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Abstract—Network Function Virtualization (NFV) ecosystem
enables the automation of deployment and scaling of softwarized
network services (SNSs), thus reducing their operational expen-
ditures. This enables operators to handle workload fluctuations,
to keep the desired performance, with great agility and reduced
costs. However, to realize the automation of such management
practices, it is needed to determine the amount of required re-
sources to allocate the SNS so that its performance requirements
are met. This problem is commonly referred to as resources
dimensioning problem. In this paper, we address the derivation of
a closed-form expression for the optimal resources dimensioning
of an SNS in terms of cost or energy efficiency. The performance
requirement considered for the SNS is a limit on its mean
response time. The performance model considered for the SNS
is practical and accurate. The usefulness of the derived closed-
form expression is successfully validated by means of simulation.
The scenario considered for the validation is a video optimization
chain located at the SGi-LAN of a mobile network.

I. INTRODUCTION

Network Functions Virtualisation (NFV) paradigm is envis-

aged as a cornerstone to build future networks. NFV decouples

network functions (e.g., firewalling, load balancing, mobility

management, deep packet inspection, etc.) from proprietary

hardware enabling them to run as software components, which

are called Virtual Network Functions (VNFs), on virtualiza-

tion containers (e.g., Virtual Machines (VMs) and OS-level

containers) [1]. Among its benefits, NFV promises to enable

network operators the automation of the management opera-

tions and orchestration of the future networks, thus reducing

the Operating Expenditures (OPEXs) and accelerating time-

to-market of new services [2]–[5].

Particularly notable among the envisioned management

practices facilitated by NFV are the automation of deployment

and scaling of network services [5], [6]. This is thanks to

VNFs can be instantiated on-demand and at different network

locations without requiring on-site personnel to deploy new

hardware as needed traditionally. In this way, the resources

allocated to the different network services can be automatically

increased or decreased, thus enabling network operators to

handle workload fluctuations to keep the desired performance

with great agility and efficiency while reducing the total cost.

However, to realize such a scenario, it is required to define

solutions to determine when and how much resources have to

be provisioned to a given network service so that the target

performance metrics be always met. This problem is typically

known in the literature as Dynamic Resource Provisioning

(DRP).

Figure 1 depicts a possible DRP solution for network

services. A similar architecture was considered for the DRP

of Internet applications with successful results in [7]. It com-

Fig. 1. DRP solution for a network service.

bines proactive and reactive provisioning mechanisms. The

proactive mechanism is executed synchronously every ∆t units

of time. Conversely, the reactive provisioning might be run

asynchronously when it detects the workload predictor made

a significant prediction error. In either case, the dimensioning

module will be invoked to estimate the amount of required

resources for a given workload so that the performance re-

quirements are ensured.

In this context, the present work derives a closed-form

expression for the optimal resources dimensioning of a Soft-

warized Network Service (SNS) in terms of cost or energy ef-

ficiency. The performance requirement considered for the SNS

is a limit on its mean response time. To that end, we consider a

practical and accurate performance model for the SNS. Under

this consideration, we show that the formulated problem of

a network service is convex and find its explicit solution by

using the method of Lagrange multipliers. The usefulness of

the derived closed-form expression is successfully validated

through simulation. The scenario considered for the validation

is a video optimization chain located at the SGi-LAN of a

mobile network.

The remainder of the paper is organized as follows. Section

II reviews the related literature. Section III includes the system

model and formulation of the resources dimensioning problem

of an SNS. Section IV describes a simple but practical and

accurate performance model for SNSs. Section V contains the

closed-form expression to perform the resources dimensioning

of an SNS. Section VI describes experimentation carried out

and the achieved results which verify the usefulness of the

derived expression. Finally, Section VII concludes the paper.

II. RELATED WORKS

The DRP solutions can be broadly categorized into rule-

based and model-based approaches [8]. The rule-based ap-



proaches, such as those proposed in [9] and [10], are based on

reinforcement learning, statistical machine learning, and fuzzy

control. On the other hand, the model-based approaches are

based on control theory and Queueing Theory (QT). Compared

to rule-based approaches, model based approaches require

more domain knowledge, but can provide Quality of Service

(QoS) guarantees, while ensuring the system stability [8].

Here we will focus on the resources dimensioning, which is

a paramount component of DRP solutions, of the softwarized

network services following a model-based approach [11]–[20].

In [16], [17], the authors employ a Jackson’s network to

model a three-tiered virtualized Mobility Management Entity

(vMME). They use an exhaustive search methodology to

perform the dimensioning of the number of vMME worker in-

stances. However, the jointly dimensioning of many resources

following a brute force approach is expensive in terms of

computational effort. In [21], the authors provide a useful

simple model based on time series to predict the computational

resources demand in the Evolved Packet Core (EPC).

There are several heuristics proposed in the literature to

tackle the Resources Dimensioning (RD) problem of soft-

warized network services [11], [13], [18], [20]. In [11], the

authors formulate and propose a heuristic to solve the joint

optimization problem for the Service Function Chain (SFC)

routing and VNF instance dimensioning. The objective of

the problem is to maximize the number of accepted SFC

requests. In [13], the authors formulate the RD problem to

minimize the expected waiting time of service chains. The

authors employ a mixed multi-class Baskett, Chandy, Muntz,

and Palacios (BCMP) network to model a service chain and

solve it by using the Mean Value Analysis (MVA) algorithm.

Although the authors prove the convexity of the problem,

its solution cannot be found because of the required closed

queuing network calculation. Then, the authors propose a

heuristic method to address the issue. In [18], [20], the authors

propose a heuristic to carry out the joint RD of the Control

Plane (CP) entities of a virtualized EPC. The heuristic requires

an auxiliary methodology to predict the vEPC response time

for a given setup. To that end, the authors propose a holistic

QT-based model for the Long Term Evolution (LTE) CP. They

evaluate their heuristic proposal in the context of planning [20]

and DRP [18].

There are also examples of the use of metaheuristics to

find a solution to the RD problem in the context of NFV. In

[19], the authors propose a genetic algorithm to solve the RD

problem. The algorithm tries to minimize the service blocking

rate and CPU usage in Cloud/Mobile Edge Computing (MEC)

Radio Access Network (RAN)-based 5G architectures.

Finally, some works find the optimal solution for the RD

of the softwarized network services problem [12], [14], [22],

though they are tailored for specific use cases. In [12], the

authors formulate the RD problem of a Content Delivery

Network (CDN). Notably, they aim at minimizing the amount

of resources (virtual CPUs) under capacity constraints so that a

given QoE for the end user is met. To solve this problem, they

propose a novel algorithm. In [22], the authors develop a bi-

class (e.g., machine-to-machine -M2M- and mobile broadband

-MBB- communications) queuing model for the vEPC. The CP

and Data Plane (DP) of the vEPC are respectively modeled

as M/M/m/m and M/D/1 nodes. The authors assume that the

Mobility Management Entity (MME) and Serving Gateway

(SGW)/Packet Data Network Gateway (PGW) nodes run on

the same Physical Machine (PM). They formulate and solve

the problem of distributing the PM resources among the

MME and PGW nodes in order to minimize the blocking

rate of M2M sessions. The authors in [23] investigate the

fairness-aware flow scheduling problem for network utility

maximization. As part of this work, the authors model the

computational resources demanded by the flows in a chain

of VNFs. In [14], the authors propose a model for sizing

a Cloud-RAN infrastructure. More precisely, they suggest

and validate by means of simulation the bulk arrival model

M[X ]/M/C to predict the processing time of a subframe in a

Cloud-RAN architecture based on multi-core platform. Based

on this model, the authors compute the required number of

cores C to be allocated to the Cloud-RAN as the minimum

value of C so that P[T > δ ]< ε , i.e., the probability that the

subframe processing time exceeds a given value is acceptable.

In the same context, the authors in [24] propose a base station

agnostic framework for creating wireless slices in a cellular

RAN. As part of this work, the authors provide a model to

estimate the processing load of the Baseband Unit pool.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Let us consider a Softwarized Network Service (SNS)

as an arbitrary composition of VNFs. Each VNF, in turn,

might consist of one or several Virtual Network Function

Components (VNFCs), each of which provides part of the

VNF functionality, working together. Each VNFC might have

several instances, each of which runs as a software component

in an isolated Virtualization Container (VC) (e.g., VM or OS

container). The packets enter and leave the SNS through its

external interfaces. The different packet flows served by the

SNS may follow any arbitrary path across the VNFCs. Here,

we assume that the load is distributed among the instances

of a given VNFC in accordance with their computational

capacities.

The PMs that host the VCs are interconnected through

a set of network devices. The packets consume resources

(e.g., CPU, RAM, Disk I/O, network I/O, etc.) of both PMs

and network devices during its lifetime in the SNS. We

will consider that VNFCs execute CPU-intensive tasks for

processing the packets. Under this assumption, the CPU is

the resource acting as the main bottleneck at the VNFCs

instances. In this context, the resource dimensioning problem

of the different SNS VNFCs is to determine how many CPU

cores have to be allocated to the distinct VNFCs so that a set

of performance requirements are met given an SNS workload.

Next, we will formulate formally this problem considering that

the mean response time of the SNS T has to be bounded (i.e.,

T ≤ T max) as the only performance requirement.

Let us assume there are J different VNFCs that make up

the SNS and let m j denote the number of CPU cores to be

allocated to the VNFCs j ∈ [1,J]∩N so that T ≤ Tmax. The

VNFC resource dimensioning problem is formally formulated

as follows:

minimize

(

J

∑
j=1

α j ·m j

)

(1)

where α j is a cost associated with the processing instances

allocated to the VNFC j (to make the problem more generic).

Subject to :

C1 : T ≤ T max (2)



The decision variables of the optimization problem are m j∀ j ∈
[1,J]. Objective (1) intends to minimize the economic cost

or the energy consumption depending on the meaning of α j.

Constraint (2) ensures that the SNS mean delay T is below a

given threshold T max.

IV. PERFORMANCE MODEL FOR SNSS

This section describes the performance model considered

for the SNSs. The model is based on QT and allows us to

analytically estimate the mean response time of an SNS T .

T is formally defined as the expected delay experienced by

an arbitrary job during its stay in the SNS. A job might be

a single packet or a set of packets depending on the specific

scenario.

The pool of CPU cores allocated to the VNFC j is modeled

as a set of m j parallel G/G/1 queues as in [7]. The service

process of each CPU core (or G/G/1 node) is described by

its mean service rate µ j and Squared Coefficient of Variation

(SCV) of the service time c2
s j. The aggregated arrival process

to the pool of CPU cores of the VNFC j is described by

the mean arrival rate λ j and SCV of the inter-arrival times

c2
a j. These parameters (µ j, c2

s j, λ j, and c2
a j) are assumed to be

known. In practice, this can be realized by using monitoring

and predictive techniques. The workload of a given VNFC is

distributed equally among its CPU cores. The mean response

time of the pool of CPU cores of the VNFC j, T j, is

approximated as:

T j =
c2

s j + c2
a j

2
·

ρ j

µ j · (m j −ρ j)
+

1

µ j

(3)

where ρ = λ j/µ j is the utilization factor of the CPU core. The

above expression relies on the approximation employed in [25]

to estimate the mean response time of a G/G/1 queuing node

when ca j ≥ 1.

Besides the CPU cores allocated to the VNFCs, let us

assume that there are K additional resources allocated to the

SNS. Each of these resources could also be modeled as a

G/G/1 node, though this consideration does not affect the

subsequent analysis and a completely different approach could

be used instead. Under this consideration, the response time

of the resource k, θk can be approximated as:

θk =
c2

sk + c2
ak

2
·

ρk

µk · (1−ρk)
+

1

µk

(4)

where parameters µk, c2
sk, c2

ak, and ρk are respectively the

service rate, SCV of the service time, SCV of the inter-arrival

times, and the utilization factor of the resource k.

The mean response time of the SNS T can be computed as:

T =
J

∑
j=1

Vj ·T j +
K

∑
k=1

Vk ·θk +Tprop (5)

, where Vj and Vk respectively denote the visit ratio of the

V NFC j and the resource k, and Tprop is a parameter to take

into account the propagation delays. A visit ratio is defined as

the average number of visits to a given node by an arbitrary

job during its lifetime in the SNS.

For the sake of illustration, Fig. 2 shows an example of

network service and a possible queuing theory model to cap-

ture its behavior. Specifically, for each VNF, the bottlenecks

considered are the processor and the Network Interface Cards

(NICs). Observe that we are assuming there is one NIC

associated with each VNF exposed interface.

Fig. 2. Example of QT model for a given SNS.

V. OPTIMAL RESOURCE DIMENSIONING OF SNSS

This section includes the closed-form expression for the

VNFCs resources dimensioning, which was derived by using

the method of Lagrange multipliers. The problem formulation

and the SNS performance model considered are those respec-

tively described in Sections III and IV.

Let L (mi, ...,mJ,γ) denote the Lagrangian associated with

the dimensioning problem formulated in Section III, which is

given by L (mi, ...,mJ ,γ) = f (mi, ...,mJ)+ γ ·g(mi, ...,mJ):

L (m j ∀ j ∈ [1,J],γ) =
J

∑
j=1

α j ·m j + γ ·
(

T −T max

)

(6)

where γ is the Lagrange multiplier.

Corollary 1. The resource dimensioning problem defined by

(1) and (2) is convex considering the SNS performance model

described in Section IV.

Proof: The Hessian matrix of the Lagrangian

∇2L (mi, ...,mJ ,γ) is diagonal as f (mi, ...,mJ) and

g(mi, ...,mJ) are given by the sum of J terms, each of

which is a function of only one decision variable m j of

the problem. The jth element of the principal diagonal of

∇2L (mi, ...,mJ ,γ) is given by:

∇2
L j, j =

γ ·Vj · (c
2
s j + c2

a j) ·ρ j

µ j · (m j −ρ j)3
(7)

The parameters c2
s j, c2

a j, ρ j, and Vj are positive by definition1

and γ is also positive as it can be observed in (12). Moreover,

m j > ρ j, otherwise, the system would be unstable. Then, ∇2L

is definite positive and the problem is convex.

Next, we can find the critical points m∗
j by solving

∇L (m j ∀ j ∈ [1,J],γ) = 0, where ∇L denotes the gradient

of the Lagrangian.

Theorem 1. Considering the resource dimensioning problem

defined by (1) and (2) and the SNS performance model

presented in Section IV, the optimal number of CPU cores

m∗
j to be allocated to each VNFC j of a given SNS so that its

mean response time be lower than T max is given by:

m∗
j =

⌈

√

β j ·
J

∑
k=1

αk ·
√

βk +ρ j

⌉

(8)

where

β j =
Vj · (c

2
s j + c2

a j) ·ρ j

2 ·α j ·µ j ·
(

T max −θ −∑J
k=1

Vk
µk

) (9)

1c2
s j and c2

a j can equal zero simultaneously in deterministic systems, but in
such case the optimal solution of the problem can be computed easily



Fig. 3. The scenario considered in the experimental setup.

Fig. 4. Flow diagram for HTTP web traffic.

The above expressions allow us to determine the number

CPU cores has to be allocated to each VNFC j of the SNS

for minimizing the economic cost or the energy consumption,

while the maximum response time of the SNS is guaranteed

(i.e., T ≤ T max). Please refer to the appendix for the proof of

Theorem 1.

VI. RESULTS

A. Experimental Setup

We verified the correctness and usefulness of (8) for the

scenario shown in Fig. 3. Specifically, we considered a typical

Service Function Chain (SFC) deployed on the SGi-LAN of

mobile networks for video optimization as described in [26].

The SFC consists of four essential service functions:

i) a Load Balancer (LB) that separates HTTP over TCP port

80 from the rest of traffic and distributes the HTTP load

among a pool of proxies,

ii) a steering proxy that redirects HTTP traffic.

iii) a Deep Packet Inspector (DPI) which checks whether a

given HTTP GET or RESPONSE is video content, and

iv) a Transcoder (XCDR) which converts videos to an ap-

propriate format on the fly.

The flow diagram considered for requesting, downloading,

and transcoding a given chunk of video, which is encapsulated

in an HTTP RESPONSE, is depicted in [26, Fig. 8]. Figure 4

shows the flow diagram considered for processing non-video

HTTP traffic.

We developed a simulator of the video optimization chain

shown in Fig. 3 running in a virtualized infrastructure. The un-

derlying physical infrastructure comprises 40 PMs or servers,

each of which with 16 physical CPU cores, interconnected

through a 10 Gbps Ethernet network with a tree topology and

two layers of switches. The resources of the video optimization

chain are adapted according to the demand by using the

proposed solution.

TABLE I
TRAFFIC MODEL SETUP.

Web browsing

Probability of a web session 0.99

HTTP GET Size 600 Bytes

HTTP RESPONSE Size 810 kBytes

Mean number of HTPP GETs per
user session

230

Video streaming

Probability of a video session 0.01

HTTP GET Size (Video) 800 Bytes

Mean HTTP RESPONSE Size be-
fore transcoding (Video)

131250 Bytes (1 second,
1280×720, 25 fps, H.264)

Mean HTTP RESPONSE Size af-
ter transcoding (Video)

38750 Bytes (1 second,
426×240, 25 fps, H.264)

Mean number of chunks per user
session (Video)

231 (1 video per session, video
duration distribution from [27])
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Fig. 5. Experimental service processes per CPU instance.

The workload was synthetically generated using the web

browsing and HTTP video streaming traffic models, with some

adaptations, included in [17]. Table I include a summary of

the main characteristics of the traffic models considered.

Figure 5 depicts the Cumulative Distribution Functions

(CDFs) of the LB, proxy, and XCDR service times. These

curves were measured experimentally and represent the dis-

tribution of the service time required by a single process-

ing instance to process a given HTTP message (GET or

RESPONSE). Specifically, the processing instance considered

in the setup was an Intel(R) Core(TM) i7-4600U CPU @

2.10GHz. Figure 5 also includes the mean and SCV of the

depicted CDFs.

Observe that the CDF of the LB, proxy, and XCDR service

times present a ladder shape. This is because each service

function type has to carry out different processing tasks

depending on the kind of incoming HTTP message. For

the sake of illustration, the XCDR acts as a proxy for the

video HTTP GETs and performs transcoding for the video

HTTP RESPONSEs. This fact explains that the XCDR service

time distribution is a mixture of two different distributions,

one associated with the lightweight processing of the HTTP

GETs messages, and the other with the heavy processing of

transcoding.

Regarding the DPI service process, it was considered deter-

ministic (c2
DPI = 0). The DPI service time per HTTP message

was set to 3 ms considering that the DPI has to inspect the

video HTTP RESPONSEs in the depth of 10 packets along

with the measurements included in [28].

B. Resources Dimensioning Results

To validate the usefulness of (8), we carried out a set of

simulations for eight different workloads. The workload is



expressed as the incoming rate of HTTP GETs to the video

optimization chain. The performance requirement considered

was T ≤ 30 ms, which means that the video optimization

chain has a budget of 30 ms on average to serve an HTTP

message (e.g., HTTP GET or HTTP RESPONSE). The delay

measurement of 4 ·105 HTTP messages was considered as stop

condition for all the simulations. We observed that the system

achieved convergence (steady-state) comfortably with this stop

condition.

Table II includes the results of the above-mentioned set

of simulations. The number of CPU cores allocated to each

service function, which are included in the middle four

columns of Table II, were computed using (8). To guarantee

the correctness of the closed-form expression derivation, we

verified that CVX, a package for specifying and solving

convex programs [29], [30], achieved exactly the same results.

The mean response time of the video optimization chain

(see third column of Table II or Fig. 7) obtained for all

the simulations is below T max = 30 ms, thus validating the

usefulness of (8).

Fig. 7 depicts both the mean response time of the video op-

timization chain obtained by simulation (labeled as “Sim”) and

predicted by the performance model described in Section IV

(labeled as “Theo”). It also shows the relative error exhibited

by the performance model (the same data are also included in

Table II). The relative estimation error is below 18%, which

is acceptable compared with the QT standard methodologies

of analysis [31]. However, it should be noted that this error is

not only due to the performance model itself, but also to the

estimation error of the SCV of the aggregated arrival process

to each service function (see columns eight to twelve in Table

II and Fig. 8). Before launching a simulation, we knew neither

the mean arrival rates or the SCV of the arrival processes. In

a practical situation, there might be a workload predictor (see

Fig. 1) which provides these parameters for a given time based

on previous observations. To overcome this limitation of our

setup, we estimated those parameters. The arrival rates are

calculated easily and very accurately using the flow balance

equations and the traffic model setup. For the estimation of the

SCVs we used the methodology proposed in [25] considering

that the number of CPU cores m j allocated to each service

function j equals ⌈λ j/µ j⌉ (stability condition).

Figure 6 shows the impact of the load and the value of

the mean response time budget on the resources demand. As

expected, the more stringent is the performance requirement,

the more resources we need to allocate to the SNS to fulfill it.

The most interesting result observed in Fig. 6 is that there is a

point in the load where the demand of CPU cores shoots up.

We observed that this is because of the rest of the resources

consumed by the SNS start to exhibit a significant response

time (congestion). Specifically, in our case, some of the links

of the network that interconnects the PMs caused this behavior.

This result highlights the importance of the integration and

coordination of Software Defined Network (SDN) and NFV

paradigms.

VII. CONCLUSION

In this work, we have tackled the derivation of a closed-

form expression for the optimal resources dimensioning of an

SNS in terms of cost or energy efficiency. The performance

requirement considered for the SNS is a limit on its mean

response time. To estimate the performance of the SNS, we
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Fig. 6. The total number of CPU cores allocated to the video optimization
chain versus the load for different values of Tmax.

Fig. 7. SNS mean response time model validation.

have considered a simple but practical and accurate queuing

model. The usefulness of the derived closed-form expression

has been successfully validated through simulation. The sce-

nario considered for the validation is a video optimization

chain located at the SGi-LAN of a mobile network.

APPENDIX

This Appendix includes the proof of the Theorem 1

(see Section V). The critical points m∗
j of the SNS re-

source dimensioning problem can be found by solving

∇L (m j ∀ j ∈ [1,J],γ) = 0, where ∇L denotes the gradient

of the Lagrangian. This yields the following set of nonlinear

equations:

J

∑
j=1

Vj ·

(

c2
s j + c2

a j

2
·

ρ j

µ j · (m j −ρ j)
+

1

µ j

)

−T budget

J

∑
j=1

Vj ·

(

Wj +
1

µ j

)

−T budget = 0

(10)

α j − γ ·Vj ·
c2

s j + c2
a j

2
·

ρ j

µ j · (m j −ρ j)2

α j − γ ·Vj ·
Wj

(m j −ρ j)
= 0 ∀ j ∈ [1,J]

(11)

Where Wj denotes the mean waiting time at the CPU resource

of the VNFC j. Then, solving (11) for Wj and substituting it

in (10), and after solving (10) for γ , we get:

γ =
∑J

i=1 αi · (mi −ρi)

T budget −∑J
i=1

Vi
µi

=
∑J

i=1 αi · (mi −ρi)

T max −θ −∑J
i=1

Vi
µi

(12)

Then, by substitution of (12) in (11) and solving for m j ∈
N ∀ j ∈ [1,J], we finally get (8) and (9). Last, under stability

conditions and T max ≥ θ −∑J
i=1 Vi/µi, γ > 0 (see (12)). Then,

considering Corollary 1, the Karush-Kuhn-Tucker (KKT) con-

ditions are met and m∗
j ∀ j ∈ [1,J] is the global minimum of

the problem, thus concluding the proof of Theorem 1.



TABLE II
VALIDATION RESULTS OF THE CLOSED-FORM EXPRESSION FOR THE RESOURCES DIMENSIONING OF A VIDEO OPTIMIZATION CHAIN.

Mean response time Resources demand (# of CPU cores) Estimation error SCV arrival processes

Load (in HTTP GETs per second) Theo. Sim. ε LB Proxy DPI XCDR LB Proxy DPI XCDR

192 18.1 ms 20.5 ms 11.6% 1 1 1 2 10.5% 4.1% 26.2% 8.9%

383 24.8 ms 26.1 ms 4.8% 3 2 1 3 88.1% 20.4% 56.7% 8.0%

575 25.0 ms 26.7 ms 6.4% 3 3 2 4 8.2% 14.9% 2.6% 22.81%

767 24.7 ms 26.1 ms 5.5% 4 5 2 6 16.7% 4.0% 35.3% 14.7%

958 24.7 ms 26.3 ms 6.0% 6 6 3 7 6.0% 3.8% 16.2% 9.6%

1150 25.4 ms 26.3 ms 3.5% 8 8 4 10 5.4% 10.1% 27.3% 21.5%

1342 25.9 ms 22.1 ms 17.3% 57 62 20 81 2.1% 2.8% 34.4% 35.6%

Fig. 8. Estimation error of the SCVs of the HTTP messages inter-arrival
times at the different service functions.
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