmented generator to
orchestrate network resources. ARC decomposes orchestration
into two tiers, employing an LLM for high-level planning
and RL agents for low-level action execution. The LLM
utilizes CoT reasoning for few-shot learning, augmented

by contrastive learning, while the RL agents implement
replay buffer management for continual learning, thereby
achieving efficiency, accuracy, and adaptability. Following
the demonstration of the performance of ARC through
proof-of-concept simulations, we outline detailed future
directions to enhance the performance of ARC and expand
its capabilities, including prediction-based state indexing,
autonomous service/action extension, online LLM training,
one-shot inference, and integration with AoT.

ACKNOWLEDGMENT

This work is partly funded by the European Union’s
HORIZON-JUSNS-2023 HE research and innovation program
(6G-Path project, Grant No. 101139172) and the Horizon 2020
Research and Innovation Program (aerOS project, Grant No.
101069732). The views expressed are solely those of the
authors, and the European Commission is not responsible for
any use of this information.

REFERENCES

[1] S. Javaid et al., “Leveraging Large Language Models for Integrated
Satellite-Aerial-Terrestrial Networks: Recent Advances and Future
Directions,” IEEE Open Journal of the Communications Society, vol. 6,
pp. 399432, 2025.

[2] M. Shokrnezhad et al., “Semantic Revolution From Communications to
Orchestration for 6G: Challenges, Enablers, and Research Directions,”
IEEE Network, vol. 38, no. 6, pp. 63-71, 2024.

[3] B. Ichter et al., “Do As I Can, Not As I Say: Grounding Language in
Robotic Affordances,” in Proceedings of The 6th Conference on Robot
Learning, vol. 205, 14-18 Dec 2023, pp. 287-318.

[4] K. Qiu et al., “Large Language Model-Based Wireless Network Design,”
IEEE Wireless Communications Letters, vol. 13, no. 12, pp. 3340-3344,
2024.

[51 G. Sun et al., “Large Language Model (LLM)-enabled Graphs in
Dynamic Networking,” IEEE Network, 2024.

[6] Q. Liu et al., “LLM Enhanced Reconfigurable Intelligent Surface for
Energy-Efficient and Reliable 6G IoV,” IEEE Transactions on Vehicular
Technology, vol. 74, no. 2, pp. 1830-1838, 2025.

[71 A. Mekrache et al., “Intent-Based Management of Next-Generation
Networks: An LLM-Centric Approach,” IEEE Network, vol. 38, no. 5,
pp. 29-36, 2024.

[8] B. Rong et al., “Leveraging Large Language Models for Intelligent
Control of 6G Integrated TN-NTN with IoT Service,” IEEE Network,
vol. 38, no. 4, pp. 136-142, 2024.

[9] L. Bariah et al., “Large Generative aAl Models for Telecom: The Next

Big Thing?” IEEE Communications Magazine, vol. 62, no. 11, pp.

84-90, 2024.

A. Maatouk et al., “Large Language Models for Telecom: Forthcoming

Impact on the Industry,” IEEE Communications Magazine, vol. 63, no. 1,

pp. 62-68, 2025.

M. Shokrnezhad et al., “Towards a Dynamic Future with Adaptable

Computing and Network Convergence (ACNC),” IEEE Network, 2024.

J. Wei et al., “Chain-of-Thought Prompting Elicits Reasoning in Large

Language Models,” in Advances in Neural Information Processing

Systems, vol. 35, 2022, pp. 24 824-24 837.

H. Mazandarani et al., “A Semantic-Aware Multiple Access Scheme for

Distributed, Dynamic 6G-Based Applications,” in 2024 IEEE Wireless

Communications and Networking Conference (WCNC), 2024, pp. 1-6.

R. Aljundi et al, “Gradient Based Sample Selection for Online

Continual Learning,” in Advances in Neural Information Processing

Systems, vol. 32. Curran Associates, Inc., 2019.

B. Sel et al., “Algorithm of Thoughts: Enhancing Exploration of Ideas

in Large Language Models,” in Proceedings of the 41st International

Conference on Machine Learning, ser. ICML’24. JMLR, 2024.

(10]

(11]
[12]

[13]

[14]

[15]

Masoud Shokrnezhad, Ph.D., is a Senior Applied Scientist at ICTFICIAL
Oy, Espoo, Finland. He was a postdoctoral researcher at Oulu University,
Finland. His research focus is on semantic-aware orchestration for 6G.

Tarik Taleb is a Full Professor at Ruhr University Bochum, Germany, the
founder of ICTFicial Oy, and the director of the MOSA!C Lab, specializing
in softwarization for beyond 5G and 6G networks.

