
TopoTrust: A Blockchain-based Trustless and
Secure Topology Discovery in SDNs

Mohamed Lamine Adjou∗, Chafika Benzaı̈d†, and Tarik Taleb†
∗ University of Sciences and Technology Houari Boumediene, Algiers, Algeria

† University of Oulu, Oulu, Finland
Emails: madjou@usthb.dz, firstname.lastname@oulu.fi

Abstract—The Software Defined Network (SDN) architecture
decouples the control functionality from the forwarding devices
and implements it in a separate entity known as the controller.
This raises new concerns on securing the control messages
exchanged between the controller and the forwarding devices.
In this paper, we propose TopoTrust, a novel fully trustless
authenticity and integrity verification mechanism that relies on a
Blockchain protocol to detect network topology poisoning attacks,
namely Host Tracking Service (HTS) and OpenFlow Discovery
Protocol (OFDP). The key merit of TopoTrust is its ability to
operate in a zero trust SDN environment where no controller or
switch is trusted. The evaluation of our protocol shows that it
can successfully detect any spoofing-based and packet tampering
attacks; and up to 96% and 100% of Fast Relocation and Link
Fabrication attacks respectively within a short detection time,
while introducing small overhead to the network.

Index Terms—SDN, Security, Topology Discovery, Blockchain,
and Trust.

I. INTRODUCTION

Software-Defined Networking (SDN) came as a response to
the rapid increase in network complexity and the emergence
of new technologies that require on-demand and application-
specific network resource allocation, such as Deterministic
Networks (DetNet) [1] and 5G networks. The aim of SDN is to
simplify the provisioning and distribution of those resources,
thus reducing the capital and operational expenditure [2].

SDN enables unified network management and visibility by
introducing centralized control with a special entity called “the
controller”, but it also creates new attack vectors compared
to traditional networks [3]. One of the most dangerous ones
is Topology Poisoning, which can have devastating conse-
quences, especially on networks that require very accurate
information in order to make critical decisions. The most
prominent example is arguably DetNet [4], which is an on-
going effort by the IETF to provide bounds on latency, jitter,
packet loss, and bandwidth, in order to transport critical data
streams such as industrial processes and machine control, and
vehicles.

Topology Poisoning is achieved by altering the discovery
processes of the network topology and hosts location, namely,
OpenFlow Discovery Protocol (OFDP) and Host Tracking Ser-
vice (HTS). Both protocols are inherently non-authenticated
[5], and if targeted, the integrity and availability of the network
would be at risk.

Several solutions have been proposed regarding Topology
Poisoning, some focused on securing the forwarding rules by

analyzing flow statistics [6] and flow rules [7], or by using
probing techniques [8] [9]. Other solutions addressed specific
attacks such as Link Fabrication attack [10]. These solutions
focus on specific protocols rather than Topology Poisoning as
a whole. Furthermore, they rely on the fact that the network
nodes are trusted in regard of the controller which turns it
into a single point of failure that runs all the verification
processes. In [11], a Blockchain network is used between the
SDN controllers to reach consensus on network information;
whereas [12] introduces special nodes to verify its integrity.
The major drawback of these solutions is that they only include
the controllers or special nodes in the control process, which
leaves the forwarding devices unverified.

In this paper, we propose TopoTrust, a fully trustless and
lightweight verification mechanism based on Blockchain, that
detects attacks targeting the topology discovery and host
tracking protocols in SDN. A Blockchain network that con-
nects all active nodes (controller and forwarding devices) is
introduced, so they can exchange verification information and
detect attacks. This solution provides continuous monitoring
and analysis of topology-related exchanges in an automatic
and distributed manner, which is a particularly crucial task
in modern DetNet use cases, such as Industrial machine to
machine (M2M), Professional audio and video, among others.
The simulation of multiple attack scenarios shows promising
results in terms of detection time and detection rate.

The main contributions of this work can be summarized as
follows:

• Highlighting the fragility of topology discovery and trust
mechanisms in SDN.

• TopoTrust is proposed, a fully integrated and trustless so-
lution to detect Topology Poisoning attacks. The solution
is based on a custom implementation of Blockchain that
accentuates zero-trust, resiliency, and efficiency.

• Finally, we evaluate TopoTrust in multiple attack scenar-
ios. The obtained results show the high effectiveness of
TopoTrust in detecting topology Poisoning attacks with
reduced overhead.

The remainder of this paper is organized as follows. Sec-
tion II provides background information on SDN, topology
discovery, and Blockchain, and presents an overview of the re-
lated solutions. Section III describes the threat model, followed
by Section IV wherein a detailed explanation of TopoTrust



Fig. 1: LLDP discovery steps.

and a security analysis are presented. Section V is dedicated
to the implementation and the performance evaluation of the
TopoTrust protocol. The paper concludes in Section VI.

II. RELATED WORK

A. Background

1) SDN and Topology Discovery: The SDN controller
enables the control of a network through a software act-
ing as the control plane of the entire network. The control
plane communicates with the forwarding devices (the data
plane) through southbound Application Programming Inter-
faces (APIs). The defacto control protocol that is implemented
in nearly every SDN environment is OpenFlow [13]. The
controller also provides abstracted controls using northbound
APIs to applications (the application plane). The data plane
reports information and statistics regarding the network to the
control plane, based on which, the control plane updates its
perception of the network state, and responds with the proper
instructions in compliance with the application plane policies.

To discover the network, the control plane relies on two
main protocols: OFDP for gathering switch neighboring in-
formation, and HTS for host discovery and location.

• Switch neighboring discovery: OpenFlow controllers use
OFDP which is based on standard Link Layer Discovery
Protocol (LLDP) to discover forwarding device intercon-
nection. To discover a link between switches S1 and S2,
as illustrated in Fig. 1, (1) the controller sends an LLDP
packet with S1 ID into a packet-out message to S1, (2)
the switch S1 then broadcasts this LLDP message to its
neighbors. (3) Finally, when S2 receives S1’s LLDP, it
encapsulates an LLDP packet to send to the controller as
packet-in the ChassisID (i.e., neighbor’s ID) and PortID
which is the neighbor’s port from which it sent the
LLDP packet. Accordingly, the SDN controller discovers
a unidirectional link between S1 and S2.

• Host Tracking Service: When a switch receives an IP
packet, it refers to its local flow table which associates
various flow attributes (e.g., IP source/destination, VLAN
ID, and source interface) with actions (e.g., forward,
send-to-controller, and drop) to apply on this packet.
When no flow rule is matched, the switch encapsulates
this packet in a packet-in message and sends it to the
controller to figure out which action to undertake. The

Fig. 2: Blockchain format.

controller then responds with a packet-out message con-
taining a FlowMod instruction to add the corresponding
flow rule. The controller will then infer that the same IP
as the one encapsulated in the packet-in as a source IP is
reachable via the switch’s source interface.

2) Blockchain: Blockchain technology was first introduced
as the underlying protocol enabling the first cryptographic
monetary system Bitcoin [14]. It provides a zero-trust mech-
anism that allows secure transactions without the need for a
central node; it achieves this by recording all the transactions
in a set of digitally-signed blocks [15]. In addition to those
transactions, each block contains a hash calculated from the
previous block hash and the set of transactions [16]. When
the block hash is calculated, the new block is broadcast by
the miner to all participating nodes so they can append it to
the rest of the blocks (See Fig. 2).

B. Related Solutions

SDN relies heavily on the communication between the
control plane and the data plane to effectively draw the
correct forwarding state of the network. Consequently, various
solutions were developed to secure this exchange. In this
section, we discuss and illustrate the main approaches applied
therein, categorizing them as 1) Blockchain-less solutions and
2) Blockchain-based solutions.

1) Blockchain-less solutions: The work in SPHINX [7]
provides a verification module that analyzes OpenFlow mes-
sages and flow statistics, in order to detect topology poisoning
attacks. TopoGuard [10] detects Link Fabrication attacks by
identifying the type of device connected to a switch using
probing techniques and authenticated LLDP packets. SDNsec
[9] uses a symmetric key between the switches and the
controller to ensure the integrity of forwarding rules. It also
embeds a cryptographic tag into every packet of the flow to
make sure the packets follow the intended path. DYNAPFV
[6] uses flow statistics and packet-in hashes collected from
switches to detect packet dropping and tampering attacks,
thus ensuring that the flows do not deviate from the original
path. SDN traceroute [8] uses a probing technique by injecting
small packets into the network which triggers a packet-in chain
reaction for active monitoring of the forwarding state.

2) Blockchain-based solutions: The solution named Dist-
BlockNet [11] uses a Blockchain network between multiple
controllers to verify the latest flow rules for a synchronous
view of all networks to each controller. The approach used
in BLOSTER [17] considers a SDN controller with access
granted only to an administrator (i.e., the only entity with
the right to write to the Blockchain); a vSwitch node which
updates the flow rules and saves the changes in a log file; and a



Firewall that checks and compares the flow rules issued by the
controller from the Blockchain, with the ones updated in the
vSwitch to detect attacks. In [12], the authors propose a trust
evaluation system to determine whether a node in the network
is reliable by issuing a trust weight from special nodes called
“Verifiers”. Those nodes share a Blockchain for storing, trust
values, historical data, and authorization of new users.

Discussion: The solutions based on collecting switches’
statistics as well as probing techniques rely on the fact that
the switch-controller connection is established using TLS
connection which OpenFlow specification provides. However,
the activation of TLS is specified as ‘optional’ which can be
problematic. Moreover, the implementation of TLS is found
to be vulnerable to Man-in-the-Middle (POODLE) attack
[18]. Finally, the controller still constitutes a single point of
failure of the network, meaning that if an attacker successfully
intercepts the encryption keys, (s)he can basically imperson-
ate it and wreak havoc into the network. The Blockchain-
based solutions do share the verification process over mul-
tiple controller instances or dispense it to special nodes, but
they technically have to trust the information received from
the data plane. Unlike existing solutions that are controller-
centric, TopoTrust introduces a novel verification mechanism
that involves all active network nodes using a custom-built
Blockchain protocol, in such a way that no node (i.e., con-
troller or switch) is individually trusted, and every node can
potentially detect attacks. To the best of our knowledge, this is
the first work involving Blockchain-based consensus to detect
topology poisoning attacks in a fully integrated solution.

III. THREAT MODEL

We consider an attacker who tries to poison the controller’s
topology view of the network by injecting false flow rules into
the data plane to redirect traffic to their desired destination,
and from there perform more sophisticated attacks such as:
denial of service (by dropping the redirected traffic), data
exfiltration (by redirecting traffic through a network gateway),
and packet tampering (as the attacker places himself as Man-
in-the-Middle). The attacker is assumed to have full knowledge
and access to the trusted segments of the network, and
can intercept and modify control messages sent from/to the
controller, following in this way a “zero-trust” security model
[19]. To achieve this goal, the attacker will have to disguise
his identity as one or more legitimate nodes of the network
(identity spoofing). He can achieve this in one of three ways:
i) the first is to join the network as a new node (switch or
controller) and establish a connection with the target node,
ii) the second is to take control of an already authenticated
node, and iii) the third is by intercepting a switch-controller
connection and spoof the identity of one or the other. In this
last instance, two cases can be envisioned:

• In case of switch identity spoofing: the attacker can
fabricate packet-in messages and send them to the controller
to indirectly change the controller’s HTS information (See
Fig. 3(a)). The attacker can also tamper with the LLDP pack-

(a) Packet-In request tampering (b) LLDP tampering

Fig. 3: Case of a malicious switch.

Fig. 4: Case of a malicious controller.

ets to disrupt with the controller’s neighboring information
(See Fig. 3(b)).

• In case of controller identity spoofing: The attacker
can send fake packet-out messages containing FlowMod
instructions and thus build fraudulent flow rules directly into
the targeted switch (See Fig. 4).

IV. TOPOTRUST: PROPOSED SOLUTION

A. Overview

We consider a Blockchain network composed of an
OpenFlow-enabled controller managing multiple switches;
each node is associated with a pair of ECDSA [20] keys and
gets its public key broadcast through the Blockchain network
by the controller to all nodes after manual approval by the
admin, in order to ensure the authenticity of control messages
(transactions). TopoTrust algorithm works in four main steps:

1) Transaction broadcast: When a node sends a packet-
in/packet-out message, it also broadcasts a small-sized
version of the packet containing only necessary informa-
tion (switch ID, source IP, etc.) in addition to its signature
on the Blockchain network to every online node of the
network, thus ensuring that every node keeps the same
list of control messages sent over the SDN network;

2) Block creation: When certain conditions are met, every
node generates a block and calculates the hash of n
transactions locally, including the hash of the last block,
to ensure the integrity of the transactions (process detailed
in Section V-A). After that, a randomly selected node (the
miner) broadcasts this hash to every node for comparison;

3) Hash verification: Every node checks the correctness of
the received hash compared to the one it calculated; if
an error is detected, it notifies the admin for possible
integrity breach;

4) Topology verification: If the hash is correct, the node
presumes that the transactions contained in the block are



valid, it then proceeds to topology verification in order
to detect other attacks (detailed in Section V-A).

If some nodes went offline for a certain period of time due
to accidental disconnections or attacks, they will be detected
since they establish a connection with other nodes in the
Blockchain network, and therefore will not be taken into
account in the verification process till the next hash broadcast.
If the the miner has missed some transactions, then it will
not broadcast the verification hash; the other nodes will wait
m seconds counting from the timestamp of the last received
transaction and designate another miner.

B. Security Analysis
TopoTrust is based on consensus (i.e., attacks are detected

if a majority declares so), so we assume that an attacker
cannot compromise more than half of the network’s nodes
and a minimum of two switches composing the data plane are
required in order to reach a majority. Furthermore, we assume
that the network nodes are relatively stable; i.e., the majority
of nodes are not disconnected at the same time. We consider
an attacker who wants to manipulate LLDP and FlowMod
messages as described in the threat model (Section III) in a
SDN network that implements TopoTrust. The detection model
consists of the following parties:

1) The asset being protected: LLDP and FlowMod messages
sent by network nodes (controller or switch);

2) The attacker: knows and is connected to the internal
network, can intercept those messages, and can spoof the
identity of network nodes;

3) The protecting function: consensus-based verification of
control messages by all nodes using secure hash ex-
changes through the Blockchain overlay. The consistency
of the hash represents the proof that all transactions in
the current and the previous blocks are valid; the blocks
are deleted as soon as the hash is calculated.

This approach achieves authenticity (all nodes’ identity is
verified), integrity (with the hash), and availability (nodes
can notify if disconnected with each other). In the following,
various attack vectors and their mitigation method are detailed:

1) Attacker fabricates messages (without secret key):
Whether the attacker spoofs the controller or switch identity,
this attack is quickly detected since the attacker will not have
the secret key of the spoofed node, and therefore cannot
broadcast messages through the Blockchain network. As a
result, spoofing-based attacks will fail.

2) Attacker joins the network as a new node (with self-
generated secret key): This case is also easily detectable as
the public keys of all legitimate nodes are known to all other
nodes at deployment time (see Section IV-A).

3) Attacker takes control of one or multiple legitimate nodes
(retrieves other nodes’ secret key): In this case, the attacker
can broadcast with the legitimate node’s private key signature,
to all nodes or only a few selected ones through the Blockchain
network. In such event, we have three distinct cases:
• In case of controller: The attacker can then send fake

FlowMod messages to selected switches and broadcast this

event in the Blockchain network. This attack is detected if
the majority of nodes report that there is no corresponding
packet-in message broadcast previously.

• In case of one switch: Where an attacker can broadcast
fake packet-in in the Blockchain network. This attack is
detected if the majority of nodes report that there are no
similar packet-in messages broadcast in the same path; the
switches can verify this information from their Complete-
View graph (more details in Section V). Attacks involving
LLDP responses to the controller can also be detected in
the same manner as the corresponding LLDP request will
be reported missing by the majority of nodes.

• In case of multiple switches: This situation is much harder
to achieve if TopoTrust is implemented since the attacker
must hijack at least two switches for their attacks to take
place. If (s)he succeeds, (s)he can forge links (i.e., Link
Fabrication attack) between switches by tunneling LLDP
packets from one switch to another. (S)he can also achieve
Host Location Hijacking attack which consists of mimicking
a legitimate host traffic in a different location to get the con-
troller to believe that the host has moved to that location. In
this case, to detect Link Fabrication attack, the other nodes
can calculate timestamps between the first LLDP request
and the received response, and compare it to a normal one
since tunneling the information takes significantly more time
to reach its destination. The same approach is used to detect
Host Location Hijacking as a “fast” relocation is considered
a probable attack.

V. IMPLEMENTATION AND PERFORMANCE EVALUATION

A. TopoTrust Implementation

We implemented TopoTrust using a lightweight module
integrated directly into the network’s switches and the SDN
controller. A SDN network is created with Mininet to simulate
a 1000 hosts/vSwitch switches connected to Floodlight [21]
controller, using the Openflow protocol for control plane
exchanges. We used a VM with 4-core CPU and 32Go of
RAM deployed on Cisco UCS chassis [22], simulating a
medium data center within a single Blockchain network. The
verification module listens to four types of messages, and
broadcasts them in the Blockchain network as reduced-size
transactions:
1) OFPacketInNoMatch (91 bytes): is a packet-in sent when

a switch receives a flow that does not match any flow rule.
2) OFPacketOutFlowMod (108 bytes): is a packet-out mes-

sage sent to a switch in response to a corresponding
OFPacketInNoMatch.

3) OFPacketOutLLDP1 (75 bytes): is a packet-out message
sent to a switch containing the switch’s ChassisID.

4) OFPacketInLLDP3 (77 bytes): is a packet-in message sent
to the controller when a new link is discovered.

Each node generates a block if: 1) the number of received
transactions reaches n=10; or 2) when some transactions
are received (fewer than n) and p=4 seconds have passed
counting from the last transaction’s timestamp. After a block is



generated, every node that did not go offline calculates a block
hash of the transactions (ordered based on their timestamps).
Next, the nodes derive from this hash the nodeID that would
be the miner, following a proof-of-selection [23] fashion –
in order to save time and resources while electing a miner –
and broadcasts this hash to all nodes for comparison. After
that, the nodes delete the block and retain the hash to include
it in next block. In case the nodes do not receive the hash
after m=5 seconds, they elect another miner. If no mismatch
is reported, the nodes consider the block’s content legitimate,
and can proceed to the verification process. It should be noted
that the values n, m, and p are chosen experimentally in order
to maximize efficiency, meaning that shorter values correlate
proportionally with shorter detection times, and higher values
with less overhead. The nodes also maintain a CompleteView
structure that aggregates the switches’ interconnections and
host location information into a graph to rapidly detect incon-
sistencies, and updates this graph if no attack is detected. The
verification procedure is operated at every block generation by
all nodes, and works as follows:

• If an OFPacketInNoMatch transaction is found in the new
block: TopoTrust looks for other OFPacketInNoMatch pack-
ets’ timestamps that have the same path attributes, and com-
pares them with the timestamp of the last known position; if
it is considerably shorter than a normal relocation, it notifies
the admin. If no attack is detected, it updates CompleteView.
The normal relocation is defined as an average of previous
relocations calculated when no attack is detected.

• If an OFPacketOutFlowMod transaction is found in the new
block: the verification process searches for a corresponding
OFPacketInNoMatch request within a reasonable timestamp
difference. If found, it updates its CompleteView structure;
otherwise, it notifies the admin for a possible attack.

• If an OFPacketInLLDP3 transaction is found in the new
block: it searches for a corresponding OFPacketOutLLDP1
request within a reasonable timestamp difference. If not
found, it notifies the admin for a possible attack; else, it
updates CompleteView. It also compares timestamps be-
tween LLDP1 and LLDP3 packets with a latency baseline
defined as average latency from previous legitimate LLDP
exchanges. If the average latency is substantially longer, it
notifies the admin for a possible Link Fabrication attack.

B. Performance Evaluation

In the remainder of this section, we evaluate TopoTrust
by running multiple attack scenarios and repeating those
scenarios until consistent results are found. The performance
of TopoTrust is assessed in terms of (i) detection rate which
refers to the percentage of fake control messages successfully
detected by TopoTrust; and (ii) average detection time needed
to detect the fake control messages. We also evaluate the
computational overhead introduced by TopoTrust. Other work
(presented in Section II-B) do not offer comprehensive zero-
trust solutions; consequently, the attacks never originate from
”trusted” nodes in their experimentation. For this reason,

(a) Detection rate (b) Average detection time

Fig. 5: Fake OFPacketInNoMatch detection results.

Fig. 6: Fake OFPacketOutFlowMod detection results.

comparing their detection rate directly with ours is inaccurate.
Our attack scenarios are the following:
1) An attacker takes control of a switch and sends fake

packet-in messages. Fig. 5 plots two graphs, showing (a)
the detection rate and (b) the average detection time for
different fake packet rates, respectively. In the experiments,
we consider two different scenarios: light traffic and heavy
traffic.
Discussion: The results show that the higher the fake
packet rate, the higher the detection rate and the shorter the
detection time, particularly under heavy traffic conditions.
That is because the difference between timestamps is
smaller – as more packet-in messages are generated by
switches – which provides a higher probability of attack
detection; and more control messages means more blocks
are generated, which shortens the detection time. With fake
packets rate ranging between 0 to 1 pkts/s, not enough
control messages are generated. This leads to a slower
block creation, so the waiting time p=4 still constitutes the
deciding factor, meaning that most blocks are generated
with less than n=10 transactions.

2) An attacker controls the controller and sends fake Flow-
Mod.
Discussion: All fake FlowMod are detected since corre-
sponding packet-in do not exist. Moreover, Fig. 6 shows
that the average detection time varies in correlation with
the block generation time and verification process runtime.
We can see the same effect on block generation of waiting
time p as in the previous simulation. Processing time also
plays an important role; that is because more fake FlowMod
broadcast means more searching for corresponding packet-
in, which is more common in case of heavy traffic.

3) An attacker takes control over multiple switches, and sends
fake packet-in simulating fake switch neighboring.
Discussion: The results in Fig. 7 show that the probability
of correct detection of the attack increases with the increase



(a) Detection rate (b) Average detection time

Fig. 7: Fake OFPacketInLLDP3 detection results.

Fig. 8: Computational overhead at verification phase.

of traffic. This is justified by the fact that the normal link
latency learned becomes increasingly accurate. Contrary
to previous simulations, TopoTrust also consumes more
processing time since it searches for corresponding OF-
PacketOutLLDP1 on the Blockchain, and compares their
timestamps with the baseline stored in CompleteView, as a
result, there is an increase in the detection time.

4) The graph in Fig. 8 represents the latency introduced by
TopoTrust, in both heavy and light traffic scenarios while
varying the rate of fake packets injected in the network:
Discussion: Both computational and network overhead
introduced in the transaction broadcast phase are negligible
in our tests because only a small amount of data is being
signed and sent to other nodes (see Section V-A). On the
other hand, we also measured the computational overhead
at block/topology verification time, and the results in Fig. 8
show that a small overhead is introduced, which varies
proportionally with fake packet rate. In fact, the more the
traffic and attacks are generated, the more block creation
and topology verification are carried out.

VI. CONCLUSION

This paper introduced a completely trustless, Blockchain-
based solution, dubbed TopoTrust, to detect Topology poison-
ing attacks in a SDN. The results of the conducted simulations
demonstrated that TopoTrust could successfully detect various
attacks with promising detection rates and detection times.
This work also exposed the security implications when re-
stricting the role of the data plane to only executing static flow
rules, and how various attacks can be launched consequently.
That is why researchers have recently began experimenting
programmable data planes such as P4 [24] in order to introduce
smartness into the forwarding devices. As future research
work, we will investigate the potential of stateful data planes
regarding SDN security challenges.

ACKNOWLEDGMENT

This work was supported in part by the Academy of
Finland Project 6Genesis Flagship (Grant No. 346208) and
the European Union’s Horizon 2020 research and innovation
programme under the MonB5G project (Grant No. 871780).

REFERENCES

[1] H. Yu, T. Taleb, J. Zhang, and H. Wang, “Deterministic Latency
Bounded Network Slice Deployment in IP-over-WDM based Metro-
Aggregation Networks,” IEEE TNSE, vol. 9, no. 2, pp. 596 – 607, Apr.
2022.

[2] C. Benzaid and T. Taleb, “AI-driven Zero Touch Network and Service
Management in 5G and Beyond: Challenges and Research Directions,”
IEEE Network Magazine, vol. 34, no. 2, pp. 186 – 194, Mar./Apr. 2020.

[3] ——, “ZSM Security: Threat Surface and Best Practices,” IEEE Network
Magazine, vol. 34, no. 3, pp. 124 – 133, May/June 2020.

[4] “Deterministic Networking (detnet),” https://datatracker.ietf.org/wg/
detnet/about/, accessed: 2022-04-06.

[5] S. Khan, A. Gani, A. W. Abdul Wahab, M. Guizani, and M. K.
Khan, “Topology Discovery in Software Defined Networks: Threats,
Taxonomy, and State-of-the-Art,” IEEE Commun. Surveys Tuts., vol. 19,
no. 1, pp. 303–324, 2017.

[6] Q. Li, X. Zou, Q. Huang, J. Zheng, and P. P. C. Lee, “Dynamic
packet forwarding verification in sdn,” IEEE Trans. Dependable Secure
Comput., vol. 16, no. 6, pp. 915–929, 2019.

[7] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: Detecting
security attacks in software-defined networks,” 01 2015.

[8] K. Agarwal, E. Rozner, C. Dixon, and J. Carter, “SDN traceroute:
Tracing SDN Forwarding without Changing Network Behavior,” in Proc.
of HotSDN’14, pp. 145 – 150, Aug. 2014.

[9] T. Sasaki, C. Pappas, T. Lee, T. Hoefler, and A. Perrig, “SDNsec:
Forwarding Accountability for the SDN Data Plane,” in 2016 25th
ICCCN, 2016, pp. 1–10.

[10] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning Network Visibility
in Software-Defined Networks: New Attacks and Countermeasures,” in
NDSS, 2015.

[11] P. K. Sharma, S. Singh, Y.-S. Jeong, and J. H. Park, “DistBlockNet:
A Distributed Blockchains-Based Secure SDN Architecture for IoT
Networks,” IEEE Commun. Magazine, vol. 55, no. 9, pp. 78–85, 2017.

[12] Y. Liu, B. Zhao, X. Li, S. Wang, B. Zhang, and Z. Liu, “A Trust Chain
Assessment Method Based on Blockchain for SDN Network Nodes,” in
2019 IEEE SmartIoT, 2019, pp. 240–245.

[13] “OpenFlow Switch Specification (v1.5.1),” https://opennetworking.
org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf, accessed:
2022-04-06.

[14] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Cryp-
tography Mailing list at https://metzdowd.com, 03 2009.

[15] C. Benzaı̈d, T. Taleb, and M. Z. Farooqi, “Trust in 5G and Beyond
Networks,” IEEE Network, vol. 35, no. 3, pp. 212–222, 2021.

[16] O. Hireche, C. Benzaid, and T. Taleb, “Deep Data Plane Programming
and AI for Zero Trust Self-Driven Networking in Beyond 5G,” Elsevier
J. on Computer Networks, vol. 203, Feb. 2022.

[17] A. Derhab, M. Guerroumi, L. Maglaras, M. A. Ferrag, M. Mukherjee,
and F. Khan, “BLOSTER: Blockchain-based System for Detection of
Fraudulent Rules in Software-Defined Networks,” 09 2019.

[18] B. Agborubere and E. Sanchez-Velazquez, “OpenFlow Communica-
tions and TLS Security in Software-Defined Networks,” in 2017 IEEE
iThings-GreenCom-CPSCom-SmartData, 2017, pp. 560–566.

[19] “Zero Trust Architecture,” https://csrc.nist.gov/publications/detail/sp/
800-207/final, accessed: 2022-04-06.

[20] C. Benzaid, K. Lounis, A. Al-Nemrat, N. Badache, and M. Alazab,
“Fast authentication in wireless sensor networks,” Future Generation
Computer Systems, vol. 55, pp. 362 – 375, 2016.

[21] “Floodlight Controller,” https://floodlight.atlassian.net/wiki/spaces/
floodlightcontroller, accessed: 2022-04-06.

[22] “Cisco Servers - Unified Computing System (UCS),” https://www.cisco.
com/c/en/us/products/servers-unified-computing/index.html, accessed:
2022-04-06.

[23] “Proof of Stake Instead of Proof of Work,” https://bitcointalk.org/index.
php?topic=27787.0, accessed: 2022-04-06.

[24] “P4,” https://opennetworking.org/p4/, accessed: 2022-04-06.


