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Abstract—This paper introduces a Quality of Experience (QoE)
estimation–based server benchmarking system, which can be
utilized as a part of QoE-optimized resource provisioning in our
envisioned virtual video delivery platform. The system has been
targeted for benchmarking virtual video streaming servers, i.e.,
virtual server flavors deployed in a cloud environment, based
on resulting QoE estimates. The paper also presents another
layer to the benchmarking by showing how to optimize stream
segment duration in terms of estimated QoE. The QoE estimation
in the system is based on a Pseudo-Subjective Quality Assessment
(PSQA) method developed for video streaming. Output of the
system, i.e., QoE estimation–based benchmarks, helps to find
out how different factors can affect video streaming QoE which
in turn makes parameter and resource optimizations possible.
Moreover, the paper presents experimental benchmarking results
obtained in a cloud environment.

I. INTRODUCTION

In today’s Internet, a clear majority of all network traffic

is generated by video streaming applications, including both

video on demand (VOD) and live video streaming scenarios.

Global traffic share of video streaming was 70% of all con-

sumer Internet traffic in 2015 and is forecast to grow even

further, being 82% by 2020 [1]. A substantial portion of video

streaming traffic originates from big streaming services, such

as Netflix and Youtube, which offer mainly VOD content. Cur-

rently, in North America, during peak traffic periods, Netflix

and Youtube represent together over 50% of all downstream

traffic on fixed networks [2]. Furthermore, live video streaming

services, e.g., Twitch; a video gaming broadcasting platform,

have started to become more prominent factors in the traffic

generation [3].

Video streaming is therefore becoming a strong competitor

against the traditional ways to consume video content includ-

ing television and optical storage mediums (e.g., DVD and

Blu-ray) [4][5]. The growing popularity of video streaming

is a result of improved end-user experience, due in turn to

advancements in both networking and streaming technologies.

Faster networks have enabled users to watch high-quality

video streams with lower buffering delays. Several stream-

ing protocols have been developed to enable streaming over

Internet in general. As an example, the Real-time Transport

Protocol (RTP) has been traditionally popular in Internet

telephony applications. More recent development of novel

protocols which enable streaming over HTTP, such as Apple’s

HTTP Live Streaming (HLS), has helped streaming services to

become further popular, also in the World Wide Web (WWW)

environment.

The ever-increasing demand for video streaming services,

the emergence of cloud computing, and the importance of

end user satisfaction act as motivators of this work to design

and implement a QoE estimation–based server benchmarking

system. The system can be used to study how different param-

eters of interest affect video stream QoE estimates, which in

turn enables QoE estimation–based parameter optimizations.

In order for the system to be elastic, a QoE estimation method

that works without human intervention is needed. For this

purpose, we have adopted the method proposed in [6].

The QoE of a video streaming service can be affected

by various factors which can be roughly divided into three

categories: resources allocated for the streaming infrastructure,

the video stream parameters, and outside factors. The allocated

amount of computing resources has an effect on how well the

system handles high user loads. In addition to bitrate and video

quality in general, stream-relevant parameters, such as duration

of the stream segment, may have an effect on the perceived

QoE. That is due to the fact that short video segments, i.e.,

chunks, cause streaming clients to request segments from the

server more often compared to when the segment duration is

set to high values. This may ultimately cause video playout

interruptions if the server is not able to respond fast enough.

The outside factors, affecting the QoE, include at least the

bottleneck network bandwidth between the streaming server

and the client, and the number of concurrent users viewing the

stream. High number of concurrent viewers generally means

high server load which, in turn, may cause QoE degradation.

To test real-life applicability of our proposed system, we

will carry out experimental benchmarks which focus on find-

ing out how the server load and the stream segment duration

affect the QoE of a video stream. The effect of network

bandwidth is omitted because it is not usually under control

of the streaming service provider. The key results from the

benchmarks are presented in this paper to provide general

insights on how different parameters can affect the QoE of

video streams.

The remainder of this paper is organized as follows. Sec-

tion II presents fundamental background topics of this work

and some related research work. The implementation of the

QoE estimation–based benchmarking system is described in

Section III. Section IV presents results of the experiments

we carried out using the implemented benchmarking system.

Section V briefly describes our future research work related

to enhancements to both the benchmarking system and server

load simulation. The paper is concluded in Section VI.
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II. BACKGROUND AND RELATED WORK

A. Video stream QoE estimation

The quality of a video, or alternatively the quality of a video

stream, can be assessed using either objective or subjective

methods. Traditional objective image quality models, including

peak signal-to-noise ratio (PSNR) and structural similarity

(SSIM), can be also used to assess video quality. When a

video is transmitted through a network in real-time as in the

case of video streaming, a well-known objective method to

estimate video quality is to monitor network performance in

terms of quality of service (QoS). Common QoS parameters

include packet loss and jitter which can be used as sources

for estimation. In contrast, subjective methods assess quality

as experienced by humans and are therefore more related to

the concept of QoE. In our opinion, subjective methods should

be preferred in video quality assessment because objective

measures usually do not correlate well enough with subjective

quality ratings given by humans. Experiments presented in [7]

support the previous opinion by showing that QoS parameters

alone are not enough to assess or estimate QoE of a video.

The experiments show that the Mean Opinion Score (MOS), a

traditional subjective measure of audio or video quality, is also

affected by other factors including age and gender. Performing

subjective video quality assessment is, however, costly and

slow to carry out. To speed up and automate the process,

methods that try to estimate QoE of a video without human

intervention have been proposed by several studies. Hereunder,

we briefly describe two of them.

In [6], a QoE estimation scheme based on PSQA and Ran-

dom Neural Networks (RNN) for adaptive HTTP/TCP video

streaming is proposed. In the scheme, QoE estimation relies

on the following two metrics: Quantization Parameter (QP)

used in video compression and interruptions occurred during

video playout. Higher QP value means higher information

loss and playout interruptions may be caused by bandwidth

fluctuations or too high server load. Also, while streaming

over TCP does not naturally suffer from data loss due to

TCP retransmissions, the retransmission process, itself, can

cause playout interruptions due to increased delay in the video

data delivery. That is why playout interruptions are a relevant

factor when estimating QoE of HTTP/TCP stream. In the study

of [6], the relation between the two metrics and subjective

perceived quality has been captured by RNN experiments.

Another RNN–based video QoE estimation scheme is pro-

posed in [8]. It focused on wireless networks and maps

Medium Access Control (MAC) level parameters, such as

bit error rate and queue length, to QoE. That is justified by

wireless networks being naturally error prone and queue length

having its pros and cons: smaller queue can increase packet

drop whereas longer queue can result in outdated information.

Mapping of the parameters and QoE is done by conducting

subjective tests with real users and correlating the results with

MAC level parameters. This data is then used to train the RNN

for QoE estimation. To proof the validity of the method, the

study presented an acceptable correlation between subjective

QoE and estimated QoE.

B. Benchmarking of video streaming servers

Server benchmarking generally aims to find out how many

concurrent users a server can handle with an acceptable service

quality. That said, a realistic load simulation is an impor-

tant part of a successful and relevant benchmark. However,

benchmarking results depend on many factors specific to the

underlying environment such as server, operating system and

network configurations, in addition to the actual benchmarking

variables, e.g. size of simulated load. In that sense, bench-

marking results are best applicable only in exactly identical

environments.

Benchmarking of video streaming servers requires generat-

ing realistic video workloads. In [9], methodologies for gener-

ating HTTP video workloads that try to accurately model the

request traffic of servers, are presented. Authors in [10] utilized

those methodologies for their video streaming benchmark,

and they also took into account the popularity distribution of

different videos and varying available bandwidth, i.e. video

bit-rate, among simulated users. Their work indicated that

request mix of the workload and server machine configuration,

e.g., distribution of interrupt handling between CPU cores, can

have a significant impact on benchmarking results.

C. Video stream segmentation

Video streaming requires the videos to be split into segments

which are sent from server to clients according to a streaming

protocol. Segment duration depends in particular on streaming

implementation but may affect the video quality and encoding

efficiency. Small segments lead to worse encoding efficiency,

but yield better user experience due to more accurate seeking

while playing the video. Small segments may also increase

server load because clients have to request segments more

often. On the other hand, large segments may cause playout

interruptions because their downloading requires more time.

Recommendations also exist regarding the segment duration.

For example, Apple recommends 6 seconds as a target duration

for HLS segments for the stream to be better compatible with

their devices [11]. Below, we mention two studies related to

stream segment duration and sizing.

Authors in [12] have studied how segment duration in HTTP

adaptive streaming affects video bitrate, buffer level, end-to-

end delay and network load. According to their results, long

segments result in higher video bitrate due to better bandwidth

utilization. Because of the same reason, long segments also

reduce the network load. In contrast, short segments enhance

the bitrate adaptation process and also reduce the likelihood

of buffer underflows.

The effect of segment duration on performance of stream-

ing proxy servers has been studied in [13]. The authors in

that study proposed a scheme that adjusts segment duration

dynamically according to segment popularity. More popular

segments can have long segment durations. In this way, the
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proxy server can prefetch bigger portions of multimedia files

into memory and fulfill future requests more efficiently.

D. QoE-aware virtual resource allocation for video streaming

QoE-aware resource allocation and network management,

especially management of Virtual Network Functions (VNF),

have recently gained research attention [14][15][16][17].

Methods of similar mindset, i.e., QoE-aware decision making

in resource management, would also be beneficial in the

video streaming context. A large scale video streaming service

usually requires a content distribution network (CDN) to

be able to serve different geographical regions and variable

number of concurrent users in each region. Therefore, it

is important for CDN to be dynamic and able to adapt to

current user load and performance requirements. In contrast,

video streaming service providers want to concentrate on

offering the video content itself rather than managing the CDN

infrastructure. That has led to offering of CDN as a service

(CDNaaS). For example, CDNaaS can be offered by a local

network operator on top of their Telco infrastructure. CDN

can contain different components including streaming servers,

caches, load balancers and transcoding servers, in addition

to the origin servers containing the original video content.

The benchmarking system presented in this paper could be

utilized as part of a QoE-aware system for the provisioning of

virtual server resources in a CDNaaS architecture. Therefore,

we briefly highlight two additional studies: one related to

CDNaaS concept and another one focusing on QoE-aware

VNF management in video streaming context.

In [18], a CDNaaS architecture for on-demand service

deployment over a telco CDN is proposed, where content

providers can express their requirements regarding perfor-

mance, and can then lease CDN resources where the Internet

Service Provider (ISP) has presence. Also, by performing cer-

tain testbed experiments, the authors evaluated the capabilities

of two competing virtualization technologies, i.e., traditional

full machine virtualization and containerization, both of which

can be used to implement the proposed architecture. According

to their results, traditional virtualization comes with a larger

overhead, but on the other hand, containerization may not be

mature enough as a technology yet.

Transcoding servers are an important part of large scale

video streaming infrastructures, and can also be implemented

as VNFs. Authors in [19] propose a scheme for QoE-aware

elastic transcoding service creation targeted to Mobile Edge

Computing (MEC). The scheme, where QoE assessment is

based on PSQA methodology, aims to enforce the edge to

maintain sufficient stream QoE by on-the-fly transcoding.

Their testbed experiments predict a promising real-life appli-

cability for the scheme.

III. QOE ESTIMATION–BASED BENCHMARKING SYSTEM

A. Architecture overview

The architectural components and operation logic of our

proposed benchmarking system are depicted in Fig. 1 and

elaborated below:

1) Initialization request: The QoE client requests a certain

load from the load generator;

2) Load generation: The load generator starts the load to-

wards the streaming server (i.e. running on a certain flavor

of virtual resources);

3) Streaming request: The QoE client requests a video

stream from the streaming server;

4) Streaming video: The streaming server starts streaming

the requested video to the QoE client;

5) Computing QoE: The QoE client calculates the QoE

estimates (in terms of MOS) of the video stream and

sends periodical QoE reports to the orchestrator.

Fig. 1. Architecture and operation logic of the envisioned benchmarking
system.

The QoE client is executed on a Ubuntu Linux installed in

a VirtualBox Virtual Machine (VM). The implementation of

the QoE client consists of a Python program, shell scripts, a

modified VLC player and a MOS calculation tool. The load

generator is deployed on a Debian machine powerful enough

to generate load, and is implemented as a Python program

which utilizes a wrk2 [20] load generation tool. The streaming

server and the orchestrator are executed inside an OpenStack

cloud environment as cloud instances. The orchestrator does

not necessarily need to be deployed in the cloud, as Fig. 1

suggests. The streaming server is deployed as a HTTP server,

whereas the orchestrator program is implemented with Python.

B. Streaming technology

As a streaming technology for the envisioned system, we

chose HTTP-based HLS protocol because of its wide adoption

in general, and also because it suits best the modified VLC

player we used to gather necessary data for MOS calculations.
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One of the reasons behind the wide adoption of HTTP-based

streaming is that older streaming protocols, such as Real Time

Streaming Protocol (RTSP), require the server to keep states

of user sessions while HTTP allows stateless servers and is

therefore better for horizontal scalability.

HLS streaming can be implemented by any server capable

of serving HTTP requests. Therefore, we chose a widely

adopted NGINX [21] HTTP server as our streaming server

software. Nginx was configured to serve HLS specific file

types including transport stream (.ts) files, i.e., streaming

segments, and playlist (.m3u8) files containing the list of

segments in the stream. In addition, NGINX was configured

to spawn worker processes so that the number of processes

equals the number of CPUs on the server, following NGINX

recommendations.

C. Stream encoding and segmentation method

As a test video for our experiments, we chose a 5 minutes

and 36 seconds long video which we prepared for HLS

streaming using FFmpeg [22] software. Preparation included

the following steps:

1) The video was re-encoded from 1080p to 360p resolution

which reduced the bitrate to 873 Kbps. By this, we

ensured that available bandwidth within our environment,

measured with iPerf [23] tool, won’t become a bottleneck

under the highest load scenarios.

2) The video was segmented into five separate streams each

with a certain constant segment duration, to be able to

study the effect of segment duration on QoE.

While we defined the segment duration as constant in time

units, i.e., seconds, segment size expressed in size on disk,

i.e., bytes, still varies. However, this did not matter in our case

because we wanted to study specifically the effect of segment

duration on QoE as it has the effect on overall request rate

generated by clients.

D. Load generation methods

In our system, a single QoE client plays the actual video

stream and calculates the MOS values, while the rest of the

load is created by the load generator. In our experiments, we

tried two different methods to generate the load. Firstly, we

generate loads with high HTTP request rates by requesting

a very small file from the server repeatedly. Secondly, we

generate more realistic streaming loads by simulating certain

number of concurrent users, i.e. streaming clients. In the latter

method, we create a certain number of concurrent HTTP

connections to the streaming server and request a file whose

size is equal to the average segment size, in bytes, of our

test video stream. The number of connections to be created

is determined by (1), and the request rate to be generated is

determined by (2). Here, we make an assumption that a real

streaming client would make a request for segment every n

seconds, where n equals the segment duration.

number of connections = number of users (1)

request rate =
number of users

segment duration
(2)

E. QoE estimation and reporting method

To obtain QoE estimates of the video stream, the QoE

client calculates MOS values ranging from one (1) to five

(5) by utilizing a separate software tool which implements

the PSQA-based technique presented in [6]. In the technique,

as mentioned earlier, the factors affecting MOS are playout

interruptions and Quantization Parameters of the video. To

gather interruption and QP data, the QoE client uses a VLC

player modified for this purpose. Interruption data include in-

terruption start and end timestamps in addition to interruption

durations. QP data is collected as timestamped samples of QP

values. MOS is calculated for each 16 seconds of played video

in addition to possible interruptions. This is defined as MOS

calculation window in [6]. In case the stream cannot start for

at least 30 seconds due to server overload, we assume average

MOS to be minimum (1) in that particular load scenario.

MOS calculation and reporting are triggered after each

played segment of the video. At that moment, the QoE

client determines passed MOS calculation windows, calculates

the MOS for each passed window, and reports the MOS

values to the orchestrator. In addition to MOS value for each

window, the QoE report includes current average, maximum

and minimum MOS since the beginning of the video. To

gather as much data as possible, we also included interruption

statistics to the report. Statistics consist of interruption count

and durations in addition to average, minimum and maximum

duration. In this manuscript, the purpose of the orchestrator is

limited to collecting the QoE reports. However, we envision

the orchestrator to have a more central role in our future

research work, as described in Section V.

IV. PERFORMANCE EVALUATION

A. Impact of server load on QoE

In the first experiment, we used the first load generation

method described in Section III-D. The objective was to find

out how different request loads may affect video stream QoE.

We run the benchmarks with five different load scenarios using

the following request rates: 1200, 1250, 1300, 1350 and 1400

requests per second. While generating each request rate, the

load generator was instructed to create 500 concurrent HTTP

connections to the server to better simulate concurrency. The

test video, using segment duration of 4 seconds, was streamed

twice for each load scenario, and average MOS of the two

streams was recorded. We run this experiment against the

streaming server deployed on a cloud VM flavor with 1 virtual

CPU (vCPU). Fig. 2 presents the results of this experiment.

The results show that average MOS quickly drops to min-

imum (1) when the load exceeds the server capacity. This

indicates that streaming servers may perform well in terms of

QoE even when the load is very close but just under the server

capacity. By utilizing that information, a server maintainer

may consider adding more computing power only when the

load seems to be very close to capacity. It is worth noting that

the server capacity in terms of request rate depends on the
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Fig. 2. Impact of server load on QoE.

size of the requested file. In this test, we used a file size of

1000 bytes to be able to experiment with high request rates.

B. Impact of server load and stream segment duration on QoE

In the second experiment, we used the second load genera-

tion method described in Section III-D which also allowed us

to find out how different stream segment durations may affect

QoE. We run the benchmarks with load scenarios ranging from

100 to 600 concurrent users, and with five different segment

durations, i.e., 1, 2, 4, 8 and 16 seconds. Benchmarks with

load scenarios of 100, 200, 300, 400, 500 and 600 were run

for each segment duration. In addition to that, we increased

the load scenario density when average MOS values started to

drop. We streamed the test video twice for each benchmark

scenario, and recorded average MOS of the two streams. All

the benchmark scenarios with corresponding average MOS

values are presented in Fig. 3. Also in this experiment, we

used a cloud VM flavor with 1 vCPU for the streaming server.

The presented results indicate that segment duration may

have a remarkable effect on video stream QoE. In our experi-

ment, the longest segment duration, i.e. 16 seconds, seemed to

be the best choice in terms of resulting QoE. In that scenario,

average MOS started to drop from its maximum value (5) after

the load increased over 450 concurrent users. In the scenario

of 1-second segments, the QoE degradation started already

around 150 concurrent users. In all of the segment duration

scenarios, average MOS dropped to its minimum value (1)

relatively quickly after the load exceeded the server capacity.

To sum up, these results can be seen as an example indicating

how duration of stream segment can be optimized to increase

the number of concurrent users a streaming server is likely to

be able to serve, given a certain QoE requirement.

V. FUTURE WORK: USER-FRIENDLY BENCHMARKING AND

ENHANCED LOAD SIMULATION

In order to make the benchmarking system more user-

friendly, our future work will focus on exposing the bench-

Fig. 3. Impact of server load and stream segment duration on QoE.

marking system through a web application which can be

implemented in the orchestrator. In this scenario, the orches-

trator would have a central role. It would handle benchmark

request coming from a user by deploying a requested cloud

flavor, forwarding load request to load generator, measuring

QoE, and finally delivering QoE reports to the user. Designed

architecture and operation logic of the system is presented

in Fig. 4. The presented benchmarking system would be

an important part of our envisioned virtual video delivery

platform, components of which are outlined, e.g., in [14], [18],

and [24].

Moreover, if utilized in conjunction with a virtual infrastruc-

ture management scheme proposed in [25], the benchmarking

system would offer a user a possibility to take samples of

resulting QoE of a video streamed from different sized flavors,

i.e., with different number of virtual CPU cores, memory and

storage.

Also, our future work includes enhancing the load genera-

tion method to simulate streaming clients in a more realistic

way. We plan to create simulation workloads where all stream

segments are requested sequentially one by one, instead of

requesting a single file repeatedly. It would be interesting to

find out if a more realistic user simulation loads the server

differently compared to the methods we used in this work.

VI. CONCLUSION

In this paper, we presented a QoE estimation–based server

benchmarking system targeted to be part of our envisioned

virtual video delivery platform. In the system, video stream

QoE is estimated in terms of MOS which is obtained automati-

cally without any human intervention using a selected PSQA-

based method. We showed that the system can be used to

find out how different factors, such as server load, affect QoE

of a video stream. Stream segment duration affects the load

characteristics, and, according to the performed experiments,

therefore also affects QoE. It is thus an important factor to be

taken into account during resource optimizations. For example,
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Fig. 4. Architecture and operation logic of the envisioned user-friendly
benchmarking system.

adjusting segment duration based on estimated QoE instead of

increasing flavor size can yield more efficient resource usage

and cost savings.
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