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Abstract—To support the much desired ultra-short latency of
5G mobile systems, many micro-data centers will be deployed in
the vicinity of mobile users, defining a distributed edge cloud.
Over this edge cloud, it is important to create optimal network
slices to support different 5G verticals. Optimality is defined
in terms of cost efficiency and QoS support. Therefore, it is
important to understand the behavior of mobile users in terms
of mobile service consumption. In this paper, we present, on
one hand, a tool for developing a spatio-temporal model of
mobile service usage over a particular geographical area. This
tool will help to define the behavior of mobile users in terms
of mobility patterns and mobile service consumption. On the
other hand, based on this tool, we present a benchmark of
some interesting Virtualized Network Functions (VNF) placement
algorithms, among them our enhanced version of the predictive
placement strategy. The comparison is based on data overload,
overload of Virtual Machines (VMs) and QoS.

I. INTRODUCTION
While many countries experience 4G with its new enhance-

ments and advantages, and along with the wireless innovation
revolution accelerating, it was easy to predict that different
stakeholders would be all working to create the foundations
for 5G; the 5th generation mobile networks. 5G arose a
big interest in the research community as it is the pro-
posed next telecommunications standards beyond the current
4G/IMT-Advanced standards. 5G networks will support ultra-
low latency, super-high throughput and massive numbers of
connections. They will usher in entirely new ways to create
new industries and drive unprecedented economic and societal
growth. However, the most promising added value of 5G
is that it will enable a fully mobile and connected society.
Undoubtedly, efficient, realistic and meticulous simulation
methodologies are needed.

One of the most common challenges in the simulation of
such complex network scenarios is the ability to model both
realistic data and behavior of each component. It is also known
that the parameters, impeding the simulation of large data
communication networks [1], might represent aspects of fewer
significance, if not chosen wisely. In this vein, this paper
introduces a tool to simulate mobile data consumption and
mobility of users, based on real users’ behaviors, by allowing,
in the same time, the personalization of such simulation data.
This personalization is enabled by choosing wisely a set of
configuration inputs, related to service consumption, mobility
patterns and Virtual Machine (VM) flavors. This tool is meant
to become a solid ground for testing algorithms, strategies and
policies for both VM and Virtual Network Function (VNF)

placements. It is intended to let operators and stakeholders of
communication and network sectors to have enough data that
will let them understand the behavior of users in dealing with
services and data consumption.

In recent years, an important development has evolved with
the introduction of Network Function Virtualization (NFV) [4],
[5], an architecture wherein network functions are executed
over commodity servers rather than on dedicated servers. The
abstraction of virtualized network elements enables the pro-
grammability of the network, increasing networking capabili-
ties and allowing innovative service offerings, with a high cost
efficiency [6], [22]. NFV and Software Defined Networking
(SDN) are two of the most important enabling technologies
that would be the keystone for 5G systems [23], [30]. The
concept of NFV is to run network functions as software on
standard VMs and through a virtualization platform. Besides
NFV, SDN enables the interworking of different VNFs running
on different VMs instantiated within the same data center
(DC) or across multiple DCs to obtain a flexible, mobile, and
dynamic network, rapidly deployable in the cloud [7], [8],
[28].

Inextricably linked to NFV, the VNF placement problem
has gained an important interest among researchers, for the
simple reason that its outcome has a drastic impact on the
NFV platform [20], [21], [27]. In this context, our paper makes
two main contributions. First, we present a novel and efficient
tool for spatio-temporal simulation of mobile service usage.
The tool is dubbed “Network Slice Planner” (NSP). Second,
we present a set of VNF placement algorithms, adding our
own enhanced version of the classic predictive algorithm. The
present paper is intended as an opener for future research work.

The rest of this paper is organized as follows. Section II
presents the related research work existing in the literature.
The NSP framework is portrayed in Section III. Section
IV introduces the Advanced Predictive Placement Algorithm
(APPA). The performance of the APPA scheme is compared
against that of other placement strategies in Section V. Finally,
the paper concludes in Section VI.

II. RELATED WORK

To help obtaining enough data about the performance of
VNF placement algorithms, user-friendly research tools are
needed. These tools should support edge cloud simulations
and serve as a common ground to experiment different solvers
for VNF placement and VM allocation strategies, with the

978-1-5090-5019-2/17/$31.00 ©2017 IEEE



objectives to achieve cost-efficiency, QoS, etc. In the recent
literature, many simulation tools have been proposed.

CloudsimNFV [24], based on CloudSim which is known for
having enough extendibility to simulate NFV environment, is
a NFV cloud framework intending to simulate NFV scenarios,
proposing several scheduling algorithms for NFV applications.
The toolkit validation and algorithm performance comparison
is interesting. Unfortunately, it does not consider the most
vital factor, namely the users’ behavior in terms of service
consumption and mobility. Many network simulators, such as
NS3, NETSIM, and JSIM, are used to cope with this issue,
e.g., using discrete event models which do not efficiently
reflect users′ behavior.

To the best knowledge of the authors, there is no tool
that offers a reliable spatio-temporal modeling of mobile
service usage, mimicking at the same time realistic mobility
patterns of users. Although, it is important to mention that
many attempts have been carried out to understand and model
the dynamics of human mobility and transportation evolution
based on different mobility patterns [18], [19], in order to
be able to offer better QoS to end users and make a better
usage of the underlying network [25], [26]. Most of these
studies mainly focus on small-scale transportation networks
or rely only on either mathematical equations or visualization
techniques.

VM placement is a process of mapping VMs to physical
machines. As virtualization is a core technology of cloud
computing, the problem of VM placement has gained lots
of interest, and that is for the simple reason that the choice
of VMs has a direct impact on improving power efficiency
and getting the best of resource utilization. Many interesting
VM placement strategies have been proposed in the recent
literature. The most recent related works consider DCs’ ge-
ographical location and try to find the optimal placement
strategy that ensures the minimal data overload and best QoS
[13], [14].

Three interesting strategies for VM placement were pro-
posed in [13]. First, the Least Used Host (LUH) aims at en-
suring load balancing: it collects the number of VMs allocated
to each physical host and chooses the host that has the least
number of VMs. If more than one host is at a minimum level,
a random host is chosen. Second, with the same objective, N
at a time (NAT) allocates N VMs at a time in a single host. If
the number of VMs is a factor of N then a new host is chosen.
When all hosts are packed with a factor of N, a random host
is then chosen. Finally, the Least Busy Host (LBH) tries to
determine the host that is least busy in terms of data traffic.

In [14], two algorithms, which are based on prediction and
past VM placement decisions, have been proposed. The reac-
tive placement (RP) algorithm considers the optimal location
of application VMs to be the closest site to the majority of
clients issuing requests within a given time window. It iterates
through the log that contains entities for client requests,
recording the origin location and data size. As new requests
reach the server, they are added to the log, a list of the
locations of available data centers is maintained at regular

intervals. RP iterates through the window counting requests
per DC location. A request is counted for a site if that site
is closest to the requesting client in terms of geographical
distance. The Predictive Placement Algorithm (PPA) chooses
the best location of a storage VM for a given hour as the
location that was closest to the majority of client accesses for
that hour over the past several hours. Intuitively, this algorithm
splits up a day into contiguous periods of a given number of
hours, moving storage VMs at the boundary between these
periods.

In this paper, besides simulating the algorithms [13], [14]
using our developed NSP framework, we propose an enhanced
version of the predictive placement, “Advanced Predictive
Placement Algorithm” (APPA), that will be introduced in
Section IV.

III. NETWORK SLICE PLANNING FRAMEWORK

As depicted in Fig. 1, the NSP framework consists of
three modules, the user mobility module (UMM), the mobile
edge cloud module (MECM) and the service usage module
(SUM). These three modules are the pillars for VNF placement
strategies, helping to determine optimal network slices. In this
paper, we focus particularly on load-efficient and QoS-aware
VNF placement. Each module will be detailed in the following
subsections. Some interesting outputs and VM flavor choices
will be also discussed.

Fig. 1: The proposed NSP framework.

A. User mobility module

To define the mobility of a user, interchangeably a User
Equipment (UE), the UMM is based on the logic of Google
maps. It defines the distribution and mobility of UEs based
on a set of itineraries. An itinerary is composed of a start
and destination positions. The destination depends on the
popularity of places. Popular places are known as hotspots
(e.g., a university, a Mall, or a movie theater). The more
popular a hotspot is, the more it attracts UEs. The starting
positions and hotspots are randomly generated and can be



edited and personalized manually in a dedicated page. The
transportation modes of UEs are based on input parameters.
In case of a moving user/UE, the itinerary can be taken in
different transportation modes; walking, by bike, or by car.
The mode is generated based on given mobility parameters.
Then the mobility (i.e., direction, mobility path, and speed)
between those two positions is obtained using Google Maps.
For instance, Google Maps assumes that it takes about 15−30
minutes to walk a mile for a person. Different mobility speeds
can be found in Google Maps.

B. Service usage module

Several studies based on real datasets have been able to
model the behavior of users in dealing with several services
(e.g., social networks and video streaming) based on real
activity log files. SUM does things backwards, by generating
service sessions and requests based on those studies. In this
subsection, we present the service usage model of SUM.

Initially, each UE could access a service Sk with a proba-
bility PS,k. The set of services is composed of the following
classes:

• Video streaming
• Social network
• Mobile Instant Messaging
1) Social Network Services: Based on [2], SUM models

how users behave when they connect to a social network as
follows. A session starts with one of the following activities:

• Browsing scrapbook
• Browsing profile of friends
• Browsing photos
• Browsing messages

When a user engages in one of these activities, he is likely
to repeat the same activity but can, with a given probability,
switch to a new activity within the same session, if not to a
different service. During each session, several requests can be
triggered. We hereafter present one of these scenarios:

• A user can access his friends′ profiles with probability
0.64.

• He is more likely to browse other friends′ profiles (0.69).
• He can access messages (0.14).
• He can logout (0.10).

The session durations and request inter-arrival times are given
in [2] as follows. The inter-arrival time of the ith and (i+1)th

sessions is given as time series a(i) = t(i+ 1)− t(i). a(i) is
fitted to a log-normal distribution. The probability distribution
function for the log-normal distribution is given by:

f1(x) =
1

σx
√
2π

e
−(log(x)−µ)2

2σ2 (1)

with µ = 2.035 and σ = 1.333
Session lengths are highly variable when users connect to

social networks. The distribution is fitted to a Zipf distribution
of the form:

f2(x) = βe−α (2)

with β = 3.758 and α = 1.765

TABLE I: Video data consumption.

Resolution Duration (min) Data consumption (Mb)

360p 1 3
120 360

480p 1 5
120 600

720p 1 10
120 1200

1080p 1 15
120 2000

The inter-arrival time between requests within a single
session is fitted to log-normal distribution with parameters
µ=1.789 and σ = 2.366. For the data usage, based on [10],
SUM assumes the following:

• A single friend page request consumes 1300kB.
• A messages page request consumes 1MB.
• A scrapbook page request consumes 2MB.
• A photo page request consumes 750kB.
2) Video Streaming Services: In the following fashion [12],

SUM models the video streaming service. The inter-arrival
times of video streaming sessions follow a log normal distri-
bution (1) with parameters µ = 2.1 and σ = 1.3. Each video
has a given line of vertical resolution and a duration. The line
of vertical resolution is randomly generated. The available line
of vertical resolutions for SUM are: 1080p, 720p, 480p and
360p, where p stands for progressive scan, which is the type of
video a device display uses. The resolutions 720p and 1080p
generally refer to standard HD resolutions with a 1:1 pixel
aspect ratio and a 16:9 display aspect ratio, respectively. The
data length of a video is obtained based on the generated line
of vertical resolution and the video length, which follows a
power-law distribution of the form (2), with parameters β =
4.6 and α = 1.53. As in [10], the video data consumption is
given as shown in TABLE I.

3) Instant Messaging Services: Based on real traffic mea-
surements on a large scale cellular network [11], SUM models
the mobile instant messaging service as follows:

• The inter-arrival time of messages can be characterized by
a log normal distribution (1) with parameters µ = 2.245
and σ = 1.133.

• The message length can be characterized by a power-law
distribution (2) with parameters β = 4.888 and α = 1.765.

During the mobility of a UE, based on the service models
presented above, SUM records the service usage activity, with
a set of traces that contain the service type name, how much
data consumed, request duration and the position given by
UMM.

C. Mobile Edge Cloud module

MECM consists of two stages: i) the configuration stage
and ii) the simulation stage. The configuration stage is when
positions of edge clouds (ECs) and evolved Node Bs (eNBs),
their ranges, bandwidths and other parameters are defined. In
the simulation step, the events, such as hand-off operations and
Tracking Area Updates (TAU), are recorded in log files during



the mobility of UEs. The main configuration stage components
are defined in follows.

ECs are the key components of MECM. Their initial lo-
cations are defined by latitude and longitude coordinates (lat,
lon). The locations can be modified manually in a dedicated
page. Each edge cloud has a set of eNBs deployed in its
vicinity. Each eNB is characterized by a transmission range
and a bandwidth, and belongs to a unique Tracking Area (TA).
Each eNB is identified by a unique ID and unique coordinates.
The Mobility Management Entity (MME) keeps records of the
mobility of UEs in idle mode at the granularity of TA level. A
TAU would be generated and transmitted when a UE moves
from a TA to another [3].

Initially, NSP defines TAs, whereby each TA consists of
eNBs. Formally, each node would be assigned initially one
TA. Thus, we can assign, initially, each group of eNBs to a
unique TA. A Tracking Area Identifier (TAI) and a Tracking
Area Code (TAC) form the ID of a TA. A TAC is the unique
code that each operator assigns to each of its TAs. A TAI
consists of a Public Land Mobile Network (PLMN) ID and
a TAC. A PLMN ID is a combination of a Mobile Country
Code (MCC) and a Mobile Network Code (MNC). This format
makes a TAI uniquely identified globally.

The network needs to have updated location information
about UEs in idle state to find out in which TA a particular
UE is located. Periodically, the UE in idle state sends a TAU
request message to a MME even when the UE stays within a
TA of the TAI list. A location is believed to be new if the UE
is outside of the TAs of the list. The TA configuration can be
personalized in the settings page of NSP.

D. VM flavors

Depending on the instances that UE tasks require, different
VM flavors can be selected; each with different options.
VM flavors depend on the type of services and applications
launched. In [9], the flavors are divided into three main
families: the standard flavors used typically for web services
and software development, High Performance Computing
(HPC) flavors for scientific applications and I/O flavors for
Hadoop/Spark, non-critical databases and clustered databases.
VMs in NSP can be classified based on the number of
cores activated when a flavor is used (vCPUs), the VM Disk
capacity and Random-access memory (RAM) capacity. The
VNF placement strategies that will be embedded in NSP will
choose the flavors which fit the functional requirements of
each respective VNF [29].

For instance, the work presented in [2] offers a list of
configurations varying from “tiny VM” (i.e., 1 vCPU, 10
GB of VM Disk and 512 MB of RAM) to “xxlarge VM”
(i.e., 8 vCPUs, 160 GB of VM Disk storage and 16 GB of
RAM). NSP offers the possibility to define personalized VM
configurations.

E. Outputs

The outputs of NSP can be defined as follows:
• the total number of service requests,

• the total number of hand-off operations,
• the total number of TAU, and
• a log containing all the details of each service request,

each hand-off operation and TAU.
VNF placement algorithms have as inputs the generated logs.
The outputs of these algorithms, on which the comparison
results are made, are the data overload, number of VMs
overload and QoS costs induced by the placement decisions.
Depending on the nature of events that occurred, the log could
contain the positions of the UEs, the amount of data generated
per service, the duration of each service usage, the EC in
which a hand-off operation happened, the TA concerned by
the updates, etc. For more information on NSP framework,
the reader may refer to [17].

IV. ADVANCED PREDICTIVE ALGORITHM

Similar in spirit to [14]–[16], we define our algorithm as
follows (see Algorithm 1):

For each service request, a choice of VM placement is
made based on the best location of EC observed for a given
period time. The best location is the location that was less
used and closest to the majority of UEs. A VM is migrated if
the predicted location is different from the last one observed.
Otherwise, it remains the same over the next hours, the
decision is based on the maximum value of the score Avk(t)
that is calculated as follows:

Avk (t) =
|VMt0,t|∑x=t

x=t0
data(x)k

× α′ +

∑x=t
x=t0

dist(x)connectedue,k

|connecteduet0,t|
× β′

(3)
where:
• |VMt0,t| denotes the number of created VMs in the given

timespan (t0, t).
•

∑x=t
x=t0

data(x)k is the total amount of data consumed
during the given timespan (t0, t).

• |connecteduet0,t| denotes the number of connected UEs,
in the given timespan (t0, t), to the given Edge Cloud
ECk.

•
∑x=t

x=t0
dist(x)connectedue,k indicates the distance, in the

given timespan (t0, t), between the UEs and ECk.
The conception of this formula is motivated by the fact that

the APPA scheme bases the decisions on past logs, namely, the
amount of data used, the connected UEs and load of particular
regions; regions wherein a placement decision has to be made
for a given ECk. Hence, APPA calculates the number of VMs
created for ECk, during the time window and over the region
where the VM placement decision has to be made. Then, this
value is divided by the sum of the last data usage activity
observed. Also, APPA calculates the sum of distances between
the given ECk and connected UE. The sum is then divided
by the number of connected UEs observed. We assume that
there are redundant patterns in terms of data usage and UEs
mobility. α′ and β′ are the weights given to each objective,
namely, data load and QoS. Algorithm 1 illustrates the pseudo-
code for APPA, as explained above.

V. RESULTS

In this section, we present the results of LBH [13], LUH
[13], NAT [13], RP [14], PPA [14] and APPA schemes.



Algorithm 1 Advanced Predictive Placement Algorithm
Require:

Γ: A set of past log traces.
Ω: A set of tasks.
E: A set of available hosts.
Γ: The input trace for prediction and it contains

service logs and hand off operations that occurred
in the last 24 hours.

Ensure:
H: Set that will handle input traces from a given
t0 to t.
e(t, ω): Host chosen to handle task ω at t
AvE

(t): Set of average score observed in each host
of E
at t in Γ
AL: Set of VM allocations

1: for all ωi ∈ Ω do
2: H = ∅;

// Each time a new request arrives
3: Hωi = Γ(tωi − w,ωi) ;
4: if e(tωi , ωi)! = maxAvE (tωi) then
5: e(tωi , ωi) = maxAvE (tωi) ;
6: KeepChoice(e, tωi , tωi + w) ;
7: AL = createAllocation(tωi , e);
8: ALs = ALs ∪ {AL};
9: end if

10: end for
11: return ALs;

The inputs for the benchmarking of the VNF/VMs placement
strategies are the logs of service requests recorded by NSP
for 800 mobile UEs, using video streaming, instant messaging
and social network services, in the region of Helsinki, for a
duration of 24 hours. Here, we present results recorded during
5 hours varying from low to very high load of service requests.
Comparisons and discussions will be presented on the basis
of QoS, data overload and overload of VMs number.

A. QoS

QoS is based on the cost, in terms of distance and delay,
between the host EC and the target client machine. The
objective is to achieve the lowest cost values as shown in
Fig. 2. When service requests are relatively low, the gap in
terms of QoS performances is not very important. Yet, the
PPA and APPA schemes show slightly better results. During
peak hours when the number of service requests is high, the
APPA scheme considerably outperforms the other strategies,
with the PPA scheme getting in the second position of the
lowest cost values.

B. Data overload

Data overload is defined as the overload of virtual disk
storage used in VMs. The objective is to achieve the lowest

Fig. 2: QoS costs of different VNF placement strategies.

data overload values as shown in Fig. 3. The LUH and APPA
schemes outperform the other placement strategies in terms of
data overload, and the gap increases as the load of services
become more important. From one side, LUH gives more
importance to the host that has the least number of VMs,
consequently, the least used in terms of virtual disk storage.
On the other side, APPA favors the least observed and closest
host to most UEs.

Fig. 3: Data overload of different VNF placement strategies.

C. Number of VMs overload

As the LUH strategy picks the host with the lowest number
of VMs, despite the cost, it achieves the best results in
balancing load among VMs compared to other strategies (see
Fig. 4). NAT comes as the second best strategy to achieve
load balancing among VMs, as it allocates 5 tasks to each
host at a time. NAT becomes more efficient when the number
of service requests is high; its variations become similar to
those of LUH.

VI. CONCLUSION

In this paper, we introduced a new tool for modeling
the spatio-temporal usage of mobile video streaming, mobile
instant messaging and social network services, taking into
account real mobility patterns of users. We also compared



Fig. 4: VMs overload in case of different VNF placement
strategies

the performance of several VNF placement strategies based
on QoS in terms of delays and distance costs, data overload
and on frequency of VM overload.

The paper also introduced an advanced predictive VNF
placement strategy, which is an enhancement of the classic
predictive VNF placement algorithm. We intend to propose
a more sophisticated VNF placement strategy and improve
NSP by introducing other factors such as incidents, signal
disturbance and dysfunction of equipments.
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