
Network Policy Enforcement in cloud-native
environments

Pedro R. Tomas1,2[0000−0001−7938−4972], Sofia Silva2[0009−0008−1162−769X],
Marco Neto2[0000−0002−9534−6279], Jorge Proença2[0000−0001−9353−0040], Luis

Rosa2[0000−0002−8230−4045], Luis Cordeiro2[0000−0001−5471−7064], Tarik
Taleb3[0000−0003−1119−1239], and Tiago Cruz1[0000−0001−9278−6503]

1 University of Coimbra, DEI, Coimbra, Portugal
{tomas,tjcruz}@dei.uc.pt

2 OneSource, Coimbra, Portugal
{pedro.tomas,sofia.silva,marco.neto,jorge.proenca,luis.rosa,luis.cordeiro}

@onesource.pt
3 Faculty of Electrical Engineering and Information Technology, Ruhr University

Bochum, Bochum, Germany
tarik.taleb@rub.de

Abstract. The shift towards cloud-native environments has gained sig-
nificant momentum, and with it, several security and privacy concerns
have arisen. One of them is related to the reliable definition and en-
forcement of network policies in such scenarios. This paper starts by dis-
cussing those concerns, reviewing existing technologies and later, intro-
duces a policy orchestrator. Such a proposal addresses the research gap
and the notoriously difficult task of ensuring compliance and compatibil-
ity with standards. Indeed, the proposed approach supports XACML and
JSON-based requests, ensuring interoperability with established stan-
dards while also accommodating cloud-native specificities. This paper
presents a proof-of-concept of the policy orchestrator in a real-world
scenario, demonstrating the usefulness and feasibility of the proposed
approach.

Keywords: Cloud-native environments · Policy Enforcement · Policy
Orchestrator

1 Introduction

Cloud-native solutions are increasingly adopted over traditional monolithic ap-
proaches due to their scalability, elasticity, and adaptability. Nevertheless, en-
suring data privacy and security in such complex domains poses several security
and privacy challenges, including the correct enforcement of security policies.
In this work, we present a novel Policy Orchestrator that aims to ensure a
smooth transaction between potential security applications and policy enforce-
ment mechanisms.

The contributions of this work are the following: (i) review of the existing
technologies for policy definition and enforcement in cloud-native environments;



2 Tomas, P. R. et al.

(ii) the proposal of an innovative Policy Orchestrator tailored, but not limited,
to cloud-native paradigms (including a PoC demonstrating its feasibility).

This paper is divided as follows: Section 3 presents the existing technologies
for cloud-native definition and/or enforcement; Section 4 details the Policy Or-
chestrator, namely by presenting its inputs/outpus and also the PoC develop
to validate the feasibility of the proposed approach; Section 5 presents a brief
discussion on the topic at hands, in addition to the advantages brought by the
proposed approach; Section 6 presents the conclusions of this work.

2 Related Work

Nathaniel et al. [21] investigated the impact of Istio and Nginx API gateways
on microservice latency and resource usage in Kubernetes environments. They
deployed ExpressJS-based backend services on Kubernetes clusters, integrating
Istio for service mesh and Nginx as a traditional ingress controller. Monitoring
tools like Prometheus, Grafana, and Kiali were utilized. Load tests via k6 simu-
lated up to 300 requests/sec. Results showed Istio offered lower latency at high
request rates (above 175 RPS) but consumed more CPU and RAM compared
to Nginx. Their findings recommend Istio for high-traffic scenarios, while Nginx
is better suited for lower traffic with minimal resource overhead.

Paul et al. (2024) [25] propose an automated cloud compliance framework
integrating Open Policy Agent (OPA) within AWS CI/CD pipelines. They eval-
uated the usage of AWS CloudFormation templates against predefined security
policies using Rego, ensuring policy adherence before deployment. The frame-
work is used to prevent deployments violating compliance policies and prevent-
ing misconfigurations. Experimental results demonstrate successful policy vali-
dation and automatic remediation, significantly improving the security posture,
efficiency, and scalability of cloud infrastructures.

Budigiri et al. [3] analysed Kubernetes network policies’ impact on perfor-
mance and security in multi-tenant 5G edge computing. Focusing on eBPF-based
CNI plugins, Calico and Cilium, the authors evaluated latency and throughput
using netperf on OpenStack-based testbeds. Results show negligible overhead,
with Calico outperforming Cilium, particularly for inter-node traffic due to its
non-tunneling design. Findings confirm Kubernetes network policies as a scal-
able, low-overhead solution for secure, low-latency inter-container communica-
tion in edge environments.

3 Existing technologies

This section presents some of the existing cloud-native tools for policy definition
and enforcement.

3.1 Open Agent Policy

Open Policy Agent (OPA) is an open-source policy engine for defining policies in
cloud environments [4]. It separates policy definition from enforcement, providing



Network Policy Enforcement in cloud-native environments 3

access control through detailed policies to ensure proper resource access and
prevent unauthorized actions. OPA enables uniform policy definitions across
multiple services, reducing the risks of misconfigurations and enforcement issues
[5].

OPA introduced Rego, a high-level declarative language designed to define
policies, being all the policies used in OPA written in this language. Rego was
developed under the concept of ’Policy as Code’, aiming to make the policy
definition process easier, making it achievable for end-users and not only for
network experts (as in different policy definition schemas).

The OPA architecture is designed to be flexible and scalable. An end user
or application can interact with OPA via its REST API. Figure 1 presents the
general workflow steps. The application initiates the request, which is processed
by the OPA engine. OPA evaluates this request against the policies present in
their local database and returns a decision.

Fig. 1. Open Policy Agent Service Diagram [1].

3.2 Service Mesh

A service mesh is an architectural pattern for connecting distributed microser-
vices, enabling the seamless implementation of service-level features such as the
enforcement of network security policies [24] [12]. The main advantage of using a
service mesh stems from its ability to effectively manage and optimize traffic flow
across various cloud services. The communication between services is end-to-end
encrypted, enhancing security across multi-cloud infrastructure [17]. Moreover,
an important consideration is that service meshes are language-agnostic, mean-
ing they function independently of the underlying programming language being
used by the different components in the scenario [10].



4 Tomas, P. R. et al.

Fig. 2. Service Mesh Architecture.

Envoy proxy is one of the most prominent service mesh implementations. In
a service mesh architecture, Envoy is typically deployed as a sidecar proxy with
the primary objective of facilitating service-to-service communication within the
Kubernetes cluster [12]. The sidecars can be configured to define the specific
services that are allowed to communicate with the Envoy proxy. Additionally,
configurations can be made to specify the ports and protocols that should be
used for communication [18].

3.3 Istio

Istio is an open-source service mesh implementation designed to manage and
control traffic within Kubernetes clusters[10]. It provides automatic traffic load
balancing and a policy layer for managing access control [9]. Istio is based on
the Envoy architecture, meaning it operates as a proxy with the main objective
of intercepting and managing all inbound and outbound network traffic between
services.

Istio architecture, present in Figure 3, is composed of a Data and a Control
plane [8]. The Istio’s control plane manages the configuration and operation of
Istio components, including traffic management, policy enforcement, and observ-
ability. It is responsible for communicating and configuring the proxies (sidecars)
deployed next to a certain component [8]. The data plane consists of a collec-
tion of proxies that manage the network communication between components.
In addition, these proxies gather and report telemetry data on all traffic within
the service mesh. Initially, Istio supported only the sidecar mode, yet has re-
cently added support to the ambient mode: in sidecar mode, the Envoy proxy
is deployed and injected next to the application to be protected as a sidecar; in
this mode, each proxy is capable of handling both Layer 4 and Layer 7 traffic. In
ambient mode, a per-node Layer 4 proxy is used, with the option to integrate
a per-namespace Envoy proxy to provide additional Layer 7 functionalities [7].
In contrast to a library-based approach, Istio enables a centralized configuration
of sidecar proxies that can be reused across different services with minimal or
no modifications.



Network Policy Enforcement in cloud-native environments 5

Fig. 3. Istio Architecture Diagram [8].

On the downside, Istio has a substantial learning curve presented by Istio,
considering its (initial) complexity. In addition, the use of service mesh intro-
duces an increased demand for computational resources. In some scenarios, its
introduction is estimated to nearly double the number of containers, resulting in
an increase in computational demand and consequently increased cost, accom-
panied by a potential decrease in performance [10].

3.4 Calico

Calico is an open-source networking and network security solution for containers
owned by Tigera. The functionalities provided by Calico are divided into two
main strands: the Calico CNI and the Calico network policy suite. The first is a
networking engine used in Kubernetes, while the second refers to network policy
management capabilities [29].

Calico works in TCP/IP Layer 3, providing support to extensive enterprise-
level deployments. Calico offers an easy-to-use interface for defining network
policies for Kubernetes objects. It extends traditional network policy features
with additional capabilities such as the introduction of specific action rules,
including restrictions, permissions, and logging and DNAT traffic flow control
[29]. However, the overall complexity of the system may increase [27].

3.5 Cilium

Cilium, similar to Calico, is a cloud-native networking solution and CNI plugin
that leverages eBPF to enhance network security and system performance [2].
It offers the option to fully replace kube-proxy with eBPF, making significant
advancements in Linux kernel technology. This approach strengthens security,
performance and enables the efficient implementation of network and security
policies, far surpassing the capabilities of traditional tools [23].

Cilium implements the Kubernetes NetworkPolicy to enforce security policies
(on layer 4 level) that regulate inter-pod communication. In addition, Cilium pro-
vides support for Layer 7, enabling more advanced filtering and policy constructs.
By leveraging the use of eBPF, Cilium benefits from its high-performance load



6 Tomas, P. R. et al.

balancing, without depending on the traditional packet proxies, improving la-
tency and enhancing overall performance [11]. One of the significant advantages
of this approach lies in its ability to replace kube-proxy, facilitating network ob-
servability through Hubble, efficiently managing L3/L4 traffic, and subsequently
reducing operational overhead. Ultimately, Cilium combines ease of use, high
performance, and strong security, making it a highly effective solution for the
networking challenges faced by modern Kubernetes environments [23].

Figure 4 presents the Cilium architecture, which is divided into four com-
ponents: The Cilium Agent, a DaemonSet responsible for configuring eBPF
and managing its lifecycle. The Cilium CNI Plugin for managing the config-
uration of network namespaces. The Hubble provides observability features for
network flow monitoring. The Cilium Operator manages cluster-wide opera-
tions, including IP address allocation, scaling, and ensuring the high availability
of network services.

Fig. 4. Cilium architecture [20].

3.6 Kyverno

Kyverno is a cloud-native policy engine for Kubernetes that allows users to de-
fine rules to control resources when being deployed in a cluster. It supports pol-
icy validation, mutation, generation and cleanup of Kubernetes resources [16].
Kyverno operates as a dynamic admission controller in a Kubernetes cluster.
Kyverno handles admission webhook HTTP callbacks from the Kubernetes API
server, applying the appropriate policies to either enforce admission policies or
deny requests. The Webhook serves as the server responsible for handling Ad-



Network Policy Enforcement in cloud-native environments 7

missionReview requests from the Kubernetes API and forwarding them to the
Engine for processing [15].

The Kyverno admission process consists of three essential functional compo-
nents, which are described below:

1. The Admission Controller components are tasked with validating or al-
tering requests as part of the admission control procedure [13].

2. The AdmissionReview is a Kubernetes object utilized in the admission
control process, encapsulating detailed information regarding the resource
request, including the type of request, the identity of the user submitting it,
and the contents of the resource itself [14].

3. The Engine in Kyverno refers to the core processing unit that evaluates and
enforces the policies specified for Kubernetes resources.

Kyverno offers a collection of over 280 pre-built policy templates that can be
quickly imported and applied to a Kubernetes cluster. Therefore, saving time and
effort for developers by eliminating the need to define them from scratch [6]. On
the downside, Kyverno seems to be limited to Kubernetes environments, making
it unsuitable for other cloud-native environments. Additionally, being newer than
other tools (namely, OPA), may present challenges in terms of maturity and
stability [22].

Table 1 presents a brief comparison between the tools previously described.

Table 1: Tools comparison

OPA Istio Calico Cilium Kyverno

Traffic
Manage-
ment

No Yes Yes Yes No

CNI No No Yes Yes No

Service
Mesh

No Yes No No No

Admission
Control

Yes No No No Yes

Primary
Use Case

Policy defini-
tion

Service
mesh, traffic
management

Policy en-
forcement,
CNI

Networking
and secu-
rity with
eBPF-based
policies

Kubernetes-
native policy
management



8 Tomas, P. R. et al.

Focus Policy as
code, autho-
rization, and
auditing

Microservice
commu-
nication,
observability

Network se-
curity, rout-
ing, and poli-
cies

Advanced
networking,
security, and
observability

Kubernetes
resource
validation,
mutation,
and genera-
tion

Policy Lan-
guage

Rego
(Declara-
tive policy
language)

Custom
YAML for
policies (En-
voy, Istio)

Calico net-
work policies

Cilium net-
work policies

YAML-
based policy
definitions

Policy
Type

Access con-
trol, resource
management

traffic man-
agement,
routing,
security
policies

Network
policies

Network
policies

Kubernetes
policy en-
forcement

Integration Kubernetes
and other en-
vironments

Kubernetes,
Istio enabled
clusters

Kubernetes
and other en-
vironments

Cloud-native
environ-
ments (e.g.,
Kubernetes)

Kubernetes-
native tools,
CRDs

Moreover, some of the tools can be combined and used for different scopes.
OPA can be used with Istio, separating the policy definition from the policy
enforcement, respectively, leveraging the idea of a secure Service Mesh. Calico
can be used in standalone Kubernetes environments, leveraging its own CNI to
achieve policy enforcement. In a similar form, Cilium can be used in standalone
mode, also providing its own CNI implementation, yet with a significant dif-
ference in the network routing and management, which is achieved with eBPF
entries on each cluster node. Lastly, Kyverno is focused on the policy definition
and management aspect, namely by supporting native Kubernetes policies while
also providing support for other environments (i.e., CI/CD and/or JSON-based).

4 Proposed Approach

All the aforementioned tools employ different methods for defining policies,
which, besides complexity, can pose an interoperability challenge for applica-
tions responsible for securing a Kubernetes environment (e.g., NIDS). To miti-
gate such an issue, this work presents a policy orchestrator that serves both as
a Policy Decision Point (PDP) and a bridge between diverse access control sys-
tems, ensuring consistent policy enforcement across different technology stacks.

Designed for versatility and scalability, the policy orchestrator supports ac-
cess control requests in both Extensible Access Control Markup Language
(XACML) and JavaScript Object Notation (JSON) formats through a dedicated
northbound interface. XACML is supported considering its role within legacy
systems that rely on XACML for fine-grained policy control, namely its position



Network Policy Enforcement in cloud-native environments 9

as a standard for network policy definition [19]. In addition, JSON is supported,
aiming to provide support for modern microservices and web applications where
JSON is used considering its flexibility and simplicity [26].

The Policy Orchestrator supports authentication mechanisms, which ensure
that only authorized entities interact with it. External security frameworks or
applications must first register with the orchestrator, providing identity and ac-
cess details. Upon human-based approval, the orchestrator issues a JWT token,
serving as proof of authorization. The orchestrator also implements RBAC to
manage registered entities and prevent cross-environment tampering. When an
entity requests policy enforcement, it must include the JWT token in the Au-
thorization header. The orchestrator validates the token’s signature, expiration,
and permissions, processing or rejecting the request accordingly.

The southbound interface is designed to be a plug&play component, being
prepared to interact with all of the previous mentioned technologies, therefore
ensuring a continuous and seamless integration between different systems.

Moreover, the core processing unit of the orchestrator is empowered with
AI-based mechanisms designed to improve security and network management.
These mechanisms serve two major tasks: (i) intelligent policy recommendations,
where the system continuously analyses the current network status, topology, and
traffic patterns to suggest optimal access control policies; and (ii) provide usage
anomaly detection aiming to detect malicious usages coming from end users via
its northbound interface.

4.1 Policy Orchestrator Architecture

Figure 5 presents the policy orchestrator architecture, which comprises several
key components that collaborate to ensure seamless policy enforcement across
diverse systems.

The first component is the client or requester, which represents any system
that submits requests to the orchestrator via its northbound interface. These
requests can be formatted in either XACML or JSON.

The second component is the orchestrator itself, which is composed of: the
northbound interface, which is the point of contact between the external se-
curity applications and the orchestrator; the AI-based processing unit - whose
primary function is to process the incoming requests; and, the southbound inter-
face, which is used to communicate with the different Policy Enforcement Points
(PEP) and ensure the correct policy enforcement.

The third component is the PEP, responsible for enforcing the policy deci-
sions made by the orchestrator, ensuring that access control rules are consistently
applied.

4.2 REST API

The northbound interface of the policy orchestrator exposes a RESTful API that
handles incoming requests in both XACML and JSON formats. This API is de-



10 Tomas, P. R. et al.

Fig. 5. Policy Orchestrator architecture.

signed to facilitate seamless interaction between clients and the orchestrator.The
REST API provides the following endpoints for policy management:

Table 2. API Endpoints for Policy Orchestrator

Method Endpoint Description
POST /policy/json Accepts and processes policy requests in JSON format
POST /policy/xacml Accepts and processes policy requests in XACML format
GET /policy/json/id Retrieves the policy specified by ID, if specified, all stored

policies, otherwise (in JSON format)
GET /policy/xacml/id Retrieves the policy specified by ID, if specified, all stored

policies, otherwise (in XACML format)

4.3 Proof of Concept

To validate the feasibility of the proposed approach, a scenario was designed to
demonstrate the dynamic enforcement of network security policies based on user
behaviour, ensuring that unauthorized or malicious users are prevented from
accessing critical services in a cloud-native environment.

This scenario replicates a real-world cloud-native system where two users are
attempting to access a web page. While performing network traffic analysis, the
external security framework detects malicious behaviour from one of the users,
who tries to circumvent the web page security using SQL Injection commands.



Network Policy Enforcement in cloud-native environments 11

The sequential diagram present in Figure 6 presents the potential steps taken in
such a situation.

Fig. 6. Workflow of dynamic policy enforcement using the HSPF as an external security
framework, the proposed policy orchestrator, Calico for network policy enforcement,
and Istio for service mesh traffic control.

In detail, the Holistic Security and Privacy Framework (HSPF) [28] was used
to perform the network traffic anomaly detection, acting as the external security
framework. Initially, the HSPF registered with the policy orchestrator and ob-
tained a JWT token for authentication. Once registered, the HSPF continuously
analysed the network traffic. In this case, a malicious activity was detected, re-
sulting in the HSPF sendinga request to the orchestrator to enforce a blocking
policy against the malicious user.

Upon receiving this request, the orchestrator initiated the policy enforcement
process by communicating with Calico to define a network policy containing
relevant information about the detected threat. Calico then applied the policy,
restricting the user’s access to the web page and confirming the enforcement to
the orchestrator.



12 Tomas, P. R. et al.

Since all traffic is routed through Istio, and Calico was used as an Exter-
nal Authorization Provider for Istio, Istio continually queried Calico to verify if
the incoming traffic could be delivered to the desired component or if an action
should be taken (for instance, to drop the traffic). When the blocked user tried
to reach the web page again, and Istio queried Calico to determine if the traffic
should be allowed, Calico informed about the presence of a blocking rule, lead-
ing Istio to drop the communication, thus, effectively preventing the user from
accessing the target web page.

5 Discussion

Different solutions exist to perform network policy definition and/or enforcement
over cloud-native environments (i.e., OPA, Istio, Calico, Cilium, and Kyverno),
namely in Kubernetes environments. Some may be used as standalone solutions,
while others decouple the policy definition from the policy enforcement, naturally
requiring two approaches to perform both parts. Beyond its advantages and
disadvantages, all these solutions are useless if a manager or responsible security
application is not capable of communicating with them. To such purpose, in this
work, a policy orchestrator is presented that aims to facilitate the communication
between components identifying the need for the definition of a traffic policy and
the tools that actually enable such process.

A key advantage of this approach is its ability to integrate legacy and mod-
ern access control mechanisms within a single orchestration layer. While legacy
systems rely on XACML for fine-grained access control, modern microservices
and cloud-native applications benefit from the simplicity of JSON-based policies.
A PoC is provided, aiming to validate the feasibility of the proposed approach,
representing a realistic situation in an E2E perspective, that is, from the identi-
fication of the attack, going through the definition of the network traffic policy
up to the respective policy enforcement and consequent pratical application.

6 Conclusion

This paper explored the challenges of policy enforcement in cloud-native envi-
ronments, highlighting the characteristics of existing tools for policy definition
and/or enforcement. To address the gap between potential security frameworks
or system administrators and such tools, this paper introduced a policy orches-
trator designed to streamline the policy definition and/or enforcement process.

The proposed policy orchestrator provides a flexible, scalable, and interoper-
able solution for managing policies in both JSON and XACML formats, ensuring
seamless policy enforcement across different tools. Offering a RESTful API, en-
hanced with an authorization mechanism, simplifies policy administration while
enhancing security and compliance in distributed environments.

An immediate step of future work is the continuous development to support
all the identified technologies and, as well as the continuous development and
fine-tuning of the existent AI/ML algorithms, but also the exploration of other



Network Policy Enforcement in cloud-native environments 13

AI-based mechanisms to support real-time policy evaluation, adaptive decision-
making, and policy recommendation systems. Additionally, further performance
evaluations are envisioned to assess the impact, feasibility and advantages of the
proposed approach.

Acknowledgments. This work was supported in part by the EU’s HE research
and innovation programme HORIZON-JU-SNS-2022 under the RIGOUROUS project
(Grant No. 101095933) and by the EU’s European Union’s HE Research and Innova-
tion programme HORIZON-CL3-2022-CS-01-01 under the MIRANDA project (Grant
No. 101168144). The views expressed in this contribution are those of the authors and
do not necessarily represent the project nor the Commission.

References

1. Agent, O.P.: Open policy agent service diagram (2025),
https://www.openpolicyagent.org/docs/latest/images/opa-service.svg, accessed:
2025-03-12

2. Budigiri, G., Baumann, C., Muhlberg, J., Truyen, E., Joosen, W.: Network policies
in kubernetes: Performance evaluation and security analysis. pp. 407–412 (06 2021).
https://doi.org/10.1109/EuCNC/6GSummit51104.2021.9482526

3. Budigiri, G., Baumann, C., Mühlberg, J.T., Truyen, E., Joosen, W.:
Network policies in kubernetes: Performance evaluation and security
analysis. In: 2021 Joint European Conference on Networks and Com-
munications 6G Summit (EuCNC/6G Summit). pp. 407–412 (2021).
https://doi.org/10.1109/EuCNC/6GSummit51104.2021.9482526

4. Caracciolo, M.: Policy as Code, How to Automate Cloud Compliance Veri-
fication with Open-Source Tools. Ph.D. thesis, Politecnico di Torino (2024),
https://webthesis.biblio.polito.it/26908/

5. Devoteam: Take control of your policy enforcement with open policy
agent (opa) (2025), https://www.devoteam.com/expert-view/take-control-of-your-
policy-enforcement-with-open-policy-agent-opa/, accessed: 2025-03-07

6. Devoteam: Unlocking kubernetes security and compliance with kyverno: A dis-
tributed cloud technology to consider (2025), https://www.devoteam.com/expert-
view/unlocking-kubernetes-security-and-compliance-with-kyverno-a-distributed-
cloud-technology-to-consider/, accessed: 2025-03-11

7. Istio: Data plane modes in istio (2025),
https://istio.io/latest/docs/overview/dataplane-modes/, accessed: 2025-03-07

8. Istio: Istio architecture diagram (2025),
https://istio.io/latest/docs/ops/deployment/architecture/, accessed: 2025-03-12

9. de Jesus Silva, J.M.: Segurança zero trust para microserviços em sistemas escaláveis
(06 2024)

10. Jösch, R.M.: Managing microservices with a service mesh: An implementation of
a service mesh with kubernetes and istio (2020), accessed: 2025-03-07

11. Ksolves: Cilium vs. calico: A deeper look into kubernetes networking (2024),
https://www.ksolves.com/blog/devops/cilium-vs-calico-a-deeper-look-into-
kubernetes-networking, accessed: 2025-03-24

12. Kuikka, S.: Kubernetes networking: Comparative insights into api gateways and
service mesh implementations (03 2024)



14 Tomas, P. R. et al.

13. Kyverno: Admission controllers (2023),
https://kyverno.io/docs/introduction/admission-controllers/, accessed: 2025-03-
24

14. Kyverno: Admissionreview - writing policies with jmespath (2023),
https://kyverno.io/docs/writing-policies/jmespath/admissionreview, accessed:
2025-03-24

15. Kyverno: How kyverno works (2023), https://kyverno.io/docs/introduction/how-
kyverno-works/, accessed: 2025-03-24

16. Kyverno: Introduction to kyverno (2023), https://kyverno.io/docs/introduction/,
accessed: 2025-03-24

17. Luca, C.: Architecture of multi-cloud kubernetes environments (03 2024)
18. Malviya, R., MOHAMMED, N.: Leveraging istio for advanced traffic manage-

ment and securityin generative ai applications on kubernetes cluster (11 2024).
https://doi.org/10.5281/zenodo.14199369

19. Mawla, T., Gupta, M., Sandhu, R.: Specification and enforcement of activity de-
pendency policies using xacml (2024), https://arxiv.org/abs/2403.10092

20. Medium: Diagram illustrating a concept (2025),
https://miro.medium.com/v2/resize:fit:720/format:webp/0*K0swBsKe9-
Rlivex.png, accessed: 2025-03-12

21. Nathaniel, L., Perdana, G.V., Hadiana, M.R., Negara, R.M., Hertiana,
S.N.: Istio api gateway impact to reduce microservice latency and re-
source usage on kubernetes. In: 2023 International Seminar on Intel-
ligent Technology and Its Applications (ISITIA). pp. 43–47 (2023).
https://doi.org/10.1109/ISITIA59021.2023.10221035

22. Nirmata: Kubernetes policy comparison: Kyverno vs opa gatekeeper (2025),
https://nirmata.com/2025/02/07/kubernetes-policy-comparison-kyverno-vs-opa-
gatekeeper/, accessed: 2025-03-11

23. Oberoi, S.: Cilium: A comprehensive guide to networking, security, and observ-
ability in kubernetes (2025), https://medium.com/@simardeep.oberoi/cilium-
a-comprehensive-guide-to-networking-security-and-observability-in-kubernetes-
41e11fa69d15, accessed: 2025-03-10

24. Patharlagadda, P.P.: Kubernetes traffic management using istio. Journal of Media
Management pp. 1–4 (02 2022). https://doi.org/10.47363/JMM/2022(4)E101

25. Paul, A., Manoj, R., S, U.: Amazon web services cloud compliance au-
tomation with open policy agent. In: 2024 International Conference
on Expert Clouds and Applications (ICOECA). pp. 313–317 (2024).
https://doi.org/10.1109/ICOECA62351.2024.00063

26. Peng, D., Cao, L., Xu, W.: Using json for data exchanging in web service applica-
tions 7 (12 2015)

27. Team, K.: Comparing kubernetes container network interface (cni) providers
(2025), https://kubevious.io/blog/post/comparing-kubernetes-container-network-
interface-cni-providers, accessed: 2025-03-10

28. Tomas, P.R., Felix, P., Rosa, L., Gomes, A.S., Cordeiro, L.: A novel approach
for continual and federated network anomaly detection. In: Arai, K. (ed.) Pro-
ceedings of the Future Technologies Conference (FTC) 2024, Volume 4. pp. 212–
225. Springer Nature Switzerland, Cham (2024). https://doi.org/10.1007/978-3-
031-73128-0_14

29. Xgrid: Implementing kubernetes network policies with calico (2025),
https://xgrid.medium.com/implementing-kubernetes-network-policies-with-
calico-83c37bb822a0, accessed: 2025-03-10


