
1

A Survey on In-network Computing: Programmable
Data Plane And Technology Specific Applications

Somayeh Kianpisheh and Tarik Taleb

Centre for Wireless Communications, University of Oulu, Finland
Emails: somayeh.kianpisheh@oulu.fi, tarik.taleb@oulu.fi

Abstract—In comparison with cloud computing, edge comput-
ing offers processing at locations closer to end devices and reduces
the user experienced latency. The new recent paradigm of in-
network computing employs programmable network elements
to compute on the path and prior to traffic reaching the edge
or cloud servers. It advances common edge/cloud server based
computing through proposing line rate processing capabilities
at closer locations to the end devices. This paper discusses use
cases, enabler technologies and protocols for in-network com-
puting. According to our study, considering programmable data
plane as an enabler technology, potential in-network computing
applications are in-network analytics, in-network caching, in-
network security, and in-network coordination. There are also
technology specific applications of in-network computing in the
scopes of cloud computing, edge computing, 5G/6G, and NFV.
In this survey, the state of the art, in the framework of the
proposed categorization, is reviewed. Furthermore, comparisons
are provided in terms of a set of proposed criteria which assess
the methods from the aspects of methodology, main results, as
well as application-specific criteria. Finally, we discuss lessons
learned and highlight some potential research directions.

Index Terms—in-network computing, programmable data
plane, software defined networking, cloud computing, edge com-
puting, 6G, and network function virtualization.

I. INTRODUCTION

Over the years, computation history has experienced evolu-
tion of various paradigms from traditional parallel, and grid
computing to cloud computing. Cloud computing [1] that
offers various service models including Infrastructure-as-a-
Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-
as-a-Service (SaaS), brings advantages and capabilities such
as scalability, on-demand resource provisioning, pay-as-you-
go pricing model, and facilitated applications and services
provisioning.

The era of 5G and beyond introduces a variety of new
applications like mobile video conferencing, connected vehi-
cles, e-healthcare, online gaming, and virtual reality. Blending
the different research initiatives by industries and academia,
these new applications demand high data rate in the scale of
1 ∼ 100 Gbps and low latency in the scale of 0.1 ∼ 1 ms
round trip latency for ultra-low latency applications [2], [3].
Cloud computing can not sustain this ongoing requirements
because of some issues. The main issue is that the distance
between the cloud resources and the end device is large and the
connection is established over the Internet which suffers from
the aspect of latency. Furthermore, the processing capacity of
cloud servers is in a range that can not compete with the

emerging requirements. For example, the latest generation of
general purpose computing instances in Amazon EC2 cloud
service has processing capability in order of 5 ∼ 50 Gbps [4].
However, this processing capability can not efficiently be
responsive for massive number of applications and the pattern
of internet of things which generate huge traffic volume,
competing in resource utilization for processing, where ap-
plications require high data rate (e.g., multiple-Gbps for high
quality 360 degree video).

The idea of edge computing [5] with various paradigms
of cloudlet, mobile edge computing and fog computing, was
introduced to tackle the cloud related issues. Edge computing
provides resources at the edge of network and closer to
end devices. Though the latency will be improved and the
processing capacity will be enhanced, it is unlikely to sustain
the ongoing traffic explosion in the long run. Furthermore, the
latency is still far from the required one for ultra-low-latency
applications within less than 1 ms latency requirement e.g.,
0.1 ms round-trip latency.

The recent idea of distributed cloud computing improves
the latency of cloudlet, mobile edge computing and fog com-
puting paradigms by exploiting the computation and storage
capacity of intelligent neighbourhood devices for computation
or caching offloading [6], [7]. However, the computation and
power limitation issues, mobility of neighbourhood devices,
and more importantly the security aspects in computation
offloading to neighbourhood devices are major challenges. A
more secure, power-efficient, and stable computation fabric
with high processing capacity can drastically improve the
computation and be regarded as a complementary of the
existent computational paradigms. In this direction, in-network
computing paradigm, based on the programmable data plane
technology (the evolved concept of SDN), can offer power-
efficient with high processing capacity network elements at
the edge of the network.

To simplify traffic engineering and network management,
and to allow a more convenient development of new protocols
and applications, the concept of Software Defined Networking
(SDN) [8] was introduced in which the forwarding devices
are decoupled from the control plane. According to SDN, the
network intelligence and routing policies are applied through
logically centralized controller in a software-based manner.
Thus, the network elements that form the data plane are
simple packet forwarding devices which are programmable
through an open interface e.g., OpenFlow [9]. SDN became

2

enabler for an emerging technology of programmable data
plane (PDP) [10], [11]. The fundamental feature of PDP is
the capability of programming packet processing by means of
some high-level languages. Therefore, unlike traditional way
whereby fixed functions are bounded within the switch chip,
PDP provides flexibility for network operators to have control
over packet processing tasks as they would prefer; thus, ending
to faster adoption of new data plane functions and facilitating
development of prototyping. Furthermore, implementing new
data plane functions, without re-designing the Application-
Specific Integrated Circuits (ASIC) of switches, saves a sig-
nificant of capital expenditure.

Network elements like switches and routers provide the
connectivity between end-device and the edge infrastructure,
as well as connectivity between edge and cloud infrastructure.
Exploiting programmable network elements, not only for the
purpose of connectivity, but also for the purpose of compu-
tation, is a new trend of computing paradigm namely called
as in-network computing [12], [13]. Nowadays, programmable
switches can process in the scale of billion packets per second
at line-rate processing (e.g., 12.8 Tb/s processing capability
in Intel programmable switch [14]), while supporting sub-
microsecond packet processing delays [15]. Leveraging in-
network computing, the packets are processed at line-rate, on
the path and before reaching the edge/cloud servers. Indeed,
in-network computing paradigm can offer faster processing
facilities at locations closer to end devices, in comparison with
edge or cloud servers employed by common edge and cloud
computing paradigms. This paper provides a comprehensive
survey on in-network computing. The contribution of this
paper is as below:

(i) Providing the first survey on the subject of in-network
computing.

(ii) Discussing the enabler technologies and protocols as well
as discussing the hardware aspects.

(iii) Proposing a new categorization of studies based on the
involvement of in-network computing in various applica-
tions and specialized topics. The proposed categorization
also includes the applications in the scope of recent
technologies e.g., 5G/6G, edge computing, NFV.

(iv) Critically reviewing the related studies and proposing
novel methodology/performance/application-related crite-
ria for the purpose of evaluating and comparing the
studies.

(v) Perusing and comparison of the related studies from
the aspects of methodology, implementation, and per-
formance gains due to in-network computing, i.e., la-
tency/throughput enhancement, bandwidth saving, power
consumption reduction.

(vi) Providing lessons learned and research directions for the
infancy topic of in-network computing.

In the following subsections, we first give a definition of
the in-network computing. Then, we discuss existing relevant
surveys and tutorials. Following that, literature classification
and survey organization will be given. In the rest of survey,
we use INC for abbreviation of In-Network Computing.

A. In-Network Computing Definition

In this subsection, we first provide a brief introduction of
network elements involved in the concept of in-network com-
puting, then we provide definitions of in-network computing
in the literature, finally, we will introduce some features to
specify in-network computing and will give a schematic of
computing capabilities provided by in-network computing. In-
network computing paradigm advocates the idea of exploiting
network elements i.e., programmable switches, FPGAs, and
smart NICs, to be programmed for the purpose of compu-
tation. Programmable switches have the capability of being
programmed to parse and manipulate the arrived packet fields.
FPGAs are semiconductor elements with the capability of
programming logical blocks to perform targeted processing
on the packets. Similarly smart NICs offer the implementing
of dedicated hardware acceleration functions as well as cus-
tomized packet processing. Section II.A gives details about
architecture and functionality of these network elements.

There is no standard definition for the in-network com-
puting. A definition by ACMSIGARCH is provided in [16]:
In-network computing refers to the execution of programs
typically running on end hosts within network elements. It fo-
cuses on computing in the network, using devices that already
exist within the network and are already used to forward the
traffic. Sapio et al. [12] gives a definition based on offloading
computation to the network elements: In-network computing
is offloading a set of compute operations from end hosts into
network elements such as switches and smart NICs. Port et
al. [13] define in-network computing as: application-specific
functions that can run in programmable network hardware at
line rate, offering orders of magnitude higher throughput and
lower latency than can be achieved by a traditional server.

According to the definitions and our surveyed studies, some
features can be defined for in-network computing: (i) It focuses
on computation that is performed in network elements. This
computation can be a program, a process, operations, network
functions; (ii) The involved network elements (e.g., switches
and routers, FPGAs, and smart NICs) can be programmed to
perform the expected computation.; (iii) Beside the compu-
tation, the network elements perform routing and forwarding
packets as their default procedure; (iv) In the case of not using
the network, the computation supposed to be done by general
purpose processor either in an application host or any other
end host (e.g., server, controller).

According to our surveyed studies, we propose Fig. 1 to
illustrate the schematic of computing capabilities provided
by in-network computing. The in-network computing fabric
consists of network elements in the blue cloud, which can
be located among end-devices and servers provided by edge
computing (e.g., MEC servers, fog nodes, cloudlets), as well
as among end-devices and cloud data center (or even among
edge server and cloud server). The green path illustrates an
end-to-end communication path which can be truncated at a
point prior to servers at cloud (e.g., point 2), by applying in-
network computing in the middle nodes on the path at network
elements, which can be programmable switches, or FPGAs,
and smart NICs accelerators embedded in a host. Similarly,

3

Fig. 1. Schematic of in-network computing fabric. Network elements in blue cloud, form in-network computing fabric. The red and green paths respectively
illustrate communications with edge and cloud. As showed by cross sign, these paths can be terminated at points 1 and 2, prior to edge/cloud servers, by
applying in-network computing in the middle network elements.

the traffic following the red path might be processed at the
network element prior to edge servers (e.g., point 1) and the
results be returned to the end-device from a closer distance
than edge server.

B. Existing Relevant Surveys and Tutorials

In this subsection, we discuss the existent relevant surveys
and tutorials, and discuss the contribution of our survey in
comparison with them.

1) Surveys/Tutorials on Programmable Data Plane: The
surveys/tutorials in this category focus on programmable data
plane and lack the view of in-network computing. In compar-
ison with these surveys, there are four main differences that
clearly distinguishes our survey from the existing studies: first,
we propose a novel categorization in the scope of in-network
computing based on the application and specialized topics
the in-network computing is involved; second, we provide
a comprehensive and critical review of in-network comput-
ing papers including the applications in the scope of recent
technologies e.g., 5G/6G, edge computing, NFV; third, we
introduce technologies, protocols, and hardware aspects that
enable in-network computing; fourth, we provide evaluations
and wide-comparisons of our surveyed studies from the aspect
of our proposed methodology/performance/application-related
criteria that have not been seen in the literature. There are
also other differences that we will highlight as we discuss the
surveys/tutorials on programmable data plane.

Stubbe et al. [17] provides a short survey on P4 compiler
and interpreter. Bifulco et al. [10] provides a survey on the
abstractions, architectures and issues in the design and imple-
mentation of programmable network elements. Han et al. [11]
give an overview of existing PDP virtualization schemes and
discuss their pros and cons. Kaljic et al. [18] provides a survey
on data plane programmability and flexibility in software

defined networking. Data plane architectures are evaluated
through data plane flexibility and programmability aspects.
Based on assessing the limitations of ForCES and OpenFlow
data plane architectures, some approaches to address the
data plane flexibility and programmability issues are given.
However, the articles in [10], [11], [17], [18] lack a review of
the existing applications over programmable data plane, the
related challenges, and potential research directions.

The articles in [19], [20] focus on stateful data plane. Zhang
et al. [19] provides an overview of basic components of stateful
data plane, and existing stateful platforms (e.g., OpenState,
OPP, FAST, etc.). The article reviews a few applications
based on stateful data plane e.g., load balancing, firewall,
SYN-flood detection, heavy-flow detection. Dargahi et al. [20]
provides an overview on stateful SDN data plane studies and
focuses on the security aspects of data plane programmability.
The authors identify some attack scenarios, and highlight
some vulnerabilities for stateful in-switch processing. The
survey, however, does not discuss existing applications other
than security, the related challenges, and potential research
directions.

Cordeiro et al. [21] describe prominent programming lan-
guages that enable data plane programmability. The authors
consider two categories of data plane programmability lit-
erature: 1) programmable security and dependability man-
agement, including studies for policy modeling and analysis,
policy verification, intrusion detection and prevention; 2) en-
hanced accounting and performance management, including
studies on network monitoring, traffic engineering, and load
balancing. The survey only discusses a limited number of
papers.

Kfoury et al. [22] provide an overview of the network
evolution from legacy to programmable, describe the role
of programmable switches and P4, and review applications

4

developed with P4, e.g., network telemetry, internet of things,
network performance, network and P4 testing. Although this
article gives more details than all the other tutorials/surveys in
the category of programmable data plane, there is still some
major differences between our survey and this study. Our
survey proposes a different taxonomy which is categorized
based on in-network computing application as well as spe-
cialized involved topics. Furthermore, there are considerable
amount of in-network computing papers that have not been
reviewed by [22]: For example, papers in the scopes of
recent technologies e.g., 5G/6G, NFV and edge computing
(Please see Section VII of our survey for the wide range
of papers we covered), also papers in other scopes such
as [23], [24], [25], [26], [27], [28], [29] etc. In addition, we
have evaluated and compared the studies from the aspects
of novel methodology/performance/application-related criteria
which have not been considered in [22]. Finally, the research
directions in [22] mostly focus on the data plane solutions
to overcome the constraints of programmable switches e.g.,
switch resources, arithmetic computation, programming. In
contrast, we provide research directions for various appli-
cations, which give insights on the research gap in various
categories of applications and related research directions.

2) Tutorials on In-Network Computing: To the best of our
knowledge, there is no survey for in-network computing and
our study provides the first survey. There are three short
tutorials i.e., [13], [30], [31], that list a few number of
papers in the scope of in-network computing without providing
explanations regarding the operation and main ideas of each
paper or giving any taxonomy for the studies, technical details,
comparison, lessons learned, or a concrete research direction.
Our survey can be easily distinguished from these tutorials
since the existent tutorials are in the scale of a few pages.
Hereunder, we give more details on these tutorials.

Ports et al. [13] present a short tutorial on in-network
computing. It introduces programmable network elements and
discusses effective usage of in-network computing. Then, it
classifies a limited number of in-network computing appli-
cations and suggests appropriate network elements to im-
plement them. Benson et al. [30] present a brief overview
of management challenges for in-network computing and
explain the limitations of existing management techniques. It
only gives a short list of in-network computing applications
without any review. Kannan et al. [31] present a short tutorial
on the evolution of programmable networks starting from
efforts before software defined networking to the more recent
programmable data plane. They discuss the advantages of
data-plane programmability. The authors categorize data plane
applications into two categories i.e., network monitoring and
in-network computing. This tutorial only lists a number of
papers belonging to the aforementioned categories and does
not provide any review of them. Also, there is no structure for
the listed papers in the category of in-network computing. The
reader can easily surmise, none of the aforementioned tutorials
offer review or categorization of the in-network computing
papers in the literature, or offer any discussion about enabling
technologies and protocols for in-network computing. This
comprehensive survey aims to cover this gap.

C. Literature Classification and Survey Organization

This manuscript provides a survey of the existing papers
(i.e., in the context of algorithms, protocols, and architectures),
presented in peer-reviewed venues, in the scope of in-network
computing. The literature is reviewed using a set of well-
defined criteria. In this subsection, first the literature classi-
fication is discussed, and we then describe how the survey is
being organized.

1) Literature Classification: We have identified a total of
one hundred-six papers to be reviewed in this survey. We
have collected the papers that meet any of these criteria:
(i) Explicit usage of the term in-network computing in the
title, (ii) Explicit usage of in-network computing as defined in
Section I.A, as the motivation of the paper. Fig. 2 illustrates the
proposed taxonomy of the survey. As the papers in the scope
of in-network computing have provided in-network solutions
for various applications, at the first level of taxonomy we
have categorized the papers based on their applications we
found in the literature i.e., (i) in-network analytics, (ii) in-
network caching, (iii) in-network security, (iv) in-network
coordination, and (v) technology specific applications. Then,
at each category, we have categorized papers according to the
specialized topics that in-network computing will be involved
within the context of that category.

The motivation behind this categorization is that this cate-
gorization clearly defines the involvement of in-network com-
puting. Indeed, considering each leaf in Fig. 2, the reader can
recognize the hierarchy of specialized topics within a specific
application, at which in-network computing will be involved.
Here, we provide three examples: First, considering, Flooding
in Fig. 2, it would be clear that in-network computing has been
involved to provide solution for the purpose of flooding attack
mitigation, which is in the scope of DDoS attack mitigation,
and generally is for the application of security. Second, con-
sidering Edge Intelligence, it would be clear that in-network
computing has been involved to provide edge intelligence,
which is in the scope of edge computing, and generally is
for a technology specific application. Third, considering Cloud
Empowered With INC: Resource Allocation Studies, it would
be clear that in-network computing has been involved in
empowering cloud computing when resources are allocated,
which is in the scope of cloud computing, and generally is for
a technology specific application. Similarly, For each leaf in
Fig. 2, the involvement of in-network computing in specialized
topics and application can be found by tracking the taxonomy
from leaf to the root. Now, we provide more details on the
structure of each category and give some complementary
explanations for the semantic/reason behind division of papers
within categories. Please note that as the in-network computing
topic is in infancy state, we could extend the specialized topics
at each category up to the point that we found papers in that
category.

The first category, i.e., in-network analytics based on the
type of analytics is structured to three subcategories: (i) data
aggregation, (ii) machine learning, and (iii) other analytics.

In the second category i.e., in-network caching, we found
that the papers provide caching based on key-value store.

5

Fig. 2. The proposed classification for the surveyed studies in the scope of in-network computing. The numbers within boxes indicate the sections and
subsections.

6

Furthermore, the topic of information-centric caching is also
relevant to in-network caching. Thus, we have identified two
subcategories: (i) key-value store, and (ii) information-centric
caching.

In the third category i.e., in-network security, most of the
papers exploit in-network computing for DDoS attack mitiga-
tion. There are also studies providing firewall solutions. There
are also papers that provide a variety of security applications.
Thus, in-network security is structured to three subcategories:
(i) DDoS attack mitigation methods, (ii) firewall methods, and
(iii) other security applications. In DDoS attack mitigation,
based on the attack type we recognized five subcategories
i.e., (i) methods for flooding attack mitigation, (ii) methods
for AR-DDoS attack mitigation, (iii) methods that consider
security of the source of the traffic, (iv) methods that consider
DDoS attack mitigation in general, and (v) specific DDoS
attack mitigation cases.

The fourth category i.e., in-network coordination comprises
two subcategories: (i) consensus protocols, and (ii) other
coordination applications.

In the fifth category i.e., technology specific INC appli-
cations, based on the technology, we identified four sub-
categories: (i) cloud computing, (ii) edge computing (iii)
4G/5G/6G, and (iv) network function virtualization.
In cloud computing, we identified two subcategories: (i) papers
that provide load balancing for data centers. (ii) papers that
give resource allocation solutions in cloud computing empow-
ered with INC.
In edge computing, we identified three subcategories: (i)
papers that provide edge intelligence solutions. (ii) papers that
give resource allocation solutions in edge computing empow-
ered with INC. (iii) papers that provide security solutions for
edge computing.
As radio and core division in the scope of 4G/5G/6G is a well-
known division in the literature of mobile communication, we
also found it appropriate for introducing in-network computing
involvement in radio access and core functionalities. Thus,
4G/5G/6G category is comprised of three subcategories: (i)
radio access network solutions. (ii) mobile packet core solu-
tions. (iii) other applications.
In the scope of NFV, papers provide framework or deployment
solutions in NFV. Furthermore, there is a topic of hardware-
accelerated network functions which is in the scope of NFV
and relevant to in-network computing. Thus, we identified
two categories: (i) hardware-accelerated network functions. (ii)
framework/deployment solutions which is structured to two
sub categories: (i) the papers that focus on deploying VNFs
in network elements, (ii) the papers that provide deployment
solutions with a hybrid substrate network in a NFV environ-
ment empowered with INC.

2) Survey Organization: Section II discusses enabling tech-
nologies and protocols for in-network computing. Then, we
present two use cases (i.e., in-network analytics, and in-
network caching) to illustrate the concept of in-network com-
puting, followed with in-network computing benefits. Finally,
we propose our criteria to categorize, evaluate, and compare
in-network computing papers in the literature. In Section III,
we provide an overview of research on in-network analytics

including data aggregation methods, machine learning meth-
ods, and other analytics in the network. An overview of
in-network caching methods, composed of key-value store
applications, and information-centric caching will be given
in Section IV. In section V, we provide a review of the
literature in the scope of in-network security including DDoS
attack mitigation methods, Firewall methods, and other se-
curity applications. Section VI gives a review on in-network
coordination methods including consensus protocols and other
coordination applications. In Section VII, we review tech-
nology specific applications including cloud computing, edge
computing, 4G/5G/6G, and network function virtualization.
Fig. 2 illustrates the organization of the survey at Sections
III till Section VII. Furthermore, at the end of each section,
we provide summary, comparisons and lessons learned for that
section. In Section VIII, we discuss some potential research
directions. Finally, the paper concludes in Section IX.

II. TECHNOLOGIES, PROTOCOLS, ILLUSTRATIVE USE
CASES, AND CRITERIA

In this section, we first explain the technologies and message
forwarding protocols that enable the in-network computing.
We then provide two use cases to illustrate the concept of
in-network computing, followed with some highlights on in-
network computing benefits. Finally, we explain the criteria
according to which we analyze and compare the studies in the
survey.

A. Enabling Technologies

1) Software Defined Networking: Software Defined Net-
working (SDN) is a networking paradigm emerged to facilitate
remote network management as well as deployment of new
routing policies, protocols and applications. According to the
concept of SDN, the forwarding hardware in the data plane is
decoupled from control decisions. Fig. 3.a and Fig. 3.b show
the concept of SDN in comparison with embedded controls
in devices in the traditional networks. The intelligence for
network operation and routing policy is logically centralized
through software-based solutions developed in the control
plane, and network elements become simple packet forwarding
devices forming the data plane, that can be programmed via
open interfaces (e.g., OpenFlow [9], ForCES [32], etc.).

OpenFlow [9] is the most popular SDN protocol. In this
protocol, the forwarding device i.e., OpenFlow switches, con-
tains several flow tables as well as an abstraction layer that
communicates with a controller through OpenFlow protocol.
Each flow table contains several flow entries for the purpose
of defining packet processing and forwarding strategies. Gen-
erally, flow entries consist of: a) match fields/rules containing
information found in the packet header, ingress port, and meta-
data, which are used to match incoming packets; b) counters,
used for the purpose of collecting statistics of the flow (e.g.,
number of arrived packets, flow duration); and c) a set of
actions, for the purpose of being operated on the packets when
a matching occurs. When a packet arrives at an OpenFlow
switch, the matching of packet header fields with the matching
fields is investigated. If a matching occurs, the associated set

7

(a) (b)

Fig. 3. (a) Traditional network, (b) Software defined network.

of actions are applied. Flow entries can be added, updated, or
deleted from the switch’s flow tables, by the controller upon
its communication with the switch via OpenFlow protocol. Fo-
cusing on the controlling aspect, scalability and performance
of the network controller, reactive or proactive communication
between SDN controller and switches, and the implementation
of southbound and northbound communication with respect to
the forwarding elements and network services define some of
the challenges in designing an SDN controller. ONOS, Open-
Daylight, Floodnight [33], Beacon [34], and RouteFlow [35]
are examples of SDN controller implementations.

2) Programmable Data Plane: The main elements involved
in the technology of programmable data plane are as below:

(i) Separation of Control Plane From Data Plane: A
main contributor for data plane programmability was
introduced by the concept of the decoupling of the control
plane from the data plane, with a standard API for the purpose
of interactions between the two planes [36], [8]. Indeed, the
data plane can be realized by “dumb” network element under
the administration of a control plane. However, these “dumb”
network element expose embedded state information to the
control plane which enables network programmability.

(ii) Data Plane: The data plane is the most fundamental
infrastructure of a network that processes the packets received
or delivered by the network elements. A combination
of hardware components and specific software methods
are utilized to implement the data plane. The data plane
functionalities may be implemented within various network
elements e.g., ASIC, FPGA, network processor, NIC, based on
a packet classification engine. Network element technologies
expose the packet processing primitives to the control plane
in various ways and use various programming languages
for accessing packet processing primitives. Here, we discuss
more details about the hardware and functionality of network
elements that are involved in in-network computing.

(a) Programmable Switch: SDN switches are categorized
into hardware and software switches. Barefoot Tofino [37],
Cavium XPliant [38], and Flexpipe [39] are examples of
hardware switches. On the other hand, a software switch

performs the packet processing logic on a CPU based on a
packet classification algorithm [10]. OVS [40], PISCES [41],
NetBricks [42], and BMv2 [43] are examples of software
switches. The functionality of a programmable network
switch, can be abstracted as a match-action pipeline. Protocol
Independent Switch Architecture (PISA) is a renowned match-
action based architecture for programmable switches [11]. Fig.
4.a shows PISA.

The architecture is composed of programmable substruc-
tures including parser, match-action pipeline, and deparser.
The parser extracts headers from the arrived packets, stores
them in intermediate registers called Packet Header Vectors
(PHVs) [44], which are regarded as input to a pipeline of
stages. At each stage of pipeline, the extracted headers are
processed using match-action tables. In hardware switches
match-action tables are implemented in Ternary Content Ad-
dressable Memory chips (TCAM), while in software switches
they are implemented in SDRAM. A hybrid case at which
match-action tables be located at both TCAM and SDRAM is
also possible. When matching does not occur, the packet will
be sent back to the device/SDN controller, and accordingly
the required updates in the table entries will be performed.
When there is a matching, the action will be performed and the
packet will be sent to the next match-action table for further
required processing. At each match-action table, the action
logic is applied by Arithmetic Logic Units (ALUs). Through
an action, an operation will be performed on the packet fields
and the result will be stored in PHVs. Other objects like
counters, or registers that are stored in the SRAM can be
used to perform stateful actions which operate on the output
of previous actions. After the completion of process at the
pipeline stages, the processed headers are sent to the deparser,
that will combine the headers to reconstruct the packet. A
control plane can manage packet processing by writing entries
in the match-action tables.

PISA provides an abstract model that can be boosted in
various ways to create a concrete architecture. For example,
a typical switch can have separate pipelines for ingress and
egress, and a Queues manager module i.e., scheduler located
between ingress and egress pipelines (Fig. 4.b). Further-
more, specialized components for advanced processing, e.g.,

8

(a) (b)

(c)

Fig. 4. (a) Protocol independent switch architecture, (b) A typical switch architecture, (c) Relation of P4 program with target.

hash/checksum calculations can be also included in the con-
crete architecture. The state of the art programmable switches
can process in the scale of billion packets per second at line-
rate processing [15]. As an example, Intel second-generation
P4 programmable Ethernet switch ASIC can deliver up to 12.8
Tb/s throughput [14]

(b) FPGA: FPGAs are semiconductor elements with the
capability of programming and configuring after manufactur-
ing to implement required packet processing. As illustrated
in Fig. 5 the hardware architecture of a FPGA consists of
three main elements [45]: (i) Compute Logic Blocks (CLBs),
(ii) routing capabilities (illustrated as solid lines connecting

CLBs), (iii) I/O blocks. Through look-up tables and flip-
flops, CLBs provide a programmable matrix of compute units
terminating at the I/O blocks. The I/O blocks can be connected
to interconnects like PCIe through which the communication
with CPU and system is provided. The routing capability
which is realized through interconnect components like switch
boxes and connection boxes, provides connectivity among
CLBs to create facilities for generating a complex logic of
computation. In comparison with specific ASIC designs which
has the highest performance, state-of-the-art FPGAs which ex-
ploit high clock speeds and memory bandwidth, has shown to
narrow this performance gap for many use cases while having

9

Fig. 5. FPGA architecture. [45].

the advantages of flexibility and cost-efficiency [46]. A well-
known state-of-the-art version, FPGA SUME exploits a Xilinx
Virtex 7 FPGA with four 10 Gb Ethernet ports [47]. A more
recent FPGA-based prototyping platform is Corundum [48],
with capability of provisioning a 100 Gbps NIC on FPGA.

(c) Smart NIC: The NICs are external hardware components
that can be connected to a computing node through the
PCIe interfaces. Some standard physical and MAC layer
functionalities, as well as some internet protocol layer
functionalities are implemented in NICs. Indeed, receiving
and transmitting packets from/to the internet, as well as
initial processing of IP packets prior to delivery to operating
system or application layer are performed by NIC. The NIC
technology is advanced with smart programmable NICs,
which enables programming of NICs with general-purpose or
specialized data plane languages (e.g., P4, eBPF). Not only
dedicated hardware acceleration functions are implementable
in NIC, but also general-purpose packet processing, like FPGA
units can be programmed to perform customized processing.
In comparison with other accelerators (e.g., FPGA), direct
processing of packets at NIC after their arrival, can omit the
delay due to the transferring of packets from system memory
to accelerator memory in order to be processed. However,
the adoption of NIC for in-network computing still copes
with challenges due to development process of applications
as well as performance issues [46], [49]. In particular, to
address the development abstraction in server application
offloading, Floem [50] provides programming abstractions for
the purpose of data placement, caching, and parallelism, and
communication policies between program components across
devices. The state-of-the-art SmartNICs offer high-speed
packet processing on the order of 400 Gb/s [51].

(iii) Data Plane Programming Languages:
There exists various data plane programming languages in
the literature such as P4 [52], OpenState [53], Domino [54]
and NetKAT [55] among which, P4 is the most widely used
programming language. P4 is a high-level programming
language that is used for processing packets in programmable
network elements [52], [56]. While P4 was initially designed
for programmable hardware or software switches, its scope

has been extended to support a large variety of other devices
including NICs, and FPGAs. Thus, in the specification of
P4, the generic term target is used for all such devices. In
comparison with traditional fixed function switch at which
the functions are defined by the respective manufacturers,
the switch functionality can be defined by a P4 program.
The control plane will communicate with the data plane
through the API that is generated by the P4 compiler to bring
flexibility in the usage of tables and other objects in the data
plane.

P4 has been designed to follow three main require-
ments [56]: (i) To enable the controller to reconfigure the
packet parsing/processing in the switch, (ii) Specifying a
packet parser/processing for a general context of packet for-
warding and independent of the used protocol, (iii) To do
the programming of the switch independent of the details
of the underlying switch. A P4 program contains these main
components: (i) Header to define the sequence and structure of
fields as well as the constraints on the field values, (ii) Parser
to specify headers and their sequences within packets, (iii)
Match-action Tables to define packet processing, (iv) Actions
that are applied on matched fields, and with the capability of
making complex actions from simpler primitives, (v) Control
Programs which determine the order and flow of control of
match-action tables that are applied to a packet. P4 compiler
maps the program description into the target’s specific hard-
ware/software platform. The compilation process consists of
two-stages. First, the P4 control program is transformed into a
table dependency graph structure that defines the dependencies
among the tables. Then, through a target-specific map, the
aforementioned graph is mapped onto the switch’s specific
resources. Fig. 4.c illustrates the relation of P4 program with
the target.

3) Edge Computing: edge computing (also referred to as
cloudlet, mobile edge computing or fog computing) provides
resources at the edge of networks, in the proximity of end-
devices, in order to reduce latency and enable capabilities such
as mobile data offloading [5]. In the rest of this section, we
provide an overview of edge computing paradigms:
Cloudlet: cloudlet, proposed by Satyanarayanan et al. [57], are
clusters of servers that are located close to mobile devices.

10

Mobile devices can offload their computations to Virtual
Machines (VMs) running in the cloudlet, in order to overcome
the limited available resources at the devices. Being based
on VM technology, resources in a cloudlet can expand and
shrink dynamically, and will have scalability with respect to
the service requests. Mobile devices can offload their compu-
tations to the cloudlets in their proximity, thereby overcoming
the poorness of resource limitation in the device, as well as
guaranteeing real-time interactive responses. If the cloudlet is
not accessible in the proximity of the mobile device, there is
still possibility of connecting to a distant cloud, however there
will be a response time degradation in getting the required
service.
Multi-Access Edge Computing (MEC): MEC, introduced by
the European Telecommunication Standards Institute (ETSI),
was initiated under the name of Mobile Edge Computing
(MEC). Initially, it included mobile networks and VM as vir-
tualization technology. However, later, the idea was expanded
to support also non-mobile network requirements, as well
as including other virtualization technologies. Indeed, MEC
offers cloud computing facilities at the edge of the network
through mobile edge computing servers which are accessible
by LTE macro base stations (eNodeB) and multi-radio access
technology sites.
Fog Computing: fog computing extends cloud computing from
the core to the edge of the network, and thereby, providing
the computing facility at the edge of the network, closer to
the end-devices. Fog computing deploys fog nodes (e.g., edge
switches, gateways, smartphones, access points, etc.,) close to
the user and in a layer between the end user and cloud. Unlike
cloudlet and MEC, fog does not operate in a standalone mode
and is coupled to the existence of cloud.
Decentralized Cloud computing: The recent idea of decen-
tralized cloud computing can be seen as an evolved version
of edge computing that exploits the computation and storage
capacity of intelligent devices (e.g., smart phone, cell phones,
sensors, drones, cars, etc.) to enhance the computation/storage
capacity of edge computing and provide the cloud capabilities
in the neighbourhood of devices. The computing continuum
introduced by this paradigm, not only enhances the latency ex-
perience, but also alleviating the problem of edge servers/data
storage overloading, as well as high cost due to edge infras-
tructure deployment. However, the computational/storage and
energy constraints, as well as mobility of devices, and security
aspects in computation/content offloading to neighbourhood
devices are still the major challenges. For more details, inter-
ested reviewers are referred to surveys [6], [7].

4) Roles of Technologies in the Emerging In-network Com-
puting: In this subsection, we explain how the mentioned
technologies play a role to enable in-network computing:
Programmable Data Plane: programmable data plane provides
the infrastructure to perform computation inside the net-
work. The required computation (e.g., data analytics, security
policies, caching, load balancing, etc.) are implemented in
programmable data plane. Programmable switches and routers,
FPGAs, and smart NICs are examples of programmable data
plane elements that have been used in the scope of in-network
computing.

Edge Computing: Edge computing can contribute to in-
network computing by providing in-network computing equip-
ment i.e., network elements at the edge in order to carry
out the required computation on the path before reaching
remote servers. Indeed, edge computing empowered with in-
network computing has been discussed in several studies
e.g., [15], [58]. In this regard, the computation can be done
on the path and closer to the end device in comparison with
common edge servers.
Software Defined Networking: Performing computation, deci-
sion, or controlling at network elements as advocated in the
concept of in-network computing, has the potential to reduce
the SDN controller intervention as discussed in [59], [60].
However, SDN controller can still perform inevitable man-
agement tasks as well as the tasks which can be per-
formed efficiently based on the global view of the system,
e.g., installing and updating rules in data plane, configur-
ing and installing programs and functions on data plane,
configuring network to block malicious traffic, validation
etc. [60], [61], [62], [63], [64].

B. Enabling Protocols

Up to date, and to the best knowledge of the authors, no
specific communication protocol has been proposed in the
literature to facilitate communications for a wide-range of in-
network computing applications. Thus, the existent studies, in
the scope of in-network computing, use the already existing
message passing mechanisms. Message passing mechanisms
which are not based on IP addressing for the delivery of
messages are promising to realize in-network computing ca-
pabilities. In this subsection, we discuss four existent non-IP
based message forwarding mechanisms and explain how they
can enable in-network computing.

1) Uninformed Message Forwarding: Uninformed routing
algorithms is a forwarding protocol mechanism that does
not use the knowledge of query semantics or destination
node’s address in the forwarding decisions. In this direction,
flooding [65] and random walk [66] are the most popular
algorithms. These algorithms can be used to flood the message
in the network so that network elements can examine the
message and apply the required computation in the case that
they can implement the computation. However, these methods
are not efficient in terms of the traffic volume they produce.

2) Information-Centric Networking: The fact that the in-
ternet is extensively used to disseminate information and
data, rather than used for pair-wise communication between
source and destination, became a principle for the idea of
Information-Centric Networking (ICN) as a possible archi-
tecture for the future internet. In this direction, the first
idea was introduced by Gritter et al. [67]. ICN advocates
the deployment of in-network caching, as well as multicast
transmission, to offer a more efficient delivery of information
to the users. Based on ICN, the information is named and
matched independently of its location, thereby it may be
provided from anywhere in the network. Upon a request
arrival, the network will locate the best source that can provide
the desired information. Interested readers are referred to [68]

11

for a detailed survey on ICN. In the same direction of ICN,
a general view of information as a required computation, and
naming as a computation name, makes it possible to query for
computation and accordingly, the computation can be provided
by the network elements despite of the location of the device.

3) Service-Centric Networking: Service-Centric Network-
ing is an extended version of ICN, which provides supporting
for both content and computation services for the future Inter-
net e.g., 6G [69]. Each computation service can be identified
by a unique name to indicate function(s) and parameter(s).
It uses a three-phase operation to execute a function: (i)
forwarding the request toward the function, (ii) fetching the
required data, and (iii) computing and returning the result.
Furthermore, it supports chaining among functions to serve
more complex services. This paradigm of computing, lets in-
network computing be performed to execute functions without
knowing locations.

A content/computation/context-aware adopted version of
service-centric networking protocol has recently been pre-
sented in [69] to be promising for 6G. An Interest/Data name
requesting comprising service identifier, target object, and
context is used for forwarding and knowledge purposes. After
the service identifier, the target object indicates the forwarding
direction, while the Context object provides additional infor-
mation for a function computation. When an Interest arrives,
the content store of a data plane element is searched to obtain
a cached content or computed result based on the context
information. In the case of cache miss, the protocol lets also
the local computing of the Interest in data plane element i.e.,
in-network computing or forwarding the Interest through a
forwarding pipeline procedure. The SDN controller is also
adopted by supporting new match fields (i.e., service, object,
and context), more advanced forwarding techniques to handle
caching, executing functions, and function chaining, as well
as design of new flow tables according to the context of
Data/Interest processing.

In light of provisioning ultraLow-Latency (ULL) in new
emerged 6G vertical services (such as URLLC applications
e.g., autonomous driving, industrial control), as suggested in
[69], the ultra-low-latency requirement can be inserted as
part of service request in Interest/Data name protocol, in
order to apply corresponding in-network computing/caching,
as well as latency-aware forwarding strategies. As latency-
aware packet forwarding is out of scope of this paper, we
call here some standardization attempts. The IEEE 802.1
time sensitive networking standard provides link layer support
for ULL networking, while IETF deterministic networking
standards provides the complementary network layer ULL
support. Interested readers are referred to [70] for a survey
on the IEEE TSN and IETF DetNet standards and the related
research studies.

4) Semantic Based Message Forwarding: In semantic based
message forwarding, the messages are routed based on their
meaning instead of IP addresses [71], [72]. To send a message
to a particular network node, a semantic key with the meaning
similar to the description of the targeted node in the network
is inserted into the message. Once the message arrives to the
network, it is delivered to the intended destination defined

by the semantic key, and then the destination can respond
back to the message source. Indeed, the network can be
considered as a collection of interconnected semantic routers
where each router compares similarity between semantic keys
in the messages and resource description stored in semantic
routing tables to decide about the next hop destination.

Another form of semantic routing is content routing which
has been utilized as a routing mechanism in peer-2-peer net-
works [71]. Content routing algorithms also exploit the seman-
tic information which is embedded in user query, for making
routing decisions at each hop. In content routing, semantics
or objects are identified by keywords, and advertisements and
queries are expressed in terms of these keywords. In contrast
with address based routing, in semantic routing, objects are
identified by keys, which are constructed by applying hash
function on the keywords associated with the objects. As a key
based routing will select a specific resource having the key to
handle the message, it is more efficient than keyword-based
message routing. However, the key-based query routing does
not support partial matching semantics. In contrast, content
routing systems can support partial-matching queries through
utilizing blind search methods. However, the generated query
routing traffic would be high and there is no guarantee on
search completeness.

One of the most commonly used content routing techniques
is intelligent flooding. It forwards a message to some of the
neighbors based on some criteria like previous query results,
capacity of nodes, type of content, etc, thereby reducing the
overhead of blind searching method. Ahmed et. al provide
a detailed description of content routing [71]. In the context
of in-network computing, semantics can be considered as
computations which can be implemented by network elements.
To facilitate search mechanism, network elements can expose
their supported computations to a data structure similar to se-
mantic routing tables. Based on the semantic i.e., computation
information within the message, such data structure can be
utilized to route messages toward the network element that
can apply the computation.

C. Illustrative Use Cases and In-Network Computing Benefits

In this section, we illustrate in-network computing concept
through two use cases in the scope of in-network analytics
and in-network caching. For each use case we discuss the
procedure without in-network computing, and the procedure
with in-network computing.

1) In-network Analytics: Fig. 6.a illustrates a scenario
where data analytic can be performed in a network with
hierarchical structure. At the access layer the data is collected
from some devices (e.g., IoT devices) and is fed into a network
of switches to reach to a server performing analytic, namely
called analyzer server. This server can implement Machine
Learning (ML) or a kind of aggregation to infer a model.
Analyzer server can be a server located at edge. After the
server performs analysis, it will return the respective command
to the target device (e.g., actuator).

Fig. 6.b illustrates the scenario where the switches are
programmable and in-network computing is leveraged. The

12

(a) (b)

(c)

Fig. 6. (a) Performing analysis on the data in the access layer without in-network computing, (b) Performing analysis on the data by in-network computing
when the collected data are sufficient to apply the analysis, (c) Performing analysis on the whole data collected in access layer leveraging in-network computing.

scenario is for the case that sufficient data has been gathered
before applying the analytic. Here, for example, at the switches
in the middle level the required data has been gathered
and the ML/aggregation can be applied. Let assume that
the ML/aggregation method has been implemented in the
middle level switches such that the switches can apply the
analytic on the packet they receive. In this situation, running
ML/aggregation within the network, before the data reaches
analyzer server, not only terminates the traffic close to the end
device and saves bandwidth at higher levels of the network,

but also ensures a fast command issuance.

Fig. 6.c illustrates the scenario for the case that all data
collected in the access layer is required to be included in the
analytic. Even, in this case the in-network computing could
be effective by offloading the ML/aggregation methods to
the programmable switches. The ML/aggregation is performed
on the data by switches as data traverses the network. Data
enters the network from the switches bounded to the access
layer of the network, and makes its way up to the network,
with ML/aggregation occurring at switches. A programmable

13

switch receives data from all its children and performs the
ML/aggregation operation. The learned model/aggregated data
is sent by the switch to its parent switch. The analyzer
server performs the final learning/aggregation and forwards the
commands downward to the devices. The volume of learned
model or aggregated data is less than the size of original data,
thereby reducing the volume of data as it goes, instead of
waiting for the data to reach the analyzer server to operate on
this data. Thus, the advantage of bandwidth saving holds for
this scenario as well.

2) In-network Caching: Fig. 7.a indicates a general sce-
nario for caching when there is a storage server or original
server serving contents to the users. The storage server can
be provided by edge computing. User equipment can be
connected to the storage server by a network of programmable
switches. The items are modeled as pair of key-values. Without
loss of generality, we assume the storage server is capacious to
store all the items. The controller applies packet forwarding
rules to the switches. In a general scenario and without in-
network computing, the switches play the role of packet
forwarding. When a read-request arrives to the network, the
switches apply the installed forwarding rules and forward the
request to the storage server. The request will go all the path
until it reaches the storage server. Then, the value associated
with the requested key will be turned back all the path to reach
to the user.

Fig. 7.b indicates the delivery scenario when we have
in-network caching. The switches on the network between
the user equipment and storage server are responsible for
implementing on-path caching for key-value items and also
routing packets using standard protocols. The packets that
are supposed to use the in-network caching service might be
distinguished from ordinary packets so that required process-
ing be performed to deliver them in-network caching service.
Switches have a key-value storage module implemented as
match-action tables to store the hot items. The controller is
responsible for updating the switch storage with the hot items
based on an in-network caching strategy. The detection of hot
items can be performed based on the statistical information
about items calculated by the switches and sent to the con-
troller. When a read query arrives, the switch checks whether
the cache contains the item or not. If it is a cache hit, the
switch returns the associated value to the user. Otherwise, the
request will follow its way toward the storage server. On the
path, whenever any switch detects the key, the journey of the
packet will be truncated. Thus, lower latency can be achievable
by in-network caching.

3) In-Network Computing Benefits: In-network computing
can provide the following benefits [15]:

(i) High Throughput: The network elements can handle
in order of billion packets per second. For example,
Tofino chip released by Barefoot supports 12.8 Tb/s
line-rate processing. Therefore, the in-network computing
paradigm provides orders of magnitude higher throughput
processing capacity in comparison with the host-based
solutions.

(ii) Low Latency: The host-based solutions suffer from in-
herent uncertain delay and jitter. By contrast, the network

elements support sub-microsecond processing latency. As
pipeline design does not access external memories in each
stage, the latency is almost stable i.e., low jitter. As we
discussed through the illustrative use cases, in-network
computing performs the computing inside the network
and consequently, the transaction terminates within the
path and detouring data to distant services is avoided.
Therefore the delay as the result of the data transmission
from the network elements to the end host will be saved.
Indeed, in-network computing can be performed in the
proximity of user and bring computation closer than
servers in edge/cloud computing.

(iii) Bandwidth Usage Reduction: As we discussed through
the illustrative use cases, the in-network computing termi-
nates data computation on the path and before reaching to
edge/cloud server. Thereby, there will be saving in band-
width usage and the traffic congestion on the backhaul
links can be avoided.

(iv) Load Balancing: A kind of load balancing emerges
through leveraging in-network computing. The requests
can be responded on the path by the network elements and
before reaching end hosts. In this regard, the workload
is divided between network elements and end hosts. For
example, the traffic for latency-non-sensitive applications
can be forwarded to the end hosts whilst the network
elements can accommodate latency-sensitive applications.

(v) Energy Efficiency: Network elements consume less en-
ergy for performing operations. A typical programmable
switch can perform billions of operations per watt usage
of energy. For example, the Arista 7170 series pro-
grammable switch consumes less than 5 W per 100 G
port. As another evidence, the experiment in [27] shows
that millions of queries operation in the network elements
will consume less than 1 W power. The processing
capability of network elements per watt usage of energy
is more efficient than the general purpose computers.
Besides, as network elements are elements of the network
doing packet forwarding as their default task, not high
energy is consumed in idle mode. In contrast, we have
the issue of high energy consumption in case of general
purpose computers.

D. Categorization, Evaluation, and Comparison Criteria
In this subsection, we propose a set of criteria to categorize,

evaluate and compare literature studies in the scope of in-
network computing.

1) Proposed Categorization: At the first level, we propose
to categorize the research studies based on the application of
in-network computing. To clarify the in-network computing
involvement, at each category of application then, we propose
to organize the papers according to the specialized topics that
in-network computing will be involved within the context
of that category. Section I.C, gives the details about the
structure of our proposed categorization. Here, to ease the
reading of the survey, we provide an overview of the proposed
category at the first level. We have found five categories
i.e., analytics, caching, security, coordination, and technology
specific applications:

14

(a) (b)

Fig. 7. (a) Caching system in general, (b) In-network caching.

(i) In-Network Analytics: The research in this category ex-
ploit network elements to perform analytics (e.g., ma-
chine learning, data aggregation, heavy flow detection,
query processing, controlling, deep packet inspection) on
the path and without the necessity of data be traversed
toward end hosts to perform the analytics.

(ii) In-Network Caching: The research in this category lever-
age network elements to construct an in-network caching
fabric atop of storage servers to reduce data access time.
At this category of research, we found the studies that
have been done in the scope of key-value store appli-
cations, as well the studies in the scope of information-
centric caching.

(iii) In-Network Security: The research in this category per-
form a fraction or whole functionalities required to detect
and mitigate network attacks in the network elements,
in order to reduce the latency of attack mitigation and
operational cost imposed by dedicated servers for the
security purposes.

(iv) In-Network Coordination: Agreement on some data value
or a sequence of operations is realized through consensus
protocols in distributed systems that can be considered
as a kind of coordination. In the literature, there exists
also other types of coordination e.g., lock management
system, group cast communication, coordination for con-
sistency. The research in this category, offload parts or
whole of functionalities required for performing a coordi-
nation to the network elements to reduce the coordination
latency.

(v) Technology Specific Applications: The research in this
category provide a variety of in-network computing appli-
cations related to particular technologies including cloud
computing, edge computing, 4G/5G/6G, and network
function virtualization. The studies in this category of-
fload parts of functionalities that is specific to a particular
technology to the network elements.

2) Proposed Criteria For Evaluation And Comparison :
We propose two categories of criteria to analyze, compare and
evaluate the in-network computing papers: Common Criteria,
Application Specific Criteria.

(i) Common Criteria: We propose the below criteria to
analyze, compare and evaluate all possible in-network
computing solutions as below:
• In-network computation: In-network computation is the

task or computation that is performed in the network
element. Indeed, logical components of a network
element e.g., match-action tables of a programmable
switch which can be located in TCAM/SDRAM, Com-
pute Logic Blocks of FPGA, programmable com-
ponents of smart NIC, can be programmed through
languages e.g., P4 to carry out the in-network compu-
tation. Depending on the application, in-network com-
putation can be a kind of data aggregation, a machine
learning algorithm, traffic statistic calculation, security
policy, a radio/core-network function of a mobile com-
munication technology, a general network function, etc.
This criterion gives insight to the researchers to esti-
mate if the targeted computation is implementable in

15

TABLE I
CATEGORIES OF NETWORK ELEMENTS USED IN IN-NETWORK COMPUTING STUDIES

Category Network Element
Programmable Switch/Router (Barefoot) Tofino, BMv2, Open vSwitch,

Realtek RLT, Switch-IB InfiniBand, P4BM
FPGA NetFPGA, ZedBoard Zynq FPGA
Smart NIC Netronome Agilio CX, Netronomr NFP,

Cavium Octeon II CN

a specific network element. Furthermore, some lessons
can be learned to fill the gap of research on a specific
computation that has not yet be implemented on the
network element.

• Co-design: This criterion defines if in the proposed
method, network elements are used in conjunction
with non-network elements (e.g., servers, controller)
to perform the required computation or decision. The
required computation is defined based on the context
of the problem. In in-network analytics, performing
analytics; in in-network caching, performing caching
and replying to the requests, in in-network security,
attack mitigation, and in in-network coordination, per-
forming the coordination (e.g., consensus in consensus
protocols) are the required computation. Similarly, in
technology specific applications, required computation
is determined in the context of the target problem.
For example, in an attempt to perform LTE EPC
control plane in the network, the required computation
is LTE EPC control plane functionalities. Whenever,
the proposed method is a co-design approach, only
a fraction of the required computation is performed
in the network element, otherwise the whole required
computation is implemented in network element. In
this regard, a non-co-design approach can be fully
implemented in the network. This criterion gives in-
sights to the researchers on the power of in-network
computing in handling various problems. Furthermore,
some lessons can be learned to fill the gap of the
research e.g., providing co-design approaches when-
ever we cope with hardware limitations of network
elements.

• Data structure: This criterion defines the data struc-
ture of the network element that has been used in
implementation. We have reported the usage of well-
known data structures: bloom filter (data structure that
provides capability to test whether an element is a
member of a set), sketches (data structures capable
of summarizing information about the network e.g.,
getting traffic statistics requiring a fixed size memory),
and hash table [44], [73]

• Network element: This criterion defines the network
element that is used for evaluation. We found three
categories of network elements in the literature: pro-
grammable switch/router, FPGA, and Network Inter-
face Card (NIC). Table I illustrates the devices at each
category. This criterion gives insight to the researchers
to decide about the network element for the specific
application they target. Furthermore, this criterion gives

insights about the distribution of the usages of various
network elements in the research. Accordingly, some
lessons can be learned to fill the gap of studies.

• Platform: This criterion defines the platform used in
evaluation of the method, which can be either hardware
or software. Note that we consider the platform as
software, when a software version of the network el-
ement (e.g., BMv2, software router, simulated switch)
has been used in the evaluation.

• Main result: This survey provides the main results
achieved by in-network computing appliance particu-
larly from the aspect of latency, throughput, bandwidth
saving, and power consumption.

(ii) Application Specific Criteria: We also propose some
application specific criteria for comparison of the studies.
Here, we provide a summary of the criteria and we refer
readers to the dedicated section to each application for
the details.
• In-network analysis: we consider Simplification Tech-

nique (e.g., quantization, precomputation) that is used
to implement the analytic in the network element as
a criteria. Furthermore, considering that the aim in
analytics is inferring a model built over collected data,
we will use criteria including Model Complexity, Model
Accuracy, Inference Speed, and Bandwidth Consump-
tion (due to data transmission) to compare the methods.
We also propose comparison for techniques to cope
with hardware limitation in implementing analytics in
the network, from the aspect of criteria including Hard-
ware Limitation Type, Operation of The Technique,
and The Compromised Criteria (due to applying the
technique).

• In-network caching: The methods in this scope, provide
in-network caching fabric to facilitate content/item
access. We define an in-network caching fabric to be
deep when the caching fabric contains hierarchy of
in-network caches, otherwise we define it as shallow.
We consider In-Network Caching Fabric Type (i.e.,
shallow/deep) as a criteria. Furthermore, we will use
criteria including Caching Hierarchy, Load Balancing
in Requests Processing, Content/Item Access Delay,
Available Storage At Edge of Network, and Bandwidth
Consumption (due to content transmission) to compare
the methods.

• In-network security: Considering that the aim in these
methods is attack mitigation, we will use criteria in-
cluding Modeling State of System in Attack Detection,
Attack Detection Model, Attack Detection Accuracy,

16

and Mitigation Latency (including latency for detec-
tion and applying the security policy) and Bandwidth
Consumption (due to traffic transmission in order to
detect the attack) to compare the methods.

• Technology specific applications: We assess if the
method has applied any Optimization with a partic-
ular Objective Function to optimize system or ap-
plication related performance metrics. Furthermore,
we will compare the methods in the literature with
server/dedicated hardware based schemes from the
aspects of advantages and disadvantages in terms of
criteria including Computing Node Type, Processing
Cost, Latency/Throughput, and Power Consumption.
We will also discuss the advantages/disadvantages of
the resource allocation techniques to cope with hybrid
substrate network including both network elements and
general purpose computation units, from the aspects of
criteria including Adaptability at Run Time and Fault
Tolerance.

In the rest of this survey, we review the different papers we
found relevant to in-network computing and discuss them as
per the above-mentioned categories and based on the criteria
we specified earlier. Whenever, the surveyed method is a co-
design approach, we will explain the reason behind that. The
comparisons are supported by logical explanations as well as
evidences collected in the literature.

III. IN-NETWORK ANALYTICS

In this section we provide an overview on the existent
studies that perform analytic in the network. Fig. 2, Section III
illustrates the structure of this section. We give an overview
of the research studies in the scope of in-network alalytics
in three categories of Data Aggregation, Machine Learning,
and Other Analytics. Data Aggregation gives overview of the
studies that collect data from different sources and apply some
aggregation functions or operations on the data, which can be
regarded as a kind of analysis due to assembling an aggregated
model from data. In these studies, network elements are
utilized to perform data aggregation. Category of Machine
learning gives overview of the studies that have implemented
machine learning techniques in network elements. Finally, the
category of Other Analytics covers other studies done in the
scope of in-network analytics including heavy flow detection,
controlling, query processing, complex event processing, and
deep packet inspection. In the rest of this section we present
the studies in the mentioned categories and finally we give
a summary of studies and discuss the insights and lessens
learned.

A. Data Aggregation

Data aggregation is a technique that combines data from dif-
ferent sources by applying aggregation functions or operations.
In-network data aggregation sets up aggregation overlays on
network elements to aggregate the data as it passes through the
overlay. In comparison with a host based aggregation where
the data is transmitted to a centralized host in order to be ag-
gregated, in-network aggregation not only reduces the volume

of traffic flow in the network, but also reduces aggregation time
by utilizing fast processing speed of network elements. In this
category of research, [12], [29], [74], [75], [76], [77] follow
a similar multi-level architecture for data aggregation, com-
monly based on tree-structure, however they give protocols for
various applications. While [29] propose a data aggregation
protocol for high performance computing application, the
studies in [12], [74] provide protocols for data aggregation in
Map-Reduce based application. The study in [75] provides
in-network aggregation for IoT application and the studies
in [76], [77] propose in-network aggregation for wireless
networks.

An efficient high performance computing architecture re-
quires to assess alternative system elements to distribute the
data manipulation as appropriate, rather than loading the
processing of all data to a local or remote CPU. Offloading
data manipulation to the network as data moves through it,
frees up CPU cycles for computation, reduces communication
latency, as well as the amount of data transferred over the
network. To reach these aims, Graham et al. [29] offloads
commonly used communication patterns in high performance
computing, i.e. collective operations in Message Passing In-
terface (MPI) standard to the network. The authors present
a hierarchical aggregation protocol to offload the operations
to the network for the purpose of data aggregation. Reduc-
tion operations including small data reduce, all-reduce, and
barrier are performed in network elements. Data enters the
aggregation tree from its leaves, and moves up in the tree,
while data reductions are performed at aggregation nodes. An
aggregation node receives aggregation requests from all of
its children and performs the aggregation operation. A data
structure per collective operation at each aggregation node is
used to track the progress of a collective operation. The result
of the aggregation is sent by the aggregation node to its parent
in the tree structure. The root aggregation node does the final
aggregation, generates the result of the aggregation operation,
and forwards the result to the destinations. The protocol also
support fault handling mechanism to cope with errors that may
occur including transport-level errors, end-node errors, and
protocol errors. The in-network computation are the collective
data reduce operations that are implemented in Mellanox’s
SwitchIB-2 ASIC. The evaluation results indicate up to 70%
improvement in latency for operations completion.

The studies in [12] and [74] perform in-network data aggre-
gation for Map-Reduce based applications. Sapio et al. [12]
has designed an aggregation system at which for each reducer,
a spanning tree is constructed with the reducer as the root
and including all the paths from all mappers to the reducer.
Then, the network controller configures the network elements
to perform the per-tree aggregation and forward the traffic
through the tree structure. Each map task produces a set of
key-value pairs, which is partitioned among the reducers. The
partitions are transmitted to the reducer by UDP packets, at
which each packet contains a preamble and a sequence of
key-value pairs. The preamble defines the number of pairs
and the tree ID the packet belongs to. For each tree, network
elements store the keys and values in the memory. The authors
propose an algorithm to be executed by each network element,

17

according which the element aggregates the already values
stored in its memory and the new values it receives in packets.
The proposed algorithm also programs the network elements
to forward the aggregated results to the next node towards the
destination. The in-network computations i.e., storing data, as
well as the Map-Reduce specific aggregation are implemented
by BMv2. For an application of Word-Count, the experiments
indicate the proposed method provides a 87%-89% bandwidth
saving and 84% reduction in latency.

Based on a Map-Reduce computation, the authors of [74]
propose an architecture to perform in-network data aggre-
gation. The proposed architecture consists of switch, header
extraction module, payload analyzer, and controller. (i) Switch
aggregates flows arriving from different ports and sends the
aggregation results to the next hop. Furthermore it Forwards
normal packets as well. (ii) The header extraction module
investigates the packet header and will send normal packets
to the forwarding module which operates based on L2/L3
information in the traditional routing way. However, in the
case that packet is flagged for the purpose of aggregation,
packet will be forwarded to the payload analyzer. (iii) Payload
analyzer accepts payload formatted as Key-Value pairs and
based on their lengths, it distributes these pairs to different
processing engines. The processing engines aggregates values
of the same key stored in a hash table. (iv) Controller
builds an aggregation tree and configures the switches. The
in-network computation is map-reduce specific aggregation
that is implemented in NetFPGA-SUME development board.
The authors developed the data plane in Verilog HDL and
compiled into a NetFPGA-SUME development board and
implemented a simple MapReduce-like system, which works
in a partition/aggregation pattern. The proposed architecture
has gained data reduction ratio up to 99% and reduced job
completion time up to 44%.

Unlike [12] and [74] that perform aggregation based on key,
Madureira et al. [75] performs the aggregation by service ID to
cover various IoT services. The authors advocate a multilevel
data aggregation architecture for the aggregation of data in
Internet of Things (IoTs) application. Data is aggregated as
it travels through the elements of the multilevel architecture.
The aggregation protocol operates in the link layer (L2) of
the network element. The packet header contains three main
elements: (i) Service ID which identifies a set of similar data
belonging to the same IoT application. (ii) Data Counter
which defines the number of data blocks in a packet. (iii)
Type which indicates the forwarding mechanism to be used to
forward the packets. The switch in the aggregation hierarchy,
receives packets from other switches on the hierarchy and
aggregates their data (e.g. average) according to the service
ID of the packets after some conditions are met. The major
condition is met when the number of received data of the same
Service ID reaches a threshold value. The authors also propose
techniques to cope with loop and matrix data structures in the
implementation which are not supported by the switch. The in-
network computation is IoT specific aggregation that is imple-
mented by BMv2. Simulation results with the environment of
IoT devices and a fog gateway as sink, show that the proposed
method is 5 times faster in terms of average delay compared

to the scenario that aggregation is performed in IoT device.
Data aggregation protocols with a certain fault tolerance in a

noisy multi-hop wireless network have been proposed in [76].
A primarily discussion of this study is given in [77]. Each
node takes an m-bit integer as input, and the computation
is started after each node collects a predefined amount of
readings. The authors focus on performing divisible functions.
After the network is clustered, two intra- and inter-cluster
protocols are proposed. The intra-cluster protocol utilizes the
coordination of cluster head to apply the function over the data
within the cluster. Through applying the inter-cluster protocol,
the local aggregated results are routed through cluster heads
and relay nodes to the sink node. Encoding data to codewords
and decoding data after receive are also included in the intra-
and inter-cluster protocols. Furthermore, scheduling between
clusters to perform transmission is utilized to reduce the
interference due to concurrent transmissions. The efficiency of
the proposed protocol is improved for identity function, and
restricted type-threshold functions. The authors also analyze
the complexity of the protocols. The in-network computation
is divisible functions that are implemented in wireless network
relay nodes. Though in comparison with other data aggrega-
tion methods this method discusses a more general function
appliance in the network, the discussions are based on analysis
and there is no evaluation of the proposed method.

B. Machine Learning

Machine learning algorithms are widely adopted for classi-
fying or performing regression over incoming packets. Taking
the values of packet header fields and flow statistics as input
features, these algorithms are able to learn the pattern of
traffic from collected network traces and make predictions
for future inputs. To apply machine learning, an unknown
packet incoming to a switch has to be forwarded to a remote
server where the learning algorithms run. However, the im-
posed delay and bandwidth consumption will be high. Studies
have been carried out to leverage in-network computing to
reduce learning processing time, respond earlier to the events,
and terminating traffic close to the edge. While [78] im-
plements various classification approaches including decision
trees, SVM, naive Bayes, the studies in [79], [80] implement
neural networks, and finally, the study in [81] implements a
federated learning through network elements. In the rest of this
subsection we provide more details about the aforementioned
studies.

Implementing decision trees, SVM, and naive Bayes, and
k-means on the switches have been considered by Xiong et
al. in [78]. Without considering the way through which the
mathematical functions can be implemented in the switches,
the authors utilize look up tables to store the results of
calculations, and suggest some algorithms to implement the
aforementioned classifications and clustering on the switches.
For decision tree, in every stage of the switch, one feature
is matched with all of its potential values. The result i.e., the
action, that indicates a branch happened in the tree, is encoded
into a metadata field. The last stage within the pipeline calcu-
lates the final result based on the metadata fields of all features.

18

SVM is implemented in several tables, each one indicating the
status of input in relation to a hyperplane. Indeed, the key in
the match-action table is the set of features of a given input,
and the action is the vote which indicates whether the input
belongs within or outside of a hyperplane. Once an input is
matched against all tables (i.e., all hyperplanes), the class with
the highest number of votes will be the classification’s result.
Naive Bayse is implemented by using one table per class, and
features as the keys. The returned value is an integer value
that indicates the probability used in naive Bayse learning.
The authors also discuss different mapping of clusters and
features to tables for the K-means clustering. The in-network
computations are decision tree, SVM, Naive Bayse, and K-
means that are implemented in BMv2 and NetFPGA SUME.
The proposed method is considered to be a co-design approach
since it initializes the look up tables with required mathematics
within the learning. The evaluation is performed for IoT traffic
classification with various classes (e.g., audio, video, etc). The
latency for classification (inference) at the line rate i.e., 2.6 µs,
and the accuracy up to 94% have been reported.

A neural network implementation on network elements has
been discussed in [79]. Through the experiments the authors
show that the overhead of moving data is high when off-
path accelerators such as GPUs or TPUs, are used to run
AlexNet neural network. Extra data movement overhead will
be diminished by implementing the accelerators within the
network elements on the path. However, utilizing network
elements to perform neural network processing, requires the
splitting of the processing which will have overhead. The au-
thors have reduced the overhead by suggesting an appropriate
split mechanism. The all or part of neural network parameters
are stored in SRAM of network element. A process called
quantization i.e., binarization of activation and parameters, that
simpifies the operations of a fully connected layers of a neural
network is utilized to reduce the number of bits required for
representing a neural network’s activations and parameters, as
well as using simpler arithmatic operations. The in-network
computation is neural network that is implemented in network
processor-based SmartNIC. The processing of a single layer of
neural network takes 1 ms in the network, while this latency
is up to 12 ms when the processing is performed by CPU.

Simalar to [79], Lu et al. [80] propose a method for neural
network inference in the network. The authors develop a
data forwarding processing system that allows packets to be
cloned to the kernel of a switch for on-line inference. To
provide the capability of in-switch inference a hardware called
neural compute stick (NCS) is utilized. NCS is connected
to a P4 switch over a USB interface, so that the cloned
packets be processed and real-time inference be performed.
The proposed architecture consists of two phases: (i) an offline
model training phase, which uses a CNN architecture LeNet-5
to create the inference model. (ii) an online inference phase
which runs the inference model within an NCS for online
inference. The in-network computation is neural network that
is implemented in Edge-core Wedge 100-32X switch. For
a convolutional neural network based malware-classification
problem, the inference time when it is performed in the
network is 9 ms, while it is 44 ms when the inference is

performed in a server. The accuracy is higher than 94%.
Qin et al. [81] leverages in-network computing and pro-

pose a line-speed framework for federated learning. A neu-
ral network classification with the binary weights and sign
function as the activation function is performed at gateways
that forwards packets from/to the devices in a network do-
main. A neural network with real valued-weights is stored
in the control plane to re-train the classification algorithm
in the gateway through performing backward propagation.
After local training, gateways send the local updates to the
cloud that acts as the aggregator. In order to reduce the
communication cost, each gateway reports only the 1-bit sign
of local updates. Then, the cloud will announce the result by
a majority of voting mechanism. The in-network computation
is the neural network which is implemented using BMv2. The
proposed method is a co-design approach since it leverages
cloud computing for aggregation and control plane for the
purpose of backward propagation and updating. The evaluation
with one fully connected hidden layer with 120 neurons, for
the purpose of malware traffic detection, illustrates that the
inference latency in the network is less than 2 ms for 95% of
packets.

C. Other Analytics

In-network computing has been leveraged for other analytics
in the applications of heavy flow detection [59], [82], [83],
controlling [84], [85], query processing [86], [87], [88], com-
plex event processing [89], and deep packet inspection [90].
In this subsection we provide an overview of these studies.

Heavy flows detection has benefits for many network man-
agement applications including mitigating link congestion,
detecting network attacks, scheduling of network capacity,
etc. Existing heavy flow detection methods are commonly
implemented on the control plane of a software define network.
Thereby, having the overhead and additional delay in decision
making due to frequent communication between the control
and data planes. In-network computing has been leveraged
to diminish this overhead. The studies [59], [83], [82]
are similar in implementing counting the packets per flow in
the data plane to estimate flow size. For the analysis of the
counted values, a machine learning approach has been utilized
in [59], while a threshold based decision has been suggested
in [82], [83].

Zhang et al. [59] propose a decision tree based scheme
for detecting heavy flows on the programmable data plane.
The proposed method contains two steps of offline model
training and online inference. In offline model training, the
controller trains decision tree and compiles it into resources of
target switches. In online inference, based on the decision tree,
heavy flow is detected in the programmable data plane. In the
pipeline, first packet’s header is extracted and the appropriate
information is saved in the registers. When the number of
received packets of a flow reaches a threshold value, the
flow will be assessed by the decision tree and tagged with
a flag in the case of heavy flow detection. Accordingly, the
desired actions can be followed upon the detection. The in-
network computation is decision tree inference phase which

19

is implemented using BMv2 and Flnet S9180-32X with a
Barefoot Tofino 32D ASIC. The proposed scheme is a co-
design approach, since the training phase is performed by
controller. The detection accuracy is up to 98% and an average
throughput of 9.4 Gbps has been gained in the hardware
switch.

Harison et al. [83] also considers heavy-flows detection,
however they consider a network-wide detection scenario
realized through a global statistic analysis. The authors divide
the detection process between switches with PISA architecture
and a coordinator. Incoming packets with the same key, such as
a source IP address, source-destination pair, or five-tuple will
be counted at edge switches. When the count for a key exceeds
its local threshold defined by coordinator, the switch sends the
coordinator the exceeded key and the count. The coordinator
aggregates statistics from various switches and identifies the
heavy flows. Furthermore, the coordinator updates the local
thresholds associated with keys in the switches. Counting
packets with the same key and and a threshold based com-
parison are in-network computation that are implemented in
Barefoot Tofino. The proposed method is a co-design approach
since the coordinator identifies the heavy flow and updates the
the threshold values on the switches. The evaluation results
illustrates up to 70% bandwidth saving in comparison with a
benchmark method.

Sivaraman et al. [82] also propose an algorithm to be
implemented in programmable switches to detect heavy flows.
Similar to [59], a table is utilized to identify flow keys and their
associated counter, at which the counter indicates the packets
counts associated to the flow. Upon packet arrival, if the table
lacks the count information about its corresponding flow, and
there is space in the table, the new flow with an initial count
value of 1 is inserted to the table. However, when the flow
count information is already in the table, the corresponding
flow counter will be updated. In the case that the table is full
and it lacks the information of the flow, the flow entry that
has the minimum counter value will be replaced in the table
to indicate the statistic for new arrived flow. Packet counting of
flows and heavy flow detection are in-network computations.
The proposed method can detect heavy flows with accuracy
of 95% while consuming less than 80 KB of memory.

Vestin et al. [84] leverage in-network computing for the
application of sensor/actuator control networks. The sensors
periodically generate data, which are transferred to a controller
in order to be analyzed. Accordingly, the controller sends
control actions to actuators. To reduce the latency as a result
of the communication to the controller, the authors offloads
parts of the controller functionality to the data plane of
programmable switches. A history of sensor values will be
cached at switches. The logical expression corresponding to
controlling decision, is transformed into a Conjunctive Normal
Form and is implemented in the switch tables. Accordingly,
the switch will trigger the controlling decisions to the actua-
tors. Furthermore, a proactive link repair scheme is proposed
whenever there is a link failure. The in-network computation
consists of data caching, processing and controlling decision
that is implemented in P4 switches. The experimental results
show that the proposed method reduces the sensor-actuator

delay by 6 ms in comparison with the case that controller
sends the control action.

Cesen et al. [85] focus on an ultra-low latency robot control
problem at which the network composed of a robot and a
controller, where the robot arm is programmed to do the well-
structured repetitive tasks. There is a TCP communication
between controller and the robot. Controller analyzes incoming
messages from robot side, and accordingly it sends controlling
commands e.g., a stop message to the robot when the robot
deviates a specific threshold position. A network element is
located between the controller and the robot, that is used to
forward the traffic between robot and controller. The authors
argue that offloading latency-critical applications to the switch,
reduces latency by bringing some controlling mechanism
much closer to the robot. For the aforementioned use case, the
detection of a specific robot position and accordingly sending
a stop-movement command to the robot is the in-network
computation that is implemented by BMv2. The evaluation
results illustrates a negligible latency for controlling command
issuance in order of ns in comparison with the latency of
command issuance from controller which is in order of ms.

The studies in [86], [88] propose in-network query pro-
cessing for respectively, the application of network telemetry
and tolls computation for vehicles. Existing telemetry systems
that employ stream processors incur substantial bandwidth and
processing costs and can not provide efficient processing in
the scales of multiple hundred million operations per second,
as it is the demand in nowadays network. Supporting these
demands using modern stream processors will impose high
cost due to the low processing capacity per core. On the other
hand, providing a query processing systems that rely only on
programmable switches will trade off expressiveness due to
processing limitation in switches.

Gupta et al. [86] exploit a hybrid programmable switches
and stream processor to achieve both expressiveness and scala-
bility. The authors provide an interface to express queries for a
wide range of common telemetry tasks. Each query consists of
a sequence of data flow operators (e.g., filter, map, reduce, and
join). Data flow operator are mapped to match-action tables
in the data plane. Some operations like Join that are costly
to be implemented in the data plane, are divided into a set
of sub-operations. Decision is taken about the execution of
each sub-operation in the data plane and ultimately joining of
the results will be performed at a stream processor. To decide
about the partitioning, a planner is proposed that solves an
Integer Linear Program that minimizes the number of packets
sent to the stream processor while considering constraints on
the resources available in the switches. Teixeira et al. [87]
extend the system in [86] by providing more functionalities
to monitor the packet processing inside switches. The in-
network computation is query operations that is implemented
in Barefoot Tofino. The proposed method is a co-design
approach since it utilizes stream processor in conjunction with
switches to handle query operations. The evaluations shows
the workload on stream processor is reduced up to 99% in
comparison with benchmarks.

Jepsen et al. [88] discuss an implementation of a query
system for an application of computing tolls for the vehicles

20

on a highway. The query system receive historical data, e.g.,
the location and speed of vehicles, tolls imposed to a vehicle,
travel time between two segments of highway. Various queries
and notifications for the application are defined e.g., toll
notification to the vehicle, accident notification, queries about
the imposed toll to a vehicle. A benchmark is implemented
in a switch using the P4 language. P4 header with fixed-
width fields are defined, among which there is a field that
specifies the data type e.g., a data for position report or data
for alerting an accident. Accordingly, based on the data types,
the tables and control flow that indicates the direction of the
packets for processing in the pipeline are defined. The authors
also provide perspective on the challenges for implementing a
general stateful abstraction in P4. The in-network computation
is query processing that has been implemented on BMv2 and
Barefoot Tofino and the code is available online, however the
authors have not provided any evaluation in the paper.

Network packets convey basic events such as sensor data,
management data like intrusion-detection systems or anomaly
detection. Complex Event Processing (CEP) infers higher-
level knowledge i.e., complex events, by evaluating incoming
information i.e., basic events. Traditional CEP is performed
on servers or overlay networks. However, as suggested by
Kohler et al. [89], through leveraging in-network computing
for CEP, detouring of data streams to distant servers will be
avoided, thereby reducing communication latency, and opti-
mizing bandwidth consumption. Furthermore, high processing
capabilities of networking hardware can provide an efficient
CEP system. The authors show that it is feasible to express
CEP operations in P4. The data plane consists of a set of
end-systems that are interconnected by a set of programmable
network processing elements. End-systems host event-based
applications and can be either event sources or event sinks.
Event sources observe basic events and disseminate them,
while event sinks receive and react to complex events. The
network processing elements implement forwarding of non-
CEP packets, as well as CEP function, i.e., window operators,
and the event detection engine. Window operators store and
aggregate several last values of header fields. The event detec-
tion engine detects complex events based on a state machine
implementation. The authors also present a tool to compile
CEP operations to P4 code. The in-network computation
consists of aggregation functions and complex event detection
that is implemented in both Netronome Agilio smart-NIC
and BMv2. The evaluation illustrates the outperforming in
NIC, in comparison with BMv2 from the aspect of latency
and throughput. For a complex event composed of two basic
events, the detection latency in the range of 10 µs to 29 µs
and throughput in the range of 16% to 56% for NIC have been
reported.

Deep Packet Inspection (DPI), investigates payloads of the
packets for discovering patterns written as regular expressions.
DPI is deployed in either using dedicated appliances i.e.,
middleboxes, or implemented as software at the end host.
The former is expensive and difficult to manage and update,
while the latter, imposes a computational burden on general
purpose computers and suffer from performance fluctuation
due to load on the servers. To overcome these issues, Hypolite

et al. [90] utilize existing network processing hardware to
implement DPI at line rates. The proposed method utilizes the
Aho-Corasick algorithm in order to compile regular expression
and convert it into a deterministic finite automaton which
is implemented using a state transition table. End states
demonstrate pattern matching, and a table is used to map end
states to the set of matched patterns. The proposed method,
provides stateless intra-packet and stateful inter-packet regular
expression matching capabilities. The in-network computation
is regular expression matching for the purpose of DPI that
is implemented by Netronome NFP-6000 SmartNIC. The
evaluation shows throughput gain up to 20 Gbps.

D. Summary, Comparisons, Insights and Lessons Learned

In this subsection, we first briefly summarize the studies
have been done in the scope of in-network analytics, and then
discuss the comparison, insights and the lessons learned.

1) Summary: This section gives an overview of the studies
carried out in the scope of in-network analytics.

Several studies have been done that propose data aggre-
gation in the network [12], [29], [74], [75], [76], [77]. In
comparison with a host based aggregation where the data is
transmitted to a centralized host in order to be aggregated, in-
network data aggregation can reduce the volume of traffic flow
in the network and aggregation time. To perform data aggrega-
tion a multi-level overlay is constructed across the networks.
Then, Data is gathered from multiple sources and aggregation
function is performed at network elements as the traffic initi-
ated at data sources goes up through the constructed overlay.
The researchers have proposed data aggregation methods for
various applications including high performance computing
applications [29], Map-Reduce based applications [12], [74],
IoT application [75], and wireless networks [76], [77]. De-
pending on the application, the aggregation function is defined:
HPC specific functions e.g., collective operations in Message
Passing Interface standard [29], Map-Reduce specific func-
tions [12], [74], IoT specific functions [12], wireless network
specific function e.g., divisible functions [74].

Unlike common machine learning techniques that require
the traffic be forwarded to a remote server or host, in network
application of machine learning reduces delay and bandwidth
consumption. A few studies have focused on implement-
ing machine learning in network elements. Implementation
of various classification approaches including decision trees,
SVM, naive Bayes, as well as k-means clustering on pro-
grammable switches has been studied in [78]. Implementation
of neural networks in network elements has been considered
in [79], [80]. The study in [81] implements a federated learning
through network elements. Due to memory and processing
limitation of network elements some simplification techniques
have been applied e.g., quantization technique [79] and sim-
plified neural network model [81].

Other in-network analytics have also been carried out. Exist-
ing heavy flow detection methods are generally implemented
on the control plane of software defined networking paradigm.
Detecting heavy flows in the network elements reduces over-
head and additional delay in decision making. In network

21

TABLE II
COMPARISON OF IN-NETWORK ANALYSIS. DS (DATA STRUCTURE), SIMPL. (SIMPLIFICATION), PLAT. (PLATFORM), Y (YES), N (NO), H (HADRWARE),

S (SOFTWARE).

Scope Ref. Main Contribution
Methodology Evaluation
In-network Compu-
tation

Co-
Design

DS Simpl. Network Element Plat. Main Results

D
at

a
A

gg
re

ga
tio

n

[29]
Enhancing collective opera-
tions in Message Passing In-
terface standard

Collective data reduce
operations

N - N Mellanox’s
SwitchIB-2
ASIC

H Up to 70% latency reduction

[12]
Proposing in-network data
aggregation for Map-Reduce
based applications

Storing data
Map-Reduce specific
aggregation

N Hash
Table

N BMv2 S 87%-89% bandwidth saving
84% latency reduction

[74]
Proposing an architecture to
perform in-network data ag-
gregation based on a Map-
Reduce computation

Map-Reduce specific
aggregation

N - N NetFPGA-SUME H Up to 99% bandwidth saving
44% latency reduction

[75]
Proposing a data aggregation
protocol in the application of
internet of Things

IoT specific aggrega-
tion

N - N BMv2 S 80% latency reduction

[76]
Proposing a data aggregation
protocol with a certain fault
tolerance in a noisy multihop
wireless network

Divisible functions N - N Wireless network
relay nodes

- -

M
ac

hi
ne

L
ea

rn
in

g [78]
Providing algorithms to
implement machine learning
methods into programmable
switches.

Decision tree; SVM;
Naive Bayse; K-
means

Y -
Y
(Precomputation
of look up table)

BMv2
NetFPGA SUME

H/S Latency 2.6 µs
Accuracy up to 94%

[79]
Providing a method to imple-
ment neural networks on net-
work elements.

Neural network N - Y (Quantiza-
tion) Network

processor-based
SmartNIC

H Up to 92% latency reduction

[80]
Proposing an architecture for
neural network inference in
the network

Neural network N - N Edgecore Wedge
100-32X switch

H 79% latency reduction
Accuracy higher than 94%

[81]
Proposing a line-speed frame-
work for federated learning

Neural network Y - Y(Quantization) BMv2 S In-network inference latency 2
ms

O
th

er
A

na
ly

tic
s

[59]
Proposing a decision tree
based scheme for predicting
heavy flows

Decision tree Y Hash
Table

N

BMv2
Flnet S9180-32X
with a Barefoot
Tofino ASIC

H/S Throughput 9.4 Gbps
Accuracy 98%

[83]
Proposing an algorithm to de-
tect heavy-size flows, with the
focus on a network-wide traf-
fic detection

Counting packets
with the same key;
Threshold based
comparison

Y Hash
Table

N Barefoot Tofino H Up to 70% bandwidth saving

[82]
Proposing an algorithm
to be implemented in
programmable switches to
detect heavy flows

Packet counting of
flows; Heavy flow de-
tection

N Hash
Table

Y (Random
instead of full
search to find
the minimum
counter value)

- - Accuracy of 95%

[84]
Proposing an in-network con-
trol mechanism for the ap-
plication of sensors/actuators
control networks

Data caching,
processing;
Controlling decision

N Cache N P4 switch H 6 ms Latency reduction

[85]
Proposing a controlling
method for a robot control
problem

Detecting the robot
position violation and
sending control com-
mand to the robot

N - N BMv2 S Latency improvement in order
of ms

[86],
[87]

Proposing a telemetry system
that coordinates joint collec-
tion and analysis of network
traffic leveraging a combina-
tion of network switches and
stream processor.

Query operations Y Hash
Table

N Barefoot Tofino H Up to 99% bandwidth saving

[88]
Proposing an implementation
of a query system for an ap-
plication of computing tolls
for vehicles on a highway

Query processing N Hash
Table;
Sketch

N BMv2
Barefoot Tofino

H -

[89]
Proposing an in-network
computation for complex
event processing

Aggregation
functions; Complex
event detection

N - N
Netronome
Agilio NIC
BMv2

H/S Latency: 10 µs to 29 µs
Throughput up to 56%

[90]
Proposing a deep packet in-
spection for regular expres-
sion matching using pro-
grammable data plane

Regular expression
matching

N Hash
Table

N Netronome NFP-
6000 SmartNIC

H Up to 20 Gbps throughput

22

implementation of heavy flow detection, based on counting the
packets per flow in the data plane and a detection mechanism
has been considered in [59], [82], [83]. The studies in [84],
[85] exploit programmable data plane for controlling pur-
poses. Parsing of packets, and finally controlling decision in
a sensor/actuator control network utilizing switches has been
investigated in [84]. A simple robot control has been offloaded
to programmable switch in [85]. In-network implementation
of query processing has been considered in [86], [87], [88].
Finally, network elements have been exploited for complex
event processing [89], and deep packet inspection [90].

2) Comparisons, Insights and Lessons Learned: Table II
compares the reviewed studies from the aspects of the contri-
bution, methodology (in-network computation, co-design cri-
terion, data structure of the network element used in method,
simplification used in the method), and evaluation (network
element, platform in simulation, main results). As it can be
seen in Table II, the studies in the literature, either fully
implement the required analytics in the network (the studies
with the entry of ’N’ for co-design) or follow a co-design
approach (the studies with the entry of ’Y’ for co-design)
at which network elements are utilized in conjunction with
servers or controllers in providing the purposed analytic.
Those studies that fully implement analytic in the network,
mostly perform analytics such as key-value based data aggre-
gation, and statistical counting-based inference which can be
implemented in network elements with the existent hardware
capabilities and data structures (e.g., bloom filter, sketches,
hash table, cache). In contrast, those machine learning studies,
demand more complex calculations that require techniques to
cope with hardware limitation to be able to be implemented
in the network.

• Comparison of Techniques to Cope With Hardware Lim-
itation: Table III compares the utilized techniques to
cope with hardware limitation. Quantization techniques
as advocated in [79], [81], facilitate inference calculations
by applying simplification in learning model such as
utilizing binary weights or sign function as activation
function in neural networks. However, by quantization,
the accuracy will be trade off for the inference speed
achieved through in-network computing. On the other
hand, precomputation techniques like [78] precalculate
the required statistics e.g., Gaussian based likelihood
calculation in Naive Bayse, and fill the required look-
up tables in the network element. This technique has
the potential to acquire higher accuracy in comparison
with quantization technique, with providing more pre-
cise statistics. As another hardware limitation, there is
also parallel processing limitation due to limited num-
ber of pipeline/stages, and match-action table entries.
Packet re-circulation copes with the limitation through
re-circulating the packet through the network element to
apply the required processing [79]. However, the latency
will be increased which might end to line-rate processing
violation in high rounds of circulations. According to
[79], to execute the 4096 neurons of a single layer on a
switch with capability of at most 96 neurons in parallel,
that would require the circulation of the packet for 43

times which prolongs the latency.

Table IV compares the fully in-network analytic methods,
server/controller based analytic (which is the baseline for
comparison in studies like [79], [84], [80], [85]), and co-design
schemes (see Table II for co-design schemes) from the aspects
of model complexity, model accuracy, inference speed, and
bandwidth consumption.

• Model Complexity: Fully-implemented methods in the
network have less capability than the server/controller
based analytic methods due to hardware limitations (e.g.,
limited number of stages/pipelines/logical units, limited
number of match-action entries, registers, and data struc-
tures), and lack of general purpose computing capabil-
ities like float point operations (e.g., in programmable
switches/routers). The co-design schemes can promote
the fully in-network analytic methods by exploiting gen-
eral processing computing capabilities. As an example,
exploiting general purpose computers to precalculate the
likelihood probabilities and injecting the calculation in
the network element (in available registers) makes the
implementation of complex learning models like Baysian
and SVM possible [78]. As another example, handling
complex queries in stream processor server, while of-
floading simpler query handling in the network as ad-
vocated in [86] let the implementation of complex query
handling model.

• Model Accuracy: Fully- in-network implemented ana-
lytic can end to lower accuracy in comparison with
server/controller based implementation, due to probable
simplifications and approximations that will be performed
to implement the targeted analytic in the network element
e.g., binary weights in neural network or sign activation
function instead of a more precise activation like sigmoid
function [81]. Co-design approaches have the potential to
gain higher accuracy in comparison with fully-in-network
implemented schemes, through offloading complex oper-
ations to general purpose computing units.

• Inference Speed: Fully in-network analytics methods have
the capability to process the arrived packets with a
compatible pipeline pattern and in the line rate in network
elements and close to the end-device. Thus, in comparison
to server/controller based analytics, faster inference speed
is expected as for a single layer of neural network
implemented in smart NICs, up to 92% latency reduction
in inference has been reported in [79]. Co-design schemes
have the potential to gain higher inference speed in com-
parison with server/controller-based analytics since still a
fraction of computation is performed in the network.

• Bandwidth Consumption: Fully in-network analytic meth-
ods will save bandwidth consumption due to terminating
traffic at edge, so that the traffic is not required to be
transmitted to the server or controller. Bandwidth saving
for a map-reduce application up to 99% has been reported
in [74]. The co-design approaches that still perform some
traffic processing at edge will have lower bandwidth
consumption than server/controller based schemes. How-
ever, the bandwidth consumption can be higher than

23

TABLE III
COMPARISON OF TECHNIQUES FOR COPING WITH HARDWARE LIMITATION IN IMPLEMENTING MACHINE LEARNING IN THE NETWORK

Technique Hardware Limitation Operation Compromised criteria

Simplification Quantization Processing limitations Applying simplifications
in model e.g., binary
weights or simple
activation function in
NNs

Accuracy

Precomputation Processing limitations Precomputation of
required statistics

-

Packet
Recirculation Limitation in parallel

processing due to
limited number of
pipelines/stages/MAT
entries in network
element

Recirculate the packet in
network element to apply
the requited processing

Latency

TABLE IV
COMPARISON OF IN-NETWORK ANALYTICS, SERVER/CONTROLLER-BASED ANALYTICS, AND CO-DESIGN SCHEMES

Feature Fully in-Network Analytics Server/Controller-Based Analyt-
ics

Co-Design Schemes

Model
Complexity Lower capability due to hardware

limitation
Higher capability due to general
purpose computing capabilities

Higher capability than fully in-network an-
alytics due to exploiting general purpose
computation

Model Accuracy Can be lower accuracy due to
approximations/simplifications Higher accuracy due to general

purpose computing capabilities
Can be higher than fully in-network Ana-
lytics

Inference Speed Higher speed
• Pipeline pattern and in the

line rate processing at net-
work elements

• Performing inference at edge

Lower speed Lower speed than fully in-network analytics
and higher than server/controller-based an-
alytics

Bandwidth
Consumption Lower

• Terminating traffic at edge
Higher

Lower than server/controller-based
•••• Still some traffic termination at edge

Higher than fully in-network analysis
• Some data will be transferred to

server/controller to be processed
• Some controlling signals will be

transferred between server/controller
and network element

.

fully-in-network analysis since either some data will still
be transferred toward server/controller to be processed
or some controlling signals will be transferred between
server/controller and network element. An example, is the
study in [81] where traffic is transfered among aggregator
on the cloud and in-network neural network implemented
in an edge node, to perform a weighted aggregation to
construct the global learned model in a federated learning
approach. To have an efficient co-design scheme, an op-
timization decision is required to optimally partition the
computation among the server/controller and the network
element so that communication overhead between the
server/controller and network element be minimized.

There are also some insights from which some lessons can
be learned:

• Aggregation With High Key Volumes: An insight is that
in-network data aggregation based on key-value data
structure has been studied in [12], [74]. However, no
data aggregation mechanism has been suggested for the
applications that there are a large number of keys (e.g.,
word count applications at which large number of words
appear in the text). This is critical due to memory
limitation size of network elements that can not occupy

any arbitrary number of keys. A lesson learned is that
more research effort is required to provide aggregation
mechanisms for high key-volumes.

• Machine Learning: Another insight is that only four
works study machine learning implementation on network
elements, among which [79], [80], [81] consider neural
network implementation, while only [78] considers non-
neural based learning mechanisms. However, this study
assumes that the calculations of mathematical functions
used in the learning process have previously been set up
as look up tables inside the device. A lesson learned is
that more investigation is required for implementing non-
neural based learning methods inside network elements.
Particularly, more research is required to develop methods
to implement the mathematical functions in non-neural
based learning methods (e.g., Naive Bayes, SVM etc.).
Another insight is that even neural network methods do
simplifications (e.g., in weighting or activation function),
in order to implement the learning in the network element,
which can end to lower accuracy gain. More research
is required to pursue the feasibility of implementing the
neural networks without simplification techniques.

• Co-design: Co-design approaches can be particularly

24

crucial for in-network analysis. The reason is that due to
processing and memory limitations in network elements
not all functions or operations might be implementable
in network elements. Furthermore, not all operations or
functions can be mapped to a specific network forwarding
architecture like match-action tables. Those functions or
operations that are infeasible to be implemented in net-
work elements can still be kept at end host or controller.
Few research provide co-design approaches in analytics
application. For example, the study in [86] exploits a co-
design approach at which a stream processor is utilized
to implement complex operations in query processing. A
lesson we can learn is that more research effort is needed
to provide co-design in-network analytic methods.

IV. IN-NETWORK CACHING

In this section we provide an overview on the existent
studies that perform caching in the network. Fig. 2, Section
IV illustrates the structure of this section. We first give an
overview of the research studies in the scope of key-value
store at which caching of highly-frequent key-value pairs are
offloaded to network elements to reduce latency in serving
queries for the key-value store based applications. Then, we
give an overview of NDN, as a fundamental architecture in
ICN that we found compatible with in-network caching. A
comprehensive survey of other ICN architectures can be found
in [68].

A. Key-Value Store

The operation of many internet services, including search
services, social networking, and e-commerce, depend on high-
performance key-value stores. In order to have high perfor-
mance key-value store to be able to response to massive
requests in the data centers, scaling of storage servers is
required which increases power consumption. Furthermore,
services based on key-value store are usually sensitive to
end-to-end latency. Leveraging in-network computing has the
potential to significantly improve the performance of key-value
sore system. Caching of contents in network elements saves
traversals of data in network, reduces latency, and is ideal
for handling frequently requests for the same information.
The studies in [91], [92], [93], [94], [95] advocate a
hierarchical caching system at which at high-level and closer
to edge of network, in-network caching operates to speed
up query processing, while on the lower level of caching,
storage servers operate. The studies, however differ in the
network element at which the in-network caching is imple-
mented (e.g. FPGA, programmable switch), as well as the
details of caching protocol. Furthermore, a replicated key-
value store with programmable switches in the data plane
has been proposed in [96], and a distributed shared memory
system with in-network caching is presented in [92]. Note that
the aforementioned studies perform storing data and caching
functionalities as in-network computation. Furthermore, all of
them are co-design approaches since the requested data is
fetched from either the network element or back end storage.
In the rest of this section we give more details.

A hierarchical key-value based caching system where at
high level there exists a FPGA based in-network caching
and at low level there exists a memcached server has been
proposed by Tokusashi et al. [91]. The authors adopt a multi-
core processor approach for query processing. The proposed
architecture includes a Processing Element (PE)-network, sev-
eral PEs, a memory-network, and memories including DRAM,
SRAM, and CAM. Incoming queries are spread between PE
elements and each PE processes a fraction of queries. Once
a query is processed, the PE accesses the memory-network.
There exists three types of memories in the memory-network:
DRAM which contains the hash table bucket and data store
chunks; SRAM which contains chunk information; and CAM
which serves as a look up table for retrieving key-value pairs.
Upon a query arrival, the PE parses the packet to extract the
key which its hash is used as a pointer to an address in the
DRAM. If a key exists in DRAM, it would be considered as
a hit. For a SET command that is a hit the key-value pair are
updated in the DRAM. For a SET command with a new key,
the PE assigns it to a chunk based on the list of free descriptors
stored in the SRAM. For a GET query with a hit, a reply is
returned to the client. In the case of miss however, the request
is forwarded to the host memcached server, accordingly, the
key and value in the cache and DRAM will be updated to
include the missed key for later usages. Evaluations shows
full line rate throughput (up to 13 Mquery/s), while having
a latency of 1.1 µs and 80% better power efficiency in
comparison with the case using only memcached server.

Another hierarchical caching system including pro-
grammable top-of-rack switch in the high level, and storage
servers at lower level has been considered by Jin et al. [93].
The authors have proposed an in-network computing based
architecture for key-value store that balances the load across
all storage servers in a rack within a data center. The authors
utilize the theory discussion that by caching a specific amount
of items in top of rack switches the load balancing between
storage servers can be performed. To enable the caching in top
of rack switches they propose an architecture which consists
of a top of rack switch, a controller, and storage servers.
The switch provides on-path caching for key-value items, as
well as supporting routing of packets using standard L2/L3
protocols. It has a key-value cache module to store the hottest
items, as well as statistic elements to keep query frequency
of each cached item, and to detect hot queries for uncached
items.The controller updates the cache with hot items, through
receiving statistical reports from the switch, and it decides
which items to insert (evict) into (from) the cache.
Read queries are handled by the switch while write queries are
forwarded to the storage servers. For the read queries, when
these is a cache hit in switch, it inserts the cached value to
the packet header. The statistical frequency element for the
query will also be updated in the switch. When there is a
cache miss, the query will be forwarded to the storage server
which processes the query and replies to the client. The switch
will inform the controller if it detects the missed query as a
hot one so that controller decides about caching policy. The
evaluation using Barefoot Tofino, illustrates up to 40% latency
reduction and up to 10× throughput increment in comparison

25

with baselines.
Unlike [93] that employs a shallow in-network caching

fabric consisting of only a top-of-rack switch, a deeper in-
network caching fabric, has been proposed by Liu et al [94].
The proposed in-network caching fabric provides caching
primitives for datacenter networks. Racks of servers are con-
nected through a hierarcical switches including top of rack
and core switches. Upon packet arrival to the switch, the
packet will be forwarded to the network accelerator, which
performs the computation. The network accelerator extracts
key/value pairs and the command from the packet payload and
performs related operations. For a new key/value pair writing
command, the accelerator allocates space and writes the data.
If the command is reading a value based on a key, a cache
lookup will be done by the accelerator. For the case of a
miss, the network accelerator forwards the request along its
original path. For the case of a hit, the network accelerator
constructs the reply and sends it to the switch. The authors
discuss multi-path scenario for caching and handling failure of
client, switch or a server. The authors prototype the proposed
caching fabric by Cavium XPliant switches and OCTEON
network accelerators. Their prototype reduces request latency
by over 30% and doubles throughput in a cluster configuration.

Similar to [94], the study in [95] provides also a multi level
in-network caching fabric including a top-of-rack switch and
cache switches. However, in [94] load balancing in the in-
network caching fabric is not guaranteed, while [95] considers
load balancing. Liu et al. [95] proposes an in-network caching
architecture for clustered storage systems at which load in-
formation is utilized to balance the query load among cache
switches of in-network caching fabric. The proposed archi-
tecture consists of cache controller, cache switches, storage
servers, and client library. (i) The controller decides about
the cache partitions and updates the cache allocation under
system reconfiguration events, including rack/switch insertion
and system failures. (ii) The cache switches receive cache
partition from controller and cache hot key-value objects.
Furthermore, an in-network telemetry mechanism based on a
piggyback mechanism is implemented in switches to distribute
their load information to provide a guide for query distribution
among caches. (iii) The storage servers host the key-value
store. (iv) Client library provides facilities for applications to
access the key-value store.
According to the proposed architecture, read queries on cached
objects are replied by the cache switches. In the other hand,
read queries for uncached objects as well as write queries
are forwarded to the storage servers. The loads of the cache
switches are stored in on-chip memory of top of rack switch,
and accordingly a routing mechanism that considers loads of
switches is proposed. The authors also provide mechanisms
for cache coherency as well as handling failures for the cases
of controller/link/switch failure. The evaluation shows up to
8.5× improvement in throughput in comparison with the case
that no caching is performed.

Jin et al. [96] propose a replicated key-value store ar-
chitecture that contains a data plane and control plane. (i)
The data plane constructs a replicated, in-network key-value
store, and manages read/write queries. Distribution of the key-

value store over multiple switches in the data plane is done
using a hashing based mechanism. When a switch receives
a packet with read/write operation, it performs the required
operation and updates the destination IP either to the next
chain node (e.g., a miss occurrence), or to the client IP (e.g.,
hit occurrence). To solve the out of order arrival of packets,
sequence numbers are used to serialize write queries. (ii) The
controller plane manages switch tables and registers, as well
as reconfiguration of the system due to switch failures. Switch
failures, are handled in two steps of fast fail-over and failure
recovery. In fast fail-over, the controller reconfigures the
network to resume serving queries with the remaining switch
nodes. In failure recovery, the controller adds repaired switches
as new replication nodes. As failure recovery needs to copy
state to the new replicas, it takes longer than fast fail-over.
The evaluation shows up to 105× throughput enhancement in
comparison with a server-based solution like Zookeeper.

Wang et al. [92] present a rack-scale distributed shared
memory system with in-network caching and cache coherence
management. The whole architecture consists of of a set of
memory nodes, a top-of-rack switch, and a shadow node. (i)
Each memory node consists of a global memory to store the
blocks. Furthermore, it has an application thread component
that execute application logic and access global memory via
write/read interfaces. It also has the cache agent component
that performs transferring of cached data in the memory. (ii)
In addition to routing normal packets using standard L2/L3
protocols, the switch is responsible for storing hot blocks,
and executing part of the cache coherence protocol including
serializing and multicasting of the requests. Specifically, it
manages the lock to access the shared data. (iii) The shadow
node helps migrating the ownership of cache blocks between
the switch and memory nodes. Evaluation shows up to 4.2×,
2.3× and 2× throughput speedup over distributed shared
memories on key-value store, graph engine and transaction
processing workloads, respectively.

B. Information-Centric Caching

The evolution of Internet usage from a host-centric commu-
nication model to a model based on the interest in accessing in-
formation, irrespective of its physical location, introduced the
concept of Information Centric Networking (ICN). According
to ICN, the information is requested by a naming mechanism
and can be retrieved from nodes in the network irrespective
of their physical location. Though the concept was introduced
much prior than in-network computing, we see ICN archi-
tecture consistent with in-network caching. Particularly, the
fundamental architecture of Named Data Networking (NDN
also known as Content Centric Networking) introduces content
routers that provide a content store to cache the information
in the network. Here, we provide an overview of NDN, as a
fundamental architecture in ICN which we found it compatible
with in-network caching. We refer interested readers to [68]
for a comprehensive survey of information-centric networking
architectures.

In NDN [97], subscribers request information objects via
INTEREST messages, which the reply will be some DATA

26

messages. Messages are forwarded by Content Routers (CRs)
that store three data structures: (i) the Forwarding Information
Base (FIB) to map information names to the output interfaces
in order to forward INTEREST messages, (ii) the Pending
Interest Table (PIT) to store INTEREST messages that are
expecting for DATA messages, (iii) the Content Store (CS) to
cache information objects that have passed through the CR.
When an INTEREST arrives to a CR, CS is looked for an
information object whose name matches the requested prefix.
When hit occurs, the result is sent back through the incoming
interface in a DATA message. Otherwise, a match will be
performed in FIB in order to determine the output interface
for message forwarding. Then, the INTEREST’s incoming
interface will be stored in the PIT and the INTEREST will
be forwarded to the CR determined by FIB.
When a DATA message arrives to a CR, the information object
is stored in CS and a match is performed in PIT to find the
interfaces though which the DATA message is forwarded.

C. Summary, Comparisons, Insights and Lessons Learned

In this subsection, we first briefly summarize the studies
have been done in the scope of in-network caching, and then
discuss the comparisons, insights and the lessons learned.

1) Summary: This section gives an overview of the studies
done in the scope of in-network caching. The in-network com-
putation in this category of research, is the caching Key-Values
or content and processing the arrived queries to the network
element. All the surveyed in-network caching methods are
regarded as co-design approaches as the caching service is
served with a conjunction of in-network caching fabric and
back-end storage servers.

Key-value store deployments in the data centers, experience
high latency to respond the queries. In-network caching saves
traversals of data in network, reduces latency and increases
throughput. The studies in [91], [92], [93], [94], [95] construct
an in-network caching fabric atop of storage servers, to pro-
cess the queries. While [91] develops the in-network caching
fabric in FPGA, [92], [93], [94], [95] utilize programmable
switch for the in-network caching fabric. The in-network fabric
caching is shallow in [91], [92], [93] and includes a top-of-rack
switch or an FPGA, while it is deeper in [94], [95] and in-
cludes a hierarchy of switches. Generally, whenever, the query
request hits in the in-network caching fabric, the requested
value will be returned. On the other hand, the requests with
miss in in-network caching fabric will be forwarded toward
storage servers. The studies in [91], [92], [93], [94], [95] are
different in the details of caching protocol. Furthermore, in the
category of key-value store, a replicated key-value store with
programmable switches in the data plane has been proposed
in [96], and a distributed shared memory system with in-
network caching is presented in [92].

The concept of ICN, at which the information or data
is directly requested by a naming mechanism and can be
retrieved from nodes in the network irrespective of their phys-
ical location, seems be consistent with in-network caching.
Particularly, the fundamental architecture of Named Data
Networking provides content stores at content routers to cache

the information in the network. A comprehensive survey of
ICN architectures can be found in [68].

2) Comparisons, Insights and Lessons Learned: Table V
compares the reviewed studies from the aspects of the contri-
bution, methodology (co-design criterion, in-network caching
fabric), and evaluation (network element, platform in simula-
tion, main results). As it can be seen in Table V, the studies
in the literature, either provide a shallow in-network caching
fabric or deep in-network caching fabric. Table VI gives
a comparison among shallow and deep in-network caching
schemes, as well as server-based caching schemes at which
either an origin server at cloud or a storage server at network
stores the contents. Note that the case of caching at cloud or
a storage server is a baseline for comparison in many studies
e.g., [91], [94], [96].

• Cache Hierarchy: Shallow in-network caching schemes
construct two levels of hierarchies including in-network
cache element and origin server (also called as storage
server). Deep in-network caching schemes construct a
hierarchy including more than two levels: an in-network
caching fabric with a hierarchy of in-network cache
elements and origin server. In the other hand, cloud-based
caching schemes provide a one level of caching which is
origin server located at cloud.

• Load Balancing: In server-based caching schemes, all
requests will be replied by a caching server and there is
no opportunity for load balancing. In contrast, shallow in-
network caching schemes provide the capability of load
balancing as the requests will be processed either by
in-network caching element or origin/storage server. On
the other hand, in comparison with shallow in-network
caching schemes e.g., [92], [93] load balancing will be
boosted in deep in-network caching schemes e.g., [94],
[95], [96] due to offering various dimension of load
balancing among in-network caching elements in in-
network caching fabrics as well as between in-network
caching fabric and origin/storage server.

• Content/Item Access Delay: Deep in-network caching
schemes which provide access to contents in multiple in-
network caches close to the edge as well as high degree
of load balancing, can offer the lowest experienced delay
for users. On the other hand, the server-based caching
schemes which only provide content access at origin
or storage server and do not support load balancing
will experience high delay due to both long distance
and congestion at core network. Over 30% reduction in
latency has been reported in [94]. Accordingly, through-
put enhancement is expected as up to 105× throughput
enhancement in query handling in comparison with a
server-based key-value store solution has been reported
in [96].

• Storage at Edge: Shallow in-network caching schemes
provide very limited storage through logic units, match-
action tables, and registers (e.g., order of tens/hundreds of
megabytes in programmable switches). In contrast, deep
in-network caching schemes will provide a storage ca-
pacity which is accumulated of multiple storage capacity
of network elements in in-network caching fabric layer.

27

TABLE V
COMPARISON OF IN-NETWORK CACHING STUDIES. THESE STUDIES PERFORM STORING DATA AND CACHING FUNCTIONALITIES AS IN-NETWORK

COMPUTATION.

Scope Ref. Main Contribution
Methodology Evaluation
Co-
Design

IN-Caching
Fabric

Network Element Plat. Main Results

Key-Value Store

[91]
proposing an in-network
caching system for a
memcached server

Y Shallow NetFPGA SUME H

Up to 13 Mquery/s throughput
Latency of 1.1 µs
80% Improvement in power
efficiency

[93]
proposing key-value store
architecture that leverages in-
network caching to provide
dynamic load balancing
across all storage servers
located in a rack

Y Shallow Barefoot Tofino H
Up to 40% Latency Reduction
Up to 10× throughput incre-
ment

[94]
Proposing an in-network
caching method for racks of
servers connected through
switches in a tree structure.

Y Deep Cavium XPliant
Switch

H Over 30% Latency reduction
2× Throughput increment

[95]
Proposing an in-network
caching mechanism to
provide caching for large
scale storage systems with
the characteristic of balanced
load among caches

Y Deep Barefoot Tofino H Up to 8.5× throughput increa-
ment

[96]
Proposing a replicated
key-value store with
programmable switches

Y Deep Barefoot Tofino H Up to 105× throughput
increment

[92]
Proposing a rack-scale dis-
tributed shared memory sys-
tem with in-network cache
coherence

Y Shallow Barefoot Tofino H Up to 4.2× throughput
increment

ICN
[97]

Proposing a data oriented net-
work architecture which en-
ables the in-network caching
in content routers

Y Deep ICN caching
nodes

H -

TABLE VI
COMPARISON OF SHALLOW/DEEP IN-NETWORK CACHING AND SERVER-BASED CACHING

Feature Shallow In-Network Caching Schemes Deep In-Network Caching Schemes Server-Based Caching Schemes
Caching
Hierarchy Two-Levels: In-network cache & Ori-

gin/storage server
More than two-levels: Hierarchies in in-
network caching fabric & Origin/storage
server

One level: Origin/storage server

Load Balancing

Yes
•• Balancing load between

origin/storage server and in-network
cache

Yes (More than Shallow in-network
caching)

••• Balancing load between
origin/storage server and in-network
caching fabric

• Balancing load among caches in in-
network caching fabric

No

Content/Item
Access
Delay

Lower latency than server-based scheme
due to:

••• Providing content/item at edge closer
to end-device

• Load balancing

Lower latency than shallow-in-network
caching schemes due to:

••• Providing content/item at multiple in-
network caches at edge close to end-
device

• Load balancing in in-network cache
fabric

Higher latency than in-network
caching schemes due to:

••• Availability of contents only
at origin server located at
cloud

• Not capability of load bal-
ancing

Storage At Edge Very limited in the scale of caching data
structure in network element, MATs, and
registers

More than shallow-in-network caching, up
to maximum storage capacity of in-network
caching fabric

Not available

Bandwidth
Consumption Lower than server-based scheme due to re-

turning content/item from network element
at edge and colse to end-device

Lower than shallow in-network caching due
to serving more requests in in-network
caching fabric

Higher due to returning the con-
tent/item from origin server located
at cloud

28

TABLE VII
COMPARISON OF TECHNIQUES FOR COPING WITH STORAGE LIMITATION IN IMPLEMENTING IN-NETWORK CACHING

Technique Operation Advantages Disadvantages
Key-Value based
caching

Key-Value centric caching Simplifying content/item storing
and retrieval with key-value based
approach

Small size of key-values due to
storage capacity limitation e.g.,
TCAM and SDRAM size limita-
tions

Deep in-network
caching fabric

Exploiting multiple
in-network caches
(commonly has been
organized as hierarchy in
the literature)

••• Increasing storage for
caching maximum up to
the capacity of in-network
caching fabric

• Avoiding single point of fail-
ure

••• More complex controlling
scheme in content/item stor-
ing and retrieval

• Requiring consistency mech-
anisms to keep consistency
among in-network caches

Server-based caching schemes provide no storage at edge.
• Bandwidth Consumption: Server-based caching schemes

consume considerable bandwidth in downlink due to
data streaming from servers usually located at cloud.
In contrast, shallow in-network caching schemes reduce
bandwidth consumption by providing the content at edge.
Deep in-network caching schemes can serve more re-
quests through providing more storage capacity at in-
network caching fabric which ends to higher bandwidth
saving in comparison with shallow schemes.

Table VII compares the techniques in the literature to cope
with storage limitation in implementing in-network caching.
There are two techniques: Key-value based caching and
utilizing deep in-network caching fabric. Key-value based
caching e.g., [91], [92], [93] focuses on a key-value based
retrieval system which organizes the data based on small
sizes of key-value pairs compatible with match-action tables.
The advantage is compatibility, and the simplicity in con-
tent/item storing and retrieval, while the disadvantage is that
small number of key-value pairs can be stored in a network
element due to storage capacity limitation e.g., TCAM and
SDRAM size limitations. In contrast, technique of deep in-
network caching fabric exploits multiple network elements in
in-network caching fabric (commonly the caches has been
organized as hierarchy in the literature). The studies e.g.,
[94], [95], [96] as well as ICN, advocate this technique. The
advantage is that the storage of in-network caching will be
extended up to the capacity of caching fabric. Furthermore, the
fault tolerance will be boosted by exploiting multiple network
elements in the fabric. The disadvantages however, is that
more complex storing and retrieval algorithms are required.
Furthermore, consistency mechanisms to keep consistency of
data in read/write operations among in-network caches is
required.

There are also some insights from which some lessons can
be learned:

• Network Element in Caching: An insight is that most
studies in the scope of in-network caching have im-
plemented the in-network caching with programmable
switch ASIC (See Table V). An FPGA-driven implemen-
tation is followed in [91]. However the proposed method
in [91] is not scalable since, it only provides caching
fabric for a memcached server. There exist large number
of servers in real systems, and considering that there is
scarcity of memory in an FPGA, a single FPGA is not

sufficient to provide load balancing among large number
of servers. A learned lesson is that more research effort is
required to provide in-network caching fabric based on
FPGA or NICs. Furthermore, there is no research that
compares an FPGA or NIC based in-network caching
fabric with switch programmable ASIC based in-network
caching fabric from performance criteria including la-
tency and throughput. Thus, another lesson we learn is
that research is required for the comparison between the
various types of in-network caching fabric.

• Load Balancing in In-network Caching Fabric: Consid-
ering that load balancing in in-network caching fabric
is quite important to ensure performance for the whole
caching system, another insight is that load balancing in
the in-network caching fabric is only discussed by [95].
In this study, the load telemetry information collected
from switches in the in-network caching fabric, is used
by query routing to ensure that the load between the
cache switches is balanced. However, in-network teleme-
try mechanism applied by switches has communication
overhead and consumes bandwidth for load information
distribution. We learn the lesson that more research effort
is required to provide load balancing in the in-network
caching fabric in an efficient manner.

V. IN-NETWORK SECURITY

In this section we provide a review of research studies in
the scope of in-network security. Fig. 2, Section V illustrates
the structure of this section. We first review the studies in
the scope of Distributed Denial of Service (DDoS) Attack
Mitigation, then we follow with the studies that provide
firewall solutions. Finally, we give an overview for other in-
network security applications.

A. DDoS Attack Mitigation

Network environments are constantly plagued by DDoS
attacks under the control of malicious actors. To mitigate
DDoS attacks, scrubbing services are employed to handle
the attack in the cloud. However, this mechanism results in
rerouting of traffic, additional latency and higher cost for the
operator in order to provide resources to handle the attack.
Also, there is a risk of leaking user-related private information,
when scrubbing is deployed in the cloud. To overcome these
issues, in-network DDoS attack mitigation rely on network
elements to analyze packet samples or flow records, to perform

29

attack detection and mitigation in the network.
Several studies have provided mitigation mechanism for flood-
ing attacks. Theses include SYN flooding [61], [98], TCP
flooding [99], and link flooding [100]. SYN/DNS anti-spoofing
is the focus of [60]. The study in [101], [102] focus on
volumetric DDoS attacks. The study in [103] present an in-
network defense architecture for AR-DDoS attack. A more
general view of attack mitigation that includes several DDoS
attacks have been presented in [104], [105], [106]. Considering
the source of traffic, a proactive approach of source address
validation has been considered in [107], while the study
in [108], [109], [110] detects and drops spoofed traffic. Some
specific cases have also been considered. The study in [111]
provides a secure duplicate address detection against DoS
attack. Finally, the study in [112] consider the use case of
offering DDoS Protection services to universities and data
centers downstream. The aforementioned studies offload either
a fraction or whole of detection and/or mitigation mechanism
in network elements. Below we provide a review of theses
studies.

1) Flooding: SYN-specific defense mechanisms that are
commonly deployed as SYN proxy, use SYN cookies or
SYN authentication to mitigate SYN flood attacks. Scholz et
al. [98] discuss the benefits of implementing SYN cookies and
SYN authentication strategies using the P4 over data plane
compared to software based packet processing with kernel-
bypass. Packets are parsed in the targets and will be forwarded
by L2 forwarding rules implemented by match action pipeline.
The calculations for the SYN cookies and SYN authentication
strategies including cookie calculations and whitelisting are
implemented in the targets: (i) Some cookie-related func-
tionalities e.g., generating a timestamp, cryptographic hash
calculation are implemented in the P4 target. (ii) The authors
discuss two options to implement whitelisting: First, the data
plane informs the control plane of a flow/IP address to be
whitelisted and the control plane will insert an entry to the
table. Second, a Bloom filter data structure is utilized for
whitelisting. The in-network computation i.e., SYN cookies
and SYN authentication strategies are implemented on mul-
tiple P4 targets: T4P4S [113], a DPDK-based P4 software
target running on commercial off-the-shelf hardware; the NFP-
4000 Agilio SmartNIC NPU, and the NetFPGA SUME. The
evaluation shows the capability of SYN flood processing up
to roughly 13 Mpps in NetFPGA.

SYN flooding attack mitigation has also been considered by
Lin et al. [61]. In the attack, large numbers of ACK packets
with fake source IP address are sent to the server, accordingly,
the server responses SYN/ACK packets to the original source.
However, the server does not receive corresponding ACK/FIN
packets. According to the proposed method, the number of
SYN/ACK and ACK/FIN packets are counted at the switch
nearest to the server, which the ratio of the counted values
determines the attack. In the case of anomaly detection the
traffic of the malicious source IP will be dropped and the
controller will be informed. The proposed in-network attack
mitigation reduces the traffic volume on the SDN controller.
Furthermore, the authors propose some merging mechanism
to merge the rules in the forwarding tables to reduce the

cost of memory consumption. The in-network computation
consists of detecting SYN flooding attack based on the ratio
of SYN/ACK and ACK/FIN packets and dropping the packets
from malicious source IP, that is implemented by BMv2. In
comparison with the case that controller polls switches for
gathering information and performing detection, the proposed
in-network detection method reduces the volume of traffic up
to 4000 bytes/s.

Musumeci et al. [99] propose a machine learning based
attack detection mechanism with the focus on TCP flood
attack. Traffic information from the P4 switch are periodically
collected and analyzed by a flood detection module to detect
the attack. The analysis is performed through a machine
learning classifier. Considering a time window for gathering
the information, some features are utilized for classification:
average size of packets in time window; the percentage of
TCP packets; the percentage of UDP packets; TCP/UDP ratio;
the percentage of TCP packets with an active SYN flag.
The authors also propose that elaborating traffic features can
be offloaded from the attack detection module to the P4
switches. To perform the offloading, the proposed method
exploits the potential of stateful data planes enabled by P4
language to implement packet mirroring, header mirroring
and metadata extraction inside P4 switches. The in-network
computation i.e., traffic feature extraction is implemented by
BMv2. The proposed method is a co-design approach since
a TCP flood detection module implemented on non-network
element, collaborates with network elements to detect TCP
flood attack. The evaluation with SVM and Random Forest,
illustrates the detection accuracy over 98%. Furthermore, the
P4 switch can extract features in around 110 µs, compared
with roughly 15 seconds which is required by a server-based
features extraction module.

In-network implementation of link-flooding mitigation not
only can detect suspicious traffic at any location/time, but also
omits the necessity of a centralized controller for deploying
new configurations. Applying such centralized reconfiguration
takes long time which the time wast can be used by the attack-
ers to change their strategy. In this regard, Xing et al. [100]
propose a method to detect and mitigate link-flooding attacks
in the network through the implementation of some boosters in
the switches. In the default mode, routing is done according to
the optimal policy computed by the controller. Upon detecting
an attack however, an alarm is propagated through the network
and the attack mitigation boosters will be activated in the
switches. To minimize the disturbance to normal traffic, the
attack mitigation boosters reroutes malicious flows while the
normal flows will still be routed through the original optimal
route as determined by the controller. In-network computation
i.e., link-flooding detection and mitigation are implemented
by BMv2. The evaluation shows that proposed method has
increased the throughput of normal user flows by 80% in
comparison with the case that centralized SDN controller
reconfigures the network.

Afek et al. [60] focus on SYN and DNS anti-spoofing for
DDoS attack. Two different SYN anti-spoofing i.e., HTTP
redirect and TCP reset, and one DNS anti-spoofing method
are implemented using OpenFlow and P4 target. The main

30

approach is a communication protocol based on cookies i.e., a
SYN-cookie based approach. Upon arrival of SYN packet, an
ACK message containing a hash generated cookie is sent in re-
sponse. The client is authenticated only when it responds with
the correct cookie. The SYN-cookie methods are converted
into primitive steps, so that each primitive step is implemented
as an action in the SDN data plane. By utilizing data plane
some authentication tasks e.g., SYN cookies generation, is
done without communication with the controller. To cope with
the TCAM size limitation in the switches, the authors propose
a method to distribute the complexity of the proposed solution
over several switches. In-network computations composed of
SYN and DNS anti-spoofing functions based on primitives
of SYN-cookie methods, which are implemented in Open
vSwitch 2.3.1. The evaluation shows that the proposed mitiga-
tion method can successfully reply to Http requests up to attack
rate of 206 Kpps and keep the throughput up to 278 Kpps.

The studies in [101], [102] focus on volumetric DDoS
attacks at which a large number of hosts converge traffic to
one or few victims. The attack detection has been considered
in [101], while the study in [102] propose a mitigation method.
When attack occurs the distributions of the source and destina-
tion IP addresses deviates from the legitimate pattern. Lapolli
et al. [101] measure such deviation through Shannon entropy
analysis. Indeed, it is expected that in the case of attack,
the entropy of source IP addresses increase and the entropy
of destination IP addresses decrease. The authors propose an
anomaly detection based on entropy estimation implemented
by P4. The proposed method, consists of three steps: (i) For
consecutive arrived packets in an observation windows, the
entropies of IP addresses are estimated. (ii) At the end of
an observation window, based on the central tendency and
dispersion of the recent entropy values, the legitimate traffic
is modeled. (iii) Threshold for attack detection are calculated,
according which the attack will be detected. The in-network
computations composed of Shannon entropy estimation, cal-
culation of statistical characteristics of legitimate traffic, and
threshold based attack detection, which are implemented by
BMv2. The evaluation results show that the proposed method
can detect DDoS attacks with accuracy 98.2% and latency 250
ms.

Using the entropy based analysis proposed in [101], Gonza-
lez et al. [102] propose an in-network pushback mechanism to
mitigate volumetric DDoS attacks. The proposed mechanism
removes the control plane from the critical path in order to
speed up the defense. In the proposed method, first, an attack
is detected through the entropy analysis of the IP addresses
of packet sources. Then, upon the attack detection, forwarding
device next to the victim, gives alert to the upstream forward-
ing devices. Accordingly, these devices, will filter packets of
suspect flows, and if they also detected an attack, they will
alert their upstream forwarding devices. The process will be
repeated to confine the malicious traffic close to its source.
The in-network computations i.e., detection and mitigation
of volumetric DDoS attacks are implemented by BMv2. The
detection accuracy up to 94% and the latency of 0.1 ms for
the reaction to the attack (from the start of attack), have been
reported.

2) Amplified Reflection DDoS attack (AR-DDoS): In AR-
DDoS attacks, the connectionless nature of the UDP pro-
tocol is misused by an attacker to send spoofed requests
to a server on the Internet, which responds with amplified
replies to a victim. Khooi et al. [103] propose a defense
architecture against AR-DDoS attack which does not depend
on any scrubbing server, while provides much faster detection
and mitigation of attacks. The proposed architecture deploys
stateful programmable routers at the border (i.e., peering side)
and access side (customer facing) of an ISP network in order
to track the counts of requests/responses in a given protocol.
Count tracking of requests/responses are implemented using
count-Min Sketches. Then, a distributed protocol is proposed
to be employed in the border and the access routers, to reach a
consensus about a possible attack based on the counts-values.
Finally, an access control list is developed at each border router
to indicate the IP addresses of the abused servers and to ban the
malicious traffic. In-network computation consist of detection
and mitigation of AR-DDoS attack that is implemented by
BMv2. Evaluations show that the proposed method is capable
to detect and identify attacks with 99.8% accuracy in the data
plane.

3) Security of Source of the Traffic: The studies
in [107], [108], [109], [110] consider the security for the
source of the traffic. While [107] advocates a proactive strategy
for source address validation, the studies in [108], [109], [110]
detect and drop spoofed traffic in a reactive manner.

Tag-based solutions for source address validation, have
some drawbacks including insecure key negotiation, heavy en-
cryption algorithms with computational overheads for routers,
and using non-standard headers. To overcome these problems,
Yang et al. [107] employ a secure key negotiation mech-
anism that can be implemented in programmable routers.
The proposed method combines Elliptic Curve Diffie-Hellman
Ephemeral key agreement and resource public key infras-
tructure to enable secure key negotiation and defeat Man-
in-the-Middle attacks. Based on negotiated keys, the authors
design an in-network tag generation algorithm that maps
source addresses to the pseudo-random tags. The proposed
tag generation method inserts the tags into appropriate packet
header fields such that compatibility with standard headers
be kept. The in-network computation i.e., tag generation is
implemented in commercial P4 switches.The experimental
results show that the proposed method saves the bandwidth
up to 200 kbps by filtering the spoofed packets.

To detect and drop spoofed packets with forged source IP
address, Gondaliya et al. [108] advocate the deployment of
anti-spoofing mechanism on the intermediate switches instead
of deploying the mechanisms on the source or destination
nodes. The authors give details and analyze P4-based im-
plementation of several anti-spoofing mechanisms including:
network ingress filtering, spoofing prevention method, variants
of reverse path forwarding, and SAVI. The authors have
explained the match-action table for implementing each of
the anti-spoofing mechanisms. The in-network computations
i.e., anti-spoofing mechanisms are implemented on NetFPGA
SUME hardware. According to the evaluations, for a packet
generation rate of 8.5 Gbps and spoofed packet ratio of 12.5

31

%, the anti-spoofing mechanisms has gained throughput of
roughly 7.5 Gbps.

Similar to [108], the authors in [109], [110] also focus
on filtering spoofed traffic. The authors advocate an Hop
Count Filtering (HCF) defense that can filter spoofed IP traffic
with an IP-to-Hop-Count (IP2HC) mapping table. Instead
of applying HCF mechanism in end hosts, they propose an
architecture to integrate the HCF mechanism within pro-
grammable switches. This will end to the earlier recognition
of spoofed traffic whilst saving network bandwidth resources.
The proposed architecture includes two planes of data and
control respectively called as cache and mirror. The data plane
serves most active and legitimate IPs, while the control plane
manages the remaining IPs, stores the IP2HC mapping table,
and updates the state of system to adapt to network dynamics.
The data plane runs three modules: (i) an IP2HC module in
order to validate the packets (ii) a TCP session monitoring
module to track the legitimate hop-counts and update the
hop-count values, (iii) a statistic module to calculate statistics
about legitimate/spoofed IP. When the hop-count checking of a
packet is successful, the corresponding statistic information is
updated and the packet will be forwarded. However, when the
checking fails, the packet will be dropped and the spoofed-
packet counter is increased. The value of spoofed-packet
counter is reported to the control plane periodically.
To overcome the memory limitation of switches, the control
plane keep the global view of the traffic. It utilizes a binary
tree data structure to aggregate the information about IPs, and
it maintains a global IP2HC mapping table. Furthermore a
spoofed-packet counter counts the number of packet checking
failures to be used to adjust the state of system. The in-network
computations composed of IP2HC inspecting, TCP session
monitoring, and calculating legitimate/spoofed IP hit statis-
tics, which are implemented in hardware Tofino switch. The
proposed method is a co-design approach because the control
plane that is implemented in a non-network element handles a
fraction of IPs, maintains the global IP2HC mapping table, and
performs required updating in data plane. For spoofed traffic
whose hop count distribution follows a Gaussian distribution,
the proposed method prevents spoofed traffic from entering
the network host and saves bandwidth roughly 200Mbps.

4) DDoS Attack Mitigation in General: A more general
view of attack mitigation that covers several DDoS attacks
have been presented in [104], [105], [106]. Friday et al. [104]
employ programmable switch at the edge of the network, to
conduct analysis on the traffic prior to the traffic interfaces
with the network’s internal devices. The traffic analysis can be
performed at switches without overhead imposed by controller
intervention. To capture the excessive SYN requests and con-
sumption of the server’s connections, several functionalities
and statistics are implemented in the switches: (i) a kind of sig-
nature matching on ingress SYN packets; (ii) signature counts
calculated using the Bloom filter; (iii) the number of SYN
requests per a predefined time window; (iv) interarrival times
of TCP connections; (v) the maximum number of consecutive
sessions constructed in a time window, without already-existed
sessions be closed. Once the aforementioned data is gathered
by the switch data plane, the controller collects them for

traffic distribution formulation and accordingly calculating a
threshold. The threshold will be sent to the switch according
which the switch compares its statistic, detects the attack
and drops the malicious traffic. The in-network computation
consists of statistic calculation (about signature, SYN requests,
TCP connection, and session establishment), attack detection,
and drop malicious traffic, which are implemented by BMv2.
The proposed method is a co-design approach since controller
estimates traffic distribution and calculates the thresholds for
attack detection. For DDoS and volumetric types of attacks,
by applying the proposed method only up to 3.5% of clients
experience negligible delays. Furthermore, for SYN flood the
detection latency is below 0.25 seconds.

Another DDoS attack mitigation in a general manner has
been presented in [105]. Based on the language NetCor [114],
three classes of defense primitives are defined: (i) monitors
which collect statistics over the network traffic, (ii) actions
which specify the defense decisions taken on a particular kind
of packets, and (iii) branches which express the control flow
of the defense. Each class of primitives can consist of several
primitives. For example, for the actions primitives of drop,
pass, puzzle, log can be defined. Then, the amount of resources
required for the primitives on the switch and/or server are
determined. According to the analysis results, the proposed
method divides the required steps of a primitive between server
and switches and decides about usage of resources in the
switches e.g., match-action tables, registers.
As the next step, a graph structure is constructed for the
defense policy, at which the nodes are the defense primitives
and the edges denote the flow of the traffic. Based on the anal-
ysis about the resource usage of the primitives, the primitives
execution are mapped to the stages of the switches. Consid-
ering the SRAM and ALU constrints, the mapping problem
is formulated as an integer linear programming optimization
which maximizes the computation performed in switches.
The authors also discuss how the proposed method handles
dynamic attacks at run time. The in-network computation,
i.e., collecting statistic of packets and defence operation are
implemented on Barefoot Tofino. The proposed method is a
co-design approach as a combination of switch and server are
used to implement required primitives. The evaluation which is
performed on SYN flood, DNS amplification, and HTTP and
UDP flood attack, illustrates quickly restoring the throughput
of legitimate traffic flows and restoring bandwidth roughly
20 Gbps though filtering attack UDP packets. Compared with
middlebox and NFV systems, which requires tens of micro-
seconds, the packets can be processed within hunderds of
nano-seconds.

In comparison with [104], [105], Liu et al. [106] argue
for a broader-spectrum detection which covers 16 volumetric
DDoS attacks. Furthermore, unlike the studies in [104], [105],
mitigation modules in [106] will be applied by switches in
an on-demand manner to optimize hardware resource limita-
tion. At volumetric attack, the attacker sends a high amount
of traffic or request packets to exhaust the bandwidth or
resources of the victim. The detection logic identifies all
attacks while mitigation modules are installed on demand
to optimize hardware resource usage. The proposed method

32

operates based on universal sketches which makes it possible
to track a broad range of metrics with a single algorithm. The
authors consider three components to implement mitigation:
(i) filtering packets, (ii) analysis to identify malicious traffic,
and (iii) update to the filtering. For each component, a library
of mitigation functions is designed using switch-optimized
logic. When attack postures change, a new resource allocation
is computed using a near-optimal heuristic to redirect traffic
to other available switches with the smallest rerouting cost.
The in-network computations are universal sketch based attack
detection and mitigation techniques that are implemented in
Barefoot Tofino. The proposed method can mitigate attacks
while keeping throughput at 380 Gbps.

5) Specific DDoS Attack Mitigation Cases: Duplicate ad-
dress detection is essential in the configuration of IPv6 ad-
dresses, thereby all nodes in the same subnet will be able to
join the network with unique IPv6 addresses and proceed with
communication. In duplicate address detection, a node sends
one or several Neighbor Solicitation (NS) messages, and it will
configure an address when no Neighbor Advertisement (NA)
messages from existing nodes are received. In a DoS attack
there will be spoofed NA messages and IPv6 addresses can
not be configured. The existent solutions to this attack, require
either the modification of the protocol, or dependency on a
central controller that suffers from single point of failure. To
overcome these problems, Kuang et al. [111] propose a method
that secures duplicate address detection in an in-network man-
ner. The proposed method utilizes the programmable switches
to filter forged NA messages without the need for a central
control node or modification in the duplicate address detection
protocol. The in-network computation i.e., filtering forged
NA messages is implemented by BMv2. Evaluation results
show that the proposed method can prevent DoS attacks on
duplicate address detection successfully with negligible over-
head. Through in-network processing, the latency of NS/NA
message processing has been reduced up to 40%.

Dimolianis et al. [112] assumes the use case of providing
DDoS Protection services to universities and data centers. In
the proposed mitigation method, P4 devices extract some fea-
tures obtained from the traffic monitoring in the subnetworks.
According to the features, anomaly detection is performed and
appropriate alarms will be given to the mitigation systems.
Three features are defined and a threshold based anomaly
detection is advocated: (i) The number and the dispersion of
total incoming flows per epoch which is calculated by adopting
a moving average approach; (ii) Subnet significance which is
calculated as the percentage of incoming flows to a specific
subnet within duration of an epoch; (iii) Packet symmetry that
is defined as the fraction of incoming to outgoing packets for
a subnet during an epoch; the feature is used to avoid false
detection of a subnet as a victim when it is the actual receiver
of high volume of benign traffic. The aforementioned three
features are compared by threshold values to decide about at-
tack detection. In the implementation, P4 registers are utilized
to implement required counters, arrays and probabilistic data
structures. Furthermore, the analysis of the aforementioned
features are included in the network element pipeline. The
in-network computation i.e., traffic feature analysis and attack

detection is implemented in Netronome Agilio CX SmartNIC
(Throughput 1-2 Mbps).

B. Firewall

Some studies have been carried out to propose in-network
firewall solutions. Voros et al. [115] provide a layer 3 firewall
solution, Datta et al. [116] give a layer 3 and 4 firewall
solution. Voros et al. [115] implement a layer 3 firewall in
a programmable router. In the proposed method, MAC and IP
addresses that are violating security rules, or generating too
significant packet rate are added to a list, namely called as
Ban List. Counters in the router is utilized to measure metrics
to define Ban List, e.g., the generated packet rate at each host,
the number of attempts to establish connection. The proposed
method extends the headers already defined to the router i.e.
Ethernet and IPv4 headers, by implementing IPv6 and UDP
headers. After parsing TCP/UDP packets, fields of the packets
are investigated not to be on a Ban List. The packets that
match the Ban List will be dropped. In-network computation
i.e., layer 3 firewall policies are implemented in a P4 router.

Datta et al. [116] propose a configurable layer 3 and 4
firewall that is developed into software switches. The authors
introduce a controller for the purpose of centralized manage-
ment of the firewall. The high-level security policy is given as
input to the controller, accordingly the controller sends the se-
curity rules to the switches. The security rules are implemented
based on forwarding tables in the P4 data plane. Furthermore,
controller communicates with the switches through a remote
procedure call channel to activate or deactivate the firewalls.
In-network computation i.e., layer 3 and 4 firewall policies are
implemented by BMv2. The proposed method is a co-design
approach because the controller injects the security rules to
the switches and have the centralized controlling over firewall
policies.

C. Other Security Applications

Several research has been done in the scope of in-network
security applications other than DDoS or firewall. A random
forest based in-network attack mitigation has been proposed
in [117]. A block chain based in-network attack detection has
been proposed in [62]. The studies in [118], [119] focus on
privacy threat for IP addresses. Network immunity against
eavesdropping has been considered in [120]. Mitigation of
network covert channels have been investigated in [121].
Laraba et al. [122] focus on mitigating Explicit Congestion
Notification (ECN) protocol abuse. Security of Bring Your
Own Device environment is the focus in [63], [64].

A random forest algorithm has been embedded in a pro-
grammable switch to detect attacks in the network [117]. The
proposed method advocates in-network computing instead of
transferring data to a central location to decide about the
attack occurrence. Considering the memory limitation of the
switches, they analyse UNSW-NB15 dataset [123] to select
a subset of important features and select the number of
decision trees to be implemented in the switches. Levels of
the decision tree and the logic of decision is implemented
in match-action stages. The parameters of the actions such

33

as the threshold for comparison is configured by the control
plane. The authors also provide mechanism for estimating
some features like bit rate and TCP round-trip time which
are used in learning process. Finally, they extend the idea to
embed several trees used in the random forest algorithm in
the switch. The in-network computation i.e. random forest is
implemented by BMv2. The proposed method detects more
than 94% of attacks.

Yazdinejad et al. [62] propose a block chain based method
to detect attacks in software defined networks. To enable
block chain support, an architecture for packet parsing in the
switch is defined which is able to extracts the blockchain
header fields. Using the functions programmed by the SDN
controller, the pattern of the arrived packets in the switches
are investigated for attack detection. In the case that the attack
is detected, a transaction will be carried out to perform the
validation in the SDN control plane. The SDN controller
checks the validity of the transaction and the validation result
will be given to the switches. The in-network computation i.e.,
attack detection is implemented in ZedBoard Zynq FPGA. The
proposed method is a co-design approach since the validation
step is performed by SDN controller. The results indicate
detection rate above 70% for various attacks (e.g., DoS and
Probe)

There exists a privacy threat for IP based internet traffic at
which information about communicating users and devices can
be leaked by IP addresses. Existent approaches to obfuscate
the IP addresses of the sender and receiver operate either
by installing software on the user side (e.g., Tor browser)
or applying some modifications to the network hardware.
To overcome these problems, Datta et al. [118] propose an
in-network surveillance mechanism. The proposed method
encrypts IP addresses in packet headers before these pack-
ets enter the intermediate autonomous systems and decrypts
source and destination IP addresses when the packets exit
the intermediate autonomous systems. The proposed method
also encrypts TCP sequence and acknowledgment numbers
to prevent the adversary from recognizing which packets
belong to the same TCP flow. The in-network computation
is encryption and decryption of IP addresses.

Simlar to [118], Chang et al. [119] present an encryption
based defense mechanism for IP addresses. The proposed
method assumes that the sender/receiver switches are trusted
while the switches located on the middle of the path can be ma-
licious. The sender boundary switch performs a cryptography-
based transformation on the address, and builds the corre-
sponding data header. The other untrusted switches forward the
data packet to the receiving switch based on the the flow table
issued by SDN controller. At the receiving switch, the agreed
parameters in the packet header are unfolded, the address
field is decrypted, and the normal IP packet is given to the
destined host. The in-network computation i.e., encryption and
decryption of IP addresses is implemented by BMv2 using the
P4 language. Using the proposed method, the round trip-time
of forwarding packets is less than 8 ms.

Liu et al. [120] present a method using programmable data
planes to improve network immunity against eavesdropping.
The proposed method consists of three defense lines. The first

line consists of a forwarding policy at which the traffic packets
are forwarded disorderly through various network paths and
protocols (e.g. IPv4, IPv6). The second line provides disturb
for eavesdroppers so that they can not classify the traffic ap-
propriately. It works based on a transport encryption algorithm,
at which traffic packets of a stream is distributed into multiple
streams. In the third line of defense, the packets payload
are encrypted by encryption-based countermeasures. The in-
network computation are the aforementioned defense lines that
are implemented with P4 in BMv2. Experimental results show
that the proposed method can make eavesdropping difficult,
and increase transmission throughput by 32% compared with
baseline methods.

Xing et al. [121] have proposed a mitigation algorithm for
network covert channels threats in cloud systems. They focus
on two classes of network covert channel threats that are
respectively called as timing channels and storage channels.
As an example of the former, an attacker could use inter-
packet delays to encode ones or zeros in a secret message.
As an example of the latter, an attacker could embed secret
data in the TCP sequence number or ACK fields. The authors
offload as many primitives as possible to the data plane as a
fast-path defense, and then perform a slow-path defense on
the switch control plane for the rest, where there is powerful
general purpose CPUs and RAMs.
The fast-path consists of three components: (i) connection
monitoring which performs TCP monitoring and stores them
as key-values; (ii) inter-packet delay characterization which
approximates inter-packet delay distribution based on com-
paring the timestamp of the received packet and last-seen
packet time stamp from the same flow; and (iii) storage
channel defenses which adapts a set of defense techniques that
manipulates some data inside packet to defense the attack.
The slow-path defence has three more modules for channel
defense: (i) statistical inter-packet delay tests which queries
the inter-packet delay intervals for selected connections, and
performs statistical tests for timing channel detection; (ii)
timing channel defense which injects random delays to packets
in suspicious connections to disrupt timing modulation; and
(iii) performance boosters which can increase the performance
of TCP connections to diminish the cost of performance
reduction due to defence. The in-network computation i.e.,
the fast path components are implemented on Tofino. The
proposed mitigation algorithm is a co-design approach be-
cause some channel defense modules i.e., the slow path, are
implemented on general purpose CPUs. In the experiments, in
timing channel setup, the server is sending a file to the client,
while in storage channel setup, the client is uploading a file
to the server. The proposed method operates for the server
defense. The proposed method achieves a data transfer time
of 33 s for storage attack (0.3% increase in comparison with
no defense). For timing channel the proposed defence method
takes 60 s (3% increase in comparison with no defense).

ECN is a protocol that lies between IP and TCP layers
and is used by the network switches to indicate possible
congestion based on switch queue occupancy. A misbehaving
TCP endhost can manipulate ECN bits, giving the sender
the illusion that there is no possibility of congestion in the

34

network. Laraba et al. [122] propose an in-network ECN
abuse mitigation mechanism to operate within the network
and without modifying TCP. First, the protocol specification is
transformed into an Extended Finite State Machine (EFSM),
and accordingly is extended with misbehavior states. Then,
EFSM is converted to a program written in P4, and the com-
piled version will be installed on a PISA target switch. Finally,
based on EFSM, the states of each connection are tracked
and whenever a state labelled as misbehavior is entered, the
predefined actions are triggered by the program e.g., dropping
the packet, rerouting the packet, generating an alert, applying
corrective actions, etc. The in-network computation consists of
tracking the flows based on the EFSM, ECN attack detection,
and mitigation, that is implemented in BMv2. The evaluation
shows that the proposed security approach can restore 25%
throughput loss caused by misbehaving TCP end hosts.

Security in Bring Your Own Device environment where
employees of the enterprise are allowed to use their private
tablets, phones, and laptops at work is challenging. The
security approaches implemented at server-side may not be
efficient since they do not have access to context-information
at the client side, furthermore they are not as fast as switches
in processing. The studies in [63], [64] propose a context-
aware in-network security solution. The authors propose a
new language based on Pyretic Net-Core [114] to describe
security policies. Blocking certain services in working hours,
distance-based access control, and allowing access in the
case that admin is online are samples of these policies. A
module is installed at client side which is responsible for
collecting device context information and embedding it in
the network traffic. A compiler takes a policy program as
input, and generates two outputs: (i) a configuration file for
network elements, which describes the information that the
client module should collect and embed in the packets; (ii)
switch programs written in P4, which is to be deployed on the
programmable switches to enforce the scurity policy. Finally,
a runtime module is implemented in SDN controller that
configures P4 programs on the switches, and communicates
with network elements to deploy context configurations. This
centralized controlling is only used for policy deployment or
change, which is typically infrequent, while packet processing
decisions are made directly on the switch. The in-network
computation i.e., security policies are implemented in BMv2
and Wedge 100BF Tofino. The proposed method can perform
1.2 million checks for a single security context, in a client-
server based communication scenario.

D. Summary, Comparisons, Insights and Lessons Learned

In this subsection, we first briefly summarize the studies
have been done in the scope of in-network security, and then
discuss the insights and the lessons learned.

1) Summary: This section gives an overview of the research
studies in the scope of in-network security. To mitigate DDoS
attacks, the traffic is required to be rerouted to scrubbing
servers on the cloud which imposes high latency, as well as
cost for the operators in order to handle the attack. Offloading
a fraction or whole functionalities required to detect and

mitigate DDoS attacks in the network would reduce the
latency and operational cost. Several studies have proposed
in-network methods for DDoS mitigation. In-network flooding
attack mitigation including SYN, TCP, and link-flooding have
been studied in [60], [61], [98], [99], [100], [101], [102].
Generally, in flooding attacks, some detection primitives e.g.,
cookie calculations, whitelisting estimation, statistics about
SYN/ACK packets, statistics about TCP/UDP packets, entropy
analysis of IP addresses, are offloaded to network elements.
Furthermore, mitigation primitives e.g., dropping packets,
rerouting suspicious flows, are implemented as actions to
be performed by the network element whenever the attack
has been detected. AR-DDoS attack mitigation has been
considered in [103]. Considering the security of the source
of traffic, the study in [107] offload tag generation to the
programmable routers for source address validation, while the
studies in [108], [109], [110] filter spoofed traffic in the
network element e.g., by implementing Hop Count Filtering.
A more general view of attack mitigation that includes several
DDoS attacks have been presented in [104], [105], [106].
These studies offload collecting statistics about network traffic
and connections, decision about attack occurrence (e.g., apply-
ing a threshold based method), or defence mechanism (e.g.,
dropping or following actions according to a specific control
flow), to the network elements. Other specific in-network
DDoS attack mitigation cases have also been investigated
e.g., duplicate address detection in [111], and offering DDoS
Protection services to universities in [112].

There are several in-network firewall solutions: [115] at
layer 3, [116] at layer 3 and 4. Generally, malicious packets
will be detected at network element by rule-define mechanism
implemented in TCAM, or through matching with a ban list.
The packets will be dropped in the case that are recognized
to be malicious.

Several in-network security studies have been carried out
in the scopes other than DDoS or firewall. These include a
random forest based attack mitigation [117], a block chain
based attack detection [62], mitigating privacy threats for IP
addresses [118], [119], network immunity against eavesdrop-
ping [120], mitigation of network covert channel threats [121],
mitigation of ECN protocol abuse [122], and security of
Bring Your Own Device environment [63], [64]. In these
category of studies depending on the application, detection
primitives e.g. decision tree, TCP connection statistic calcula-
tions, security policies, as well as mitigation primitives e.g.,
encryption/decryption of part of packets, and packet dropping,
have been performed at network elements.

2) Comparisons, Insights and Lessons Learned: Tables
VIII and IX compare the reviewed studies from the aspects of
the contribution, methodology (in-network computation, co-
design criterion, data structure of the network element used
in method), and evaluation (network element, platform in
simulation, main results). As it can be seen, the studies either
fully implement the security mechanism in the network (the
studies with the entry of ’N’ for co-design) or follow a co-
design approach (the studies with the entry of ’Y’ for co-
design) at which network elements are utilized in conjunction
with servers or controllers in providing the required security

35

TABLE VIII
COMPARISON OF IN-NETWORK DDOS ATTACK MITIGATION. DS (DATA STRUCTURE), PLAT. (PLATFORM), Y (YES), N (NO), H (HADRWARE), S

(SOFTWARE).

Scope Ref. Main Contribution
Methodology Evaluation
In-network Compu-
tation

Co-
Design

DS Network Element Plat. Main Results

Flooding

[98]
Implementing SYN cookies
and SYN authentication
strategies using the P4 over
off-the-shelf data planes

SYN cookies and
SYN authentication
strategies

N Hash
Table;
Bloom
Filter

T4P4S
NFP-4000 Agilio
SmartNIC
NetFPGA SUME

H/S Up to 13 Mpps throughput

[61]
Proposing an in-network SYN
flooding attack mitigation

Detecting SYN
flooding attack
based on the ratio
of SYN/ACK and
ACK/FIN packets;
Dropping the packets
from malicious
source IP

N Cache BMv2 S Up to 4000 bytes/s bandwidth
saving

[99]
Proposing a machine learning
based attack detection mech-
anism with the focus on TCP
flood attack

Traffic feature extrac-
tion

Y - BMv2 S Detection accuracy over 98%
15 s Latency reduction

[100]
Detecting and mitigating link-
flooding attacks in the net-
work through program imple-
mentation in programmable
switches

Detecting and miti-
gating attacks

N - BMv2 S Up to 80% throughput
increment

[60]
Implementing SYN and DNS
anti-spoofing for DDoS attack
using network elements.

SYN and DNS anti-
spoofing functions
based on primitives of
SYN-cookie methods

N Cache Open vSwitch
2.3.1

S Up to 278 Kpps throughput

[101]
Proposing a volumetric DDoS
attack detection based on
Shannon entropy analysis

Shannon entropy
estimation;
Calculation of
characteristics of
legitimate traffic;
Threshold based
attack detection

N Count
Sketch;
Hash
Table

BMv2 S Accuracy 98%
Latency 250 ms

[102]
Proposing a fully in-network
dynamic pushback mecha-
nism to detect and mitigate
volumetric DDoS attacks

Detect and mitigate
volumetric DDoS at-
tacks

N Sketch BMv2 S Up to 94% accuracy
Latency 0.1 ms

AR-DDoS
[103]

Proposing a distributed in-
network detect and defense
method against AR-DDoS at-
tack

Detection and mitiga-
tion of AR-DDoS at-
tack

N Count-
Min
Sketch;
Hash
Table

BMv2 S Accuracy 99.8%

Security of
Source of the
Traffic

[107]
Proposing a source address
validation method based on
packet tags

Tag generation N Hash
Table

Commercial P4
switches

H Up to 200 kbps bandwidth
saving

[108]
Providing P4-based imple-
mentation of several anti-
spoofing mechanisms

Anti-spoofing mecha-
nisms

N - NetFPGA SUME H Up to 7.5 Gbps throughput

[110],
[109]

Proposing an hop count filter-
ing defense to filter spoofed
IP traffic

IP2HC inspecting;
TCP session
monitoring;
Calculating legitimate
IP hit and spoofed IP
hit statistics

Y Hash
Table

Barefoot Tofino H Bandwidth saving 200Mbps.

DDoS Mitigation
in General [104]

Proposing a method for DDoS
attack detection and mitiga-
tion where employed edge
programmable switches con-
duct analysis on the traffic

Statistic calculation
about signature,
SYN requests,
TCP connection,
and session
establishment; Attack
detection; Dropping
malicious traffic

Y Bloom
Filter;
Hash
Table

BMv2 S Up to 0.25 s detection latency

[105]
Mitigation of DDoS attacks
using in-network computing

Collecting statistic of
packets; Defence op-
eration

Y Sketch;
Hash
Table

Barefoot Tofino H
20 Gbps Bandwidth saving
Tens of micro-second latency
reduction

[106]
Proposing a broad-spectrum
detection and on-demand mit-
igation method for Volumetric
DDoS attacks

Universal sketch
based attack
detection; Attack
mitigation

N Bloom
Filter;
Sketch

Barefoot Tofino H Throughput 380 Gbps

Specific DDoS
Mitigation Cases [111]

Proposing a method to se-
cure duplicate address detec-
tion against DoS attack

Filter bogus NA mes-
sages

N - BMv2 S Up to 40% latency reduction

[112]
Proposing DDoS attack de-
tection for the use case of
National Research and Educa-
tion Networks based on anal-
ysis of traffic features

Traffic feature analy-
sis; Attack detection

N Bloom
Filter;
Sketch

Netronome
Agilio CX
SmartNIC

H Throughput 1-2 Mpps

36

TABLE IX
COMPARISON OF IN-NETWORK FIREWALL AND OTHER SECURITY APPLICATIONS. DS (DATA STRUCTURE), PLAT. (PLATFORM), Y (YES), N (NO), H

(HADRWARE), S (SOFTWARE).

Scope Ref. Main Contribution
Methodology Evaluation
In-network Compu-
tation

Co-
Design

DS Network Element Plat. Main Results

Firewall [115]
Implementing a layer 3 fire-
wall in a programmable router
using P4

Layer 3 firewall poli-
cies

N - P4 router S -

[116]
Proposing a software-based
layer 3 and 4 firewall that
is incorporated into software
switches

Layer 3 and 4 firewall
policies

Y - BMv2 S -

Other Security
Applications

[117]
Embedding Random Forest
Algorithm in programmable
switches to detect attacks in
the network

Random forest algo-
rithm

N Hash
Table

BMv2 S Accuracy more than 94%

[62]
Proposing a blockchain-based
method to detect attacks in
software defined networks

Attack detection Y - ZedBoard Zynq
FPGA

H Above 70% detection rate

[118]
Proposing an encryp-
tion/decryption based
surveillance protection
method implemented in the
network elements

Encryption and de-
cryption of IP ad-
dresses

N - - - -

[119]
Proposing a method to im-
prove the security of SDN,
through a defense mechanism
based on encrypted IP address
transformation.

Encryption and de-
cryption of IP ad-
dresses

N - BMv2 S Less than 8 ms latency

[120]
Proposing a method with
three defence-lines to
improve network immunity
against eavesdropping,
which is implemented using
programmable data planes

Multi path routing;
Transport encryption
algorithm; Packet
payload encryption

N - BMv2 S 32% Throughput increment

[121]
Providing a mitigation al-
gorithm for network covert
channels threats in cloud sys-
tems.

Fast path components Y - Barefoot Tofino H Latency up to 60 s

[122]
Proposing a detection and
reaction method to Explicit
Congestion Notification pro-
tocol abuse

Tracking the flows
based on the EFSM;
ECN attack detection;
Attack Mitigation

N Hash
Table

BMv2 S 25% Bandwidth saving

[63],
[64]

Providing a context-aware se-
curity method for Bring Your
Own Device environment

Security policies N Bloom
filter;
Hash
Table

Wedge 100BF
Tofino
BMv2

H/S Throughput as 1.2 million
checks for a single security
context.

mechanism.
Table X compares the fully in-network security schemes,
server/controller based security, which is the baseline for
comparison in many studies e.g., [61], [99], [100], [105],
and co-design schemes from the aspects of modeling state of
system, detection model, attack detection accuracy, mitigation
latency, and bandwidth consumption.

• Modeling the State of System: Fully-in-network security
methods process and analyze the arrival traffic to the
network element, thus have a local view of system.
In contrast, in server/controller based schemes collected
traffic generated from various nodes of the network is
analyzed in a centralized manner thereby, there exists
capability to have a global view of the system. Similarly,
co-design schemes which can exploit general-purpose-
computing can emulate having the global view of the
system.

• Detection Model: There are hardware constraints (e.g.,
limited number of stages/pipelines/logical units, limited
amount of match-action entries, registers, specific com-
munications among logical units in FPGA) in imple-

menting detection model in network elements. Thus, in
comparison with server/controller-based schemes sim-
pler models can be implemented in network element.
In contrast, complex detection models like deep-neural-
networks can be implemented in SDN controller or server
to detect attacks [124]. In comparison with fully-in-
network security schemes, Co-design schemes will have
higher capability in implementing complex attack detec-
tion models due to the availability of general-purpose-
computing unit. For example, in [99] the TCP/UDP
packets feature extraction is offloaded to P4 switches,
while the SVM and Random Forest learning models
are implemented in conventional servers to analyze the
extracted features and detect the TCP flood attack. This
is in contrast with fully in-network schemes that mostly
implement simple threshold based detection mechanism
in network element e.g., [101], [112], [117].

• Attack Detection Accuracy: The server/controller based
schemes can achieve the highest accuracy due to capa-
bility of implementing complex accurate detection mech-
anism, as well as exploiting global modeling of system.

37

TABLE X
COMPARISON OF FULLY IN-NETWORK IMPLEMENTED SECURITY SCHEMES, SERVER/CONTROLLER-BASED SECURITY SCHEMES, AND CO-DESIGN

SCHEMES

Feature Fully in-Network Security Schemes Server/Controller-Based Security
Schemes

Co-Design Security Schemes

Modeling State
of System

Local view of system
•• Having statistics about the

traffic passing through the
network element

Global view of system
•• Having statistics about wide-

network traffic
Can have global view of the system due to
exploiting general purpose computation

Detection Model Simpler than server/controller-based
schemes

Capability to support complex detection
model due to general purpose computation

Higher capability than fully in-network se-
curity schemes due to exploiting general
purpose computation

Attack Detection
Accuracy

Can be lower accuracy in compar-
ison with server/controller-based
schemes due to

••• Simpler detection model
• Attack detection based on lo-

cal view of system

Higher accuracy due to
••• Supporting advanced detection model
• Attack detection based on global view

of system

Can be higher accuracy in comparison with
fully in-network security schemes due to
exploiting general purpose computation

Mitigation
Latency

Lower latency than server-based scheme
due to

•••• Processing of network elements with
high throughput

• Lower latency to detect attack due to
omitting SDN controller or scrubbing
servers

• Performing mitigation as soon as the
attack was detected

Higher latency

Can be lower than server/controller-based
scheme

•••• Some volume of traffic are processed
at network element

Higher than fully-in-network security
scheme due to possible:

• Processing of some traffic at con-
troller/scrubbing server

• Transmission of controlling signals
from controller/scrubbing server to
network element

.

Bandwidth
Consumption Lower

• Transmission to scrubbing
server/controller is not required

Higher

Higher than fully-in-network security
scheme due to communication overhead
between server/controller and network
element

The fully-in-network security schemes with the capability
of simpler detection model and having local view of sys-
tem might end to lower accuracy than server/controller-
based schemes. The co-design schemes, can achieve
higher accuracy than fully-in-network security schemes
since they can implement more accurate complex attack
detection models, as well as having the potential of global
modeling of the system due to general-purpose computing
utilization. As an example, the study in [99] which
employs a general-purpose computation for TCP flooding
attack detection module operating based on classification,
besides an in-network feature capturing procedure, has
reported the detection accuracy over 98%.

• Mitigation Latency: Fully-in-network schemes can have
the lowest attack mitigation latency since network el-
ements can process the packets at high throughput in
comparison with conventional computing systems utilized
in controller/server-based schemes. Furthermore, time
will be saved as the attack can be detected without
transmission of packets to SDN controller or scrubbing
servers. Accordingly, mitigation can be triggered at data
plane without SDN controller or scrubbing servers inter-
vention. As an example, the proposed method in [111]
can mitigate DoS attacks on duplicate address detection
in programmable switches, with the latency reduction up
to 40%. As co-design schemes, perform part of process-
ing/decision at controller/scrubbing server (e.g., [109],
[110]), and might need controlling signals/traffic be trans-
ferred between controller/scrubbing server and network
element, they can experience more latency in comparison

with fully in-network security schemes.
• Bandwidth Consumption: Fully in-network security meth-

ods which do not require traffic transmission to the scrub-
bing servers or (SDN) controller, will save bandwidth in
comparison with controller/server based methods. For a
source address validation application, the experimental
results in [107] show that in-network filtering of the
spoofed packets can save the bandwidth up to 200 kbps.
The co-design approaches can consume higher bandwidth
than fully-in-network security schemes due to overhead
of communication between server/controller and network
element. The transferring of extracted features in data
plane to TCP flood detection module in [99] is an
example of communication overhead between network
element and server.

There are also some insights from which some lessons can
be learned:

• Diversity in Attack Detection: One overall insight from
our literature review of in-network security is that most
of the studies provide security solution for DDoS attack,
particularly flooding attacks. For many other attacks, few
research has been done. For example, only one study
considers AR-DDoS attack [103] or network covert chan-
nel threats [121], and only two studies provide firewall
solutions i.e., [115] , [116]. However, there exist extensive
types of attacks at which rerouting of traffic to remote
servers to detect the attack will end to high latency
and operational cost which can be unleashed through in-
network security appliance. A learned lesson is that more
research effort is required to provide in-network security

38

solutions for attacks other than flooding like AR-DDoS
attack mitigation, firewall solutions, and network covert
channel threats mitigation, etc.

• Machine Learning Based Attack Detection: Another in-
sight is that most of the studies perform simple thresh-
old based detection mechanism in the network element
at which the collected statistics in the programmable
network element are compared with threshold values to
decide about the attack occurrence. Though the ALU
requirement of the threshold based detection is simple
enough to be implemented in many network elements
with processing limitation, the detection accuracy how-
ever can be enhanced by applying more accurate detection
mechanism. Machine learning techniques can gain higher
accuracy. However, only [117] has used machine learning
to detect attacks in the network. A lesson learned is that
more research effort is required to apply machine learning
in the network elements to detect attacks in the network.

• Co-Design Security Schemes: Another insight is that few
studies e.g., [104], [109], follow a co-design in-network
security approach at which network elements are utilized
in conjunction with servers or SDN controller in detecting
and mitigating attacks. Co-design approaches can end to a
more efficient attack detection. Though the programmable
network elements are good candidate for estimating traffic
statistic, each network element has a local view of traffic
distribution that can not effectively determine the param-
eters to detect the attack occurrence. For example, to
improve the detection accuracy, the parameters to detect
the attack e.g., threshold, can be defined by a server or
SDN controller based on a global view of the traffic,
while the traffic analysis can be performed in the network
elements. We learn the lesson that more study can be done
in area of co-design in-network security.

VI. IN-NETWORK COORDINATION

Participant entities in distributed systems, may require to
agree on some data value or a sequence of operations that is
needed for a computation or system operation. This agreement
can be reached through execution of consensus protocols.
The consensus mechanisms however, suffer high latency as
multiple communication rounds among the participants are
required to be completed to reach a consensus. Offloading
parts/whole of functionalities required for the implementation
of a consensus algorithm to the network elements will have the
potential to reduce the latency. Besides consensus protocols,
there are other coordination mechanisms in the literature that
leverage in-network computing to speed up coordination. In
this section, we provide an overview of the research done
in the scope of in-network coordination. Fig. 2, Section VI
illustrates the structure of this section.

A. Consensus Protocols

The Paxos consensus protocol participants, may play any
of three roles: proposers who propose a value to the dis-
tributed system; acceptors who choose a single value; and
learners who learn the chosen value. The protocol begins

when proposers propose values, and ends when learners know
the selected value by the acceptors. The whole protocol
can be implemented through some iterations where at each
iteration messages are transfered among the roles which can
be deployed in the servers.
Paxos can be performed in two phases. In the first Phase, a
proposer selects a round number and sends a prepare request
to a portion of acceptors. When a prepare request with a
round number larger than previously received round numbers
is received, through replies the acceptor promises the rejection
of future requests with smaller round numbers. However
the accepted value and corespondent round number will be
returned to the proposer in the case that the acceptor already
has accepted a request. When the proposer receives replies
from a portion of acceptors, the second phase starts.
The second Phase provides a procedure through which a value
would be selected by the proposer. The proposer will select
a new value when it receives no value in the replies. On the
other hand, in the case that some values have been received
in the first phase, the proposer will select the value with the
highest round number. After the selection, the proposer will
send an accept request including the selected value and the
associated round number to the same fraction of acceptors.
Accordingly, the acceptors will acknowledge the receipt and
send the accepted value to the learners, unless the acceptors
have already acknowledged another request with a higher
round number. When a fraction of acceptors accepts a value
consensus will occur.
The involved roles in the consensus protocol, can be imple-
mented in network switches in order to reduce the message
traverse path in the network, thereby reducing the latency
to reach consensus. Using P4, Dang et al. propose an in-
network computation for the second phase of the Paxos
protocol in [125], [126]. In [127], the authors describes a
complete Paxos implementation including both phases in the
network. The in-network computations have been implemented
in Tofino and NetFPGA SUME. The studies in [125], [126]
that offload a fraction of consensus protocol to the network
are co-design approaches, however, the study in [127] that
implements the consensus protocol fully in-network is not
considered as a co-design approach. They present an open-
source implementation of Paxos with at least 3× latency im-
provement and 4 orders of magnitude throughput improvement
in comparison with host based consensus in data centers.

The authors in [128] define an Ordered Unreliable Multicast
(OUM) communication in data centers based on which they
define NOPaxos as a replication protocol. The authors assume
a tree structure at which there are connections between top-of-
rack switches and aggregation switches. In a higher level above
aggregation switches the communication is provided by core
switches. In OUM communication, a client sends messages
to a group of recipients. There is no guarantee for message
delivery, however there are guarantees in the order of received
messaged in recipients. To reach this aim, all packets with
destination of a specific OUM group, will be sent through
a single sequencer, for the purpose of inserting a sequence
number to each packet prior to routing toward destination. The
forwarding rules will be organized by SDN controller to route

39

messages toward the sequencer and the group members. The
authors discuss three possible implementations for sequencer:
programmable network switch, network processor, and end
host. For the purpose of fault tolerance, if the sequencer fails or
be disconnected from OUM group members, a new sequencer
will be selected and configured by the controller. Based on
OMU communication, the authors propose the replication pro-
tocol NOPaxos based on a coordination of a leader, at which
the replicas agree on the sequence of requests to be executed.
The in-network computation i.e., sequencer is implemented on
Cavium Octeon II CN68XX network processor. As sequencing
is a fraction of replication protocol, the proposed method is a
co-design approach. The evaluation results show that latency
is below 200 µs and the throughput is above 50 Kops/s.

Raft is a consensus algorithm that abstracts a replicated
log. The clients send their requests to an entity namely called
the leader. Leader stores the requests in a log to guarantee a
total order, and accordingly, it replicates the requests to the
followers through an append entries request. The followers
append the request to their logs and notify the leader in
order to execute the operation and respond to the client. To
improve latency, Zhang et al. [129] offload the processing of
append entries messages to the P4 switches. As the leader
and the follower functionalities that are required to complete
the consensus, are implemented in non-network elements
i.e., container, the proposed method is a co-design approach.
According to the evaluations, the latency between a leader and
follower is roughly less than 937 µs.

Kogias et al. in [130] propose a kind of consensus protocol
namely called HovercRaft, based on Raft, in order to improve
the performance of state-machine replication for microsecond-
scale data center services. The authors identify the bottlenecks
that might arise in the consensus communication pattern.
Replication of the request to the followers, replying to all
clients, and packet processing of the majority of followers
are the IO and CPU bottlenecks for the leader. To overcome
these bottlenecks, the authors suggest some modifications in
the consensus communication pattern. Theses modifications
include: Separating replication from ordering, and replicating
the requests to all nodes through IP multicast; balancing the
load of replying to the clients between the leader and the fol-
lowers; Finally, implementing part of the leader functionality
i.e., aggregator to handle the append entries requests and
the replies, in the network. The in-network computation i.e.,
aggregator is implemented in Barefoot Tofino. As aggregation
is a fraction of consensus protocol, the proposed method is a
co-design approach. For delivering up to 1 million operations/s
for clusters of up to 9 nodes, results illustrates a 4× speedup
for the YCSBE-E benchmark running on Redis over an
unreplicated deployment.

Distributed architecture for software defined networks in-
cludes multiple controllers where each controller replicates
the states of other controllers. However, to make the same
decision for a request, the states are required to be consistent
through a consensus mechanism. Though leader-based consen-
sus methods (e.g., PAXOS, RAFT) can encounter with node
failures they can not cope with Byzantine failures such as
software bugs, and malicious attacks at the controllers. This

can end to incorrect replication states in the controllers and
can bring unintended operations e.g., malicious modification
of the message. To keep the correct operation in a distributed
SDN through Byzantine Fault Tolerance (BFT), the efficiency
and scalability would be compromised due the delay and traffic
load imposed by the consensus procedure. To overcome this
overhead, Sakic et al. in [131], [132], and Han et al. [133]
leverage in-network computing.

Sakic et al. [131], [132] focus on providing a correct
consensus in the scenario of Byzantine failures where a
subset of controllers operate faulty. Three entities are in-
volved in the model: (i) Network controllers that decide about
forwarding plane configuration. The corrupted operation or
malicious controller however, may diverge from the decision
of correct controllers. (ii) P4-enabled switches that do the
operation of packet forwarding for both controller commands
and applications. Whenever a switch is defined to be the
processing node, it would distinguish the correct configuration
messages generated by different controllers; (iii) Reassigner
that performs dynamic assigning of the switches to controllers
for the purpose of configuration based on the the operations
of the controllers. Furthermore, it determines the switches
playing the role of processing node. The authors propose an
optimization formulation to select the optimal processing node.
The in-network computation i.e., distinguishing the benign
controllers, is implemented in BMv2 and Netronome Agilio
SmartNIC. The proposed method is a co-design approach
as the processing node is selected through an optimization
technique implemented using general purpose CPU. Due to
filtering of incorrect messages, the control plane traffic load
has been reduced by 33% and 40% on average, in respectively
128 random switches and Fat-Tree topologies.

In the context of the same SDN architecure as
in [131], [132], Han et al. [133] offload complete functional-
ities of the BFT to the programmable switches. Furthermore,
time synchronization and state synchronization are also per-
formed in programmable switch to reduce the communica-
tion and latency overhead imposed by communication among
controllers. The aforementioned in-network computation is
implemented in BMv2. Simulation results show that proposed
method ends to 80% reduced response time compared to
conventional BFT consensus mechanisms.

B. Other Coordination Applications

Beyond consensus protocols, there exists other in-network
coordination applications in the literature. A lock management
system has been presented in [134]. A coordination mechanism
based on group cast communication for transaction processing
system has been considered in [135]. A coordination mecha-
nism based on in-network consensus to maintain consistency
in data centers has been proposed in [136].

Yu et al. [134] utilize in-network computing and propose
a lock management system. Requests of clients are sent
to the locking system which processes the requests with a
coordination of switch and servers. In more details, manage-
ment of locks are distributed among the lock servers. Getting
information from a directory service, the destination IP at each

40

request will be set to the server IP responsible for the required
lock. Upon a request arrival at a switch, the switch will grant
the lock for that request if it holds the information about the
requested lock object, and the lock is available. However, in
the case that the lock is not available, the request will be
inserted into a queue if there is sufficient memory. In the case
that the switch does not hold the lock object information or
the memory is not adequate, the request will be forwarded
to the lock server defined by the destination IP. The authors
also discuss the possibility of lock and data acquisition in the
same round time to reduce round trip time. From the aspect
of implementation, register arrays are utilized to queue the
requests for the locks, and a specific UDP port is defined for
the locking service. A lock request packet contains several
fields including action type (lock acquire/release), lock ID,
transaction ID, and client IP. Furthermore, the mapping of lock
ID to the associated register array, as well as operations to
grant and release locks are implemented through match-action
tables. Finally, the authors formulate the problem of allocating
locks to the switches as an optimization which is similar
to fractional knapsack problem and is solved in polynomial
time. The in-network computation i.e., locking management
is implemented in Barefoot Tofino. The proposed approach
is a co-design approach as lock servers in conjunction with
switches are handling locks due to memory limitation in
switches. Proposed method improves the throughput by 18×,
and reduces the latency by 20× over baseline solutions.

A transaction processing systems at which clients perform
transactions over a distributed storage system structured as a
combination of shards has been considered by Li et al. [135].
The authors utilize in-network computing to coordinate the
transaction with higher performance. By manipulating IP and
UDP headers, the proposed protocol introduces a groupcast
communication where a message is transmitted to several
multicast groups with ordering guarantees. Groupcast commu-
nication is implemented using a centralized sequencer which
can be replaced by SDN controller whenever it fails. The
sequencer itself can be implemented in several ways including
in-switch device, network middleware, and end host which
the authors believe the highest performance is achieved by
implementation in a switch. The whole protocol is divided into
three layers: (i) The in-network concurrency control layer that
operates within and across shards, and provides a consistent
ordering of transactions without guaranteeing the reliability in
message delivery; (ii) The independent transaction layer which
is responsible for the reliability and atomicity of operations;
(iii) The general transaction layer that provides isolation of
transactions, by constructing the transactions using indepen-
dent elements. The in-network communication i.e., sequencer
is implemented with the P4 language, in Cavium Octeon
CN6880 network processor. The approach is co-design as
a fraction of required functionalities is implemented in the
network. The evaluation results achieves up to 35× higher
throughput and up to 80% lower latency than a conventional
design on standard benchmarks.

C. Summary, Comparisons, Insights and Lessons Learned

In this subsection, we first briefly summarize the studies
have been done in the scope of in-network coordination, and
then discuss the insights and the lessons learned.

1) Summary: This section gives an overview of the studies
carried out in the scope of in-network coordination. Several
consensus protocols have been proposed in the literature.
These protocols facilitate the participants to reach consensus
i.e., agree on some data value or a sequence of operations
required for system operation. Offloading parts/whole of func-
tionalities required for the implementation of a consensus
algorithm to the network can reduce the consensus latency.
In this line of research, second phase of the Paxos proto-
col [125], [126] has been implemented in the network element,
while a full implementation of this protocol has been presented
in [127]. In an ordered unreliable multicast communication
proposed in [128], module of sequencer with the role of adding
a sequence number to each packet before forwarding it to its
destination, has been implemented using the programmable
network switch. A fraction of Raft consensus protocol in [129],
and a modified version of it in [130] has been offloaded to
programmable switches. Byzantine Fault Tolerance functions
in the proposed protocols for persistence and correct opera-
tions in distributed SDN have been offloaded to programmable
switches [131], [132], [133].

There are also other coordination mechanisms in the lit-
erature that leverage in-network computing to speed up co-
ordination. A lock management system has been presented
in [134]. A coordination mechanism based on group cast com-
munication for transaction processing system in [135] perform
sequencing in programmable switch. Finally, a coordination
mechanism for the purpose of consistency in data centers
in [136] leverage in-network computing for the purpose of
broadcasting.

2) Comparisons, Insights and Lessons Learned: Table XI
compares the reviewed studies from the aspects of the con-
tribution, methodology (in-network computation, co-design
criterion) and evaluation (network element, platform in sim-
ulation, main results). An overall insight is that most in-
network consensus studies offload a part of functionalities of
the proposed protocol to the data plane. Full implementation
of consensus protocols in data plane have the potential to yield
more efficient performance than a partial offloading scenario
as shown in [127]. A lesson we learn is that more research
effort is required to provide consensus protocols that are fully
implemented in data plane.

Another insight is that only three studies
i.e., [134], [135], [136] have been presented that perform
coordination other than consensus. A learned lesson is that
more research effort is required to leverage in-network
computing to provide coordination solutions other than
consensus protocols, for network and distributed systems.

VII. TECHNOLOGY SPECIFIC IN-NETWORK COMPUTING
APPLICATIONS

In this subsection we study technology-specific in-network
computing applications in cloud computing, edge computing,

41

TABLE XI
COMPARISON OF IN-NETWORK COORDINATION STUDIES

Scope Ref. Main Contribution
Methodology Evaluation
In-network Compu-
tation

Co-Design Network Element Plat. Main Results

Consensus

[125],
[126],
[127]

Proposing Paxos consensus as
a network services

Paxos consensus pro-
tocol

Y(
[125], [126]),
N([127])

Tofino
NetFPGA
SUME

H

More than 3× latency
reduction
More than 4× throughput
increment

[128] Defining the ordered unreli-
able multicast communication
protocol for data center net-
works, and accordingly intro-
ducing a replication protocol

Sequencer Y Cavium Octeon
II CN68XX
network
processor

H Latency below 200 µs
Throughput above 50 Kops/s

[129] Proposing an in-network im-
plementation of Raft consen-
sus protocol

Processing of
append entries
messages

Y P4 switch S Latency below 937 µs

[130] Proposing a consensus pro-
tocol for the purpose of
the resilience and the per-
formance of general-purpose
state-machine replication for
microsecond-scale data center
services.

Aggregator Y Barefoot Tofino H 4× Latency reduction

[131],
[132]

Proposing a method for a
SDN architectur, to enable
correct consensus in scenarios
where a subset of controllers
is faulty

Distinguishing the be-
nign controllers

Y
BMv2
Netronome
Agilio SmartNIC

H/S 40% Bandwidth saving

[133] Proposing a switch-centric
Byzantine Fault Tolerance
mechanism in distributed
software defined networks

Full set of BFT func-
tions; Time and state
synchronization

N BMv2 S 80% Latency reduction

Others

[134] Proposing a lock management
system using a combination
of top of rack switch and mul-
tiple lock servers

Locking management Y Barefoot Tofino H By 18× throughput increment
By 20× latency reduction

[135] Proposing a coordination
mechanism based on group
cast communication for
transaction processing system

Sequencer in group-
cast communication

Y Cavium Octeon
CN6880 network
processor

H
Up to 35× throughput
increment
Up to 80% latency reduction

4G/5G/6G, and network function virtualization. Fig. 2, Section
VII illustrates the structure of this section.

A. Cloud Computing

The studies in the scope of cloud computing, either pro-
vide load balancing for data centers, or resource allocation
solutions.

1) Load Balancing: The packets destined to a data center
service with a virtual IP address (VIP) can be mapped with
a pool of servers (DIP pool). In-network computing can
eliminate the need for a software based load balancer, in
consequence the high cost of servers for load balancing, as
well as high latency and jitter in software implementation
will be diminished. Miao et al. [137] have leveraged in-
network computing and provided a load balancer in data center
through implementing two tables namely called connTable
and V IPTable in the switches. V IPTable defines the pool
of DIPs that can be mapped to VIPs. On the other hand,
connTable maps every TCP connection to a DIP i.e., the con-
nection packets will go through the associated DIP to receive
the required service. Two major challenges have been consid-
ered: (i) To store large number of connections in ConnTable,
with limeted SRAM, a hash digest of a connection is stored
instead of the actual connection key. Furthermore, a DIP

pool version is stored instead of the actual DIPs; (ii) The
authors describe a phenomena at which the DIP pool might be
updated within life time of a connection by adding or removing
servers to the pool. They define per-connection consistency
as a requirement that all packets of a specific connection be
associated to the same DIP within the lifetime of a connection.
A bloom filter is used to track the connection arrival and
accordingly, a consistent DIP mapping mechanism for the
connections is implemented. The in-network computing i.e.,
load balancing is implemented in the P4 switch. The proposed
method can balance the load of ten million connections at line
rate.

Ye et al. [138] propose a multi-path load-balancing method
in data centers. They consider a tree-like connection structure
(with possibility of multiple roots) among P4 switches, at
which every switch have a table to keep the utilization of all
paths to the leaf switches. In the proposed method, each switch
has knowledge about link bandwidth of its ports, thereby the
utilization can be estimated as the ratio of the transmission
rate to the bandwidth. According to the proposed method,
the traffic is handled at the granularity of flowlets. When a
packet arrives to a switch, the inter-arrival time is calculated by
comparing the current and previous timestamps. If it is greater
than a threshold, the packet is considered as a new flowlet.

42

Then, weighted utilization table is used to select a new path for
the flowlet. The in-network computing composed of detecting
flowlets, estimating utilization of paths, and packet routing
which are implemented in BMv2. For a topology of leaf, spine,
core and for client-server based requests, the proposed method
has reduced flow completion time up to 2%.

A transport protocol for latency-sensitive Remote Procedure
Call (RPC) calls in a datacenter has been presented in [139].
The proposed protocol is a request/reply-oriented protocol
without saving the state across requests, at which the request
identified by some parameters (e.g., source IP, UDP port,
and an RPC sequence number) is initiated by the client. The
request destination is decoupled from the server that will
process the request, thus relaxing the semantic of point-to-
point RPC communication. The router identifies a suitable
target server according to load balancing policy and directs
the message to it. In order to reduce the router processing
bottlenecks, the router only decides about the first packet of
a request, while the remaining is transmitted to the same
server. The servers send feedback messages to the router
about their status of idleness and availability that are used on
the load balancing decision. The authors have implemented a
Random, Round-Robin, JSQ and join-bounded-shortest-queue
(JBSQ) load balancing policies on the software router whilst
implementing only JBSQ for Tofino data plane due to more
simplicity. In comparison to a baseline method, the latency
of web index searching on a cluster of 16 workers has been
improved by 5.7×. In comparison with a baseline method, the
throughput of the key-value store requests on a 4-node cluster
with master/slave replication has been improved by more than
4.8×.

In contrast to [137], [138], [139] which advocate a full
implementation of load balancing at network elements, Gandhi
et al. [140] leverages a combination of in-network comput-
ing and software implementation to provide a more flexible
load balancing for datacenters. There are two limitations for
software-based load balancers: limitation in the capacity of
processing packets; and high variable latency. To cope with
these limitations, the authors use programmable switch that
already exists in the data centers to deploy a scalable, high
performance load balancer. They exploit unused entries in
ECMP and tunneling tables in a switch to perform traffic
splitting and packet encapsulation. Indeed, a database that
maps virtual IP address to the direct IP, is stored in a switch to
be able to balance the load. As load balancing functionalities
i.e., traffic distribution and encapsulation are managed in the
data plane, it can have low latency/cost, while having high
capacity. On the other hand, management of switch failures is
challenging, thus there will be a compromise for flexibility in
comparison with a software based load balancer. To overcome
this limitation, the authors utilize a combination of the switch
and a software load balancer. The traffic mainly is managed
by the switch, while software load balancer performs the
role of a backup, to enhance flexibility. The authors also
propose a greedy algorithm to decide about partitioning of
mappings among switches to overcome the memory limitation
of switches. The in-network computing i.e., traffic splitting
and packet encapsulation is implemented in simulation based

switch. The proposed method is a co-design approach since
it leverages a combination of software-implemented load bal-
ancer and programmable switches to perform load balancing.
The results show that the proposed method provides 10× more
capacity than the pure software load balancer, at a fraction
of the software-load balancer cost, while also reducing the
latency by 10× or more.

2) Cloud Empowered With INC: Resource Allocation Stud-
ies: This category of studies provide cloud resources alloca-
tion solutions in cloud computing environment that is aug-
mented with in-network computing. An online resource allo-
cation has been presented by Tokusashi et al. [27]. The authors
develop a scheme to dynamically offload computing of an
application between servers in data centers and the network. To
decide about in-network computing, two types of controllers
are proposed: network−controlled and host−controlled. In
network − controlled, when the mean number of messages
that are exchanged by the application deviates a predefined
threshold, the workload is processed by the network. In
host − controlled, when the application power consumption
or CPU usage exceeds a threshold, the controller offloads the
workload to the network. The in-network computation i.e.,
the application execution is implemented by NETFPGA and
Tofino. The proposed method is a co-design approach since
it utilizes a combination of data center servers and network
elements to serve the applications. The experiments show that
the power consumption of a software system on commodity
CPU can be improved by 100× using an FPGA, and 1000×
using ASIC implementation.

Bolcher et al. [28] propose a resource allocation in a hybrid
of data center servers and network resources environment.
Tenant describe its application with some predefined APIs and
submit it as a directed graph of composites. The collection of
composites is defined through some templates in a composite-
store repository. Each composite can be a functionality like
aggregation, load balancing, caching, data base functionality,
each can be carried out by a combination of in-network
computing nodes and data center servers. The tenant also
defines the characteristic of the in-network computing nodes
or servers it requires, like the number of CPU cores and
RAM size for servers and the programming version and the
throughput for the in-network computing nodes. Once the
application is submitted, it is transformed into a polymorphic
resource request which is a graph of server and network task
groups. The resource allocation for the polymorphic resource
requests is modeled as optimization with the objective of
allocating resources to maximum number of requests while
respecting server and in-network computing resource con-
straints. Heuristic is proposed to solve the optimization. The
proposed method is a co-design approach since it utilizes a
combination of data center servers and network elements to
serve the applications. Experiments with a workload trace of
a 4000 machine cluster shows reducing network detours by
20%, and placement latency by 50%.

Wu et al. [141] consider a situation where a third-party
namely add-on providers can augment cloud provider capabil-
ities by exposing APIs to new services. In such multi-provider
environment, P4 programs can be installed in network switches

43

to decide about forwarding packets to appropriate destination
that can be an add-on VM or a cloud service, according
to a recognition process that being handled by add-ons is
required or not. The in-network computing is distributing
packets between add-on VMs and cloud services.

B. Edge Computing

This section gives an overview of INC applications specifi-
cally for the technology of edge computing. First, we provide
overview of the studies that apply in-network computing in the
favour of edge intelligence provisioning. Second, we give an
overview of the studies that discuss resource allocation/task
offloading methods in an edge computing empowered with
in-network computing. We have seen task offloading methods
as a kind of resource allocation since in task offloading
somehow the decision about allocation of resources to tasks
are performed as well. Third, we will discuss about security
mechanisms we found about in-network computing application
in the scope of security in edge computing.

1) Edge Intelligence: In this category of research, [15]
exploits in-network computing to perform critical subtasks in-
volved in provisioning of edge intelligence service for mobile
edge computing to speed up the whole intelligence/controlling
scenario. On the other hand, the studies in [69], [81] perform
optimizations on federated learning procedure through in-
network computing. Mai et.al. in [15] propose a mobile edge
architecture enriched with in-network computing for industrial
IoT, where critical subtasks with low latency requirement that
are involved in providing intelligence and control at edge, are
offloaded to the network elements, while the rest of subtasks
are performed by the mobile edge computing. In the proposed
architecture, the connectivity between sensors/actuators and
MEC server are provided through programmable network
elements. Two use cases are considered: robotic motion control
and fire detection.
For the use case of robotic motion control, the action is
defined by a motion control mechanism as a multiplication
of two vectors current robotic state vector, and parameter
matrix, at which the parameter matrix is learned through
machine learning. The control matrix multiplication which
needs less computing and storage capacity, is offloaded to the
programmable switch, while implementing the more complex
process of learning of parameter matrix in the MEC. The state
data collected by the robotic sensors, are encapsulated in UDP
datagrams and sent toward the network element which parses
the incoming packet headers in order to extract the state data.
Then, the multiplication operation is performed and the result
will be returned to the robot. In the same time, the UDP
packets will be forwarded to the MEC to perform the machine
learning operation in order to update the parameter matrix,
and accordingly the matrix will be updated at the network
elements.
For the fire detection use case, a Complext Event Processing
(CEP) engine is utilized to detect the potential fire danger
according to the streams of monitored data at sensors. Through
a tool, the application function is converted into a set of
“match-action” that analyzes the data stream for the purpose

of fire detection. The matching operations will be performed
at the programmable switch, while the compute and storage-
intensive process of rules learning are performed in the MEC.
Whenever a complex event i.e., fire danger signal, is detected,
the switch will send the alarm information. Whenever the
CEP engine receives several consecutive events of temperature
above a predefined threshold value, a matching will occur.
The in-network computation i.e., lightweight critical subtasks
(e.g., matrix multiplication in a robotic motion controlling
application) is implemented in a P4 switch. The proposed
method is a co-design approach since it utilizes MEC servers
for complex tasks like learning. The evaluation results show
that the complex events can be successfully detected.

Qin et al. [81] proposes a federated learning for a system
consists of a central cloud and several edge network domains.
For each domain, there is a gateway node responsible for:
(i) forwarding packets from/to the devices of that domain,
(ii) a neural network-based binary classification. The gate-
way extracts bits from incoming packet’s header and gives
them as input to a neural network. While a neural network
classification is performed at the gateway, aggregation after
local updating is performed at the cloud. The in-network
computation is the neural network which is implemented using
BMv2. The proposed method is a co-design approach due to
cloud involvement in aggregation. For a use case of malware
traffic detection, the evaluation shows that federated learning
has enhanced detection accuracy roughly 20% (accuracy of
roughly 95%) in comparison with the case without federated
learning.

Advances on service-centric networking, software-defined
networking, as well as edge intelligence have impacted future
networks. Li et. al [69] jointly considers these techniques to
present the concept of in-network intelligence. The authors
explain a content/computation/context-aware adopted version
of service-centric networking protocol at which the nodes
in a software-defined network can announce their interests
for content and/or computation for a specific context and be
served by nodes capable to provide the content/computation
for the requested context. The proposed protocol enables in-
network computing among edge nodes. The authors focus on
a federated learning as an application of edge intelligent at
which an aggregator and several workers at edge of network
perform federated learning. The authors define a scenario at
which the workers for performing local training on a specific
data can send their interest to other nodes for the content of the
data, and those nodes will directly perform local training via
in-network computing in the case that they have the data. This
offloading of training through in-network computing reduces
the communication overhead. The in-network computation
are caching and model training which are implemented in
Open vSwitch. However, the evaluation is limited. For a small
topology of network with four switches and one user, for a
federated learning in the application of image classification
based on convolutional neural network, the authors have
reported only the traffic rate in the network and do not provide
any comparison for learning.

2) Edge Empowered With INC: Resource Allocation/Task
Offloading Studies: This category of studies provide resources

44

allocation or task offloading solutions in an edge computing
environment that is augmented with in-network computing.
While [58], [142], [143] tackle the resource allocation problem
with an optimization approach, the study in [144] provides an
architecture with the capability of task offloading to an edge
processor enhanced with an FPGA accelerator.

Ali et al. [58] focus on use cases like open-air rock concerts
and sports events at which constructing the wired network is
not beneficial. The authors, design and implement an architec-
ture for the required services over a Wireless Mesh Network,
at which microservices are implemented in semi-permanent
wireless mesh devices. Indeed, mesh network elements e.g.,
mesh relay nodes, mesh routers, etc., that primarily route
the packets, serve as fog nodes for in-network computing in
order to provide the microservices. The proposed architecture
includes three layers of IoT, fog, and application, as well as
a fog controller. The devices in the layer of IoT, generate
data, while APIs are provided at the fog layer in order to
place microservices in wireless fog nodes for the purpose of
computation. Furthermore, the network information including
memory/storage/CPU-utilization of fog nodes, as well as the
information about link loads, and packet drops are used to de-
cide about the fog node that should perform the computation.
A repository consisting of already-built containers are utilized
in the application layer, to provide on-demand containers to
install microservices in the fog nodes. Communication among
fog nodes, IoT devices, and microservices are controlled
by fog controller. Furthermore, selection of fog nodes for
microservice hosting are performed by fog controller through
an algorithm that minimizes response time. The in-network
computation i.e., microservice execution is implemented on
mesh network elements. For a scenario of end-to-end message
delivery the latency of the proposed method is less than 6 ms
for a fog network of less than 650 nodes.

Lia et al. [142] presents a resource allocation solution for
an edge computing domain at which SDN-enabled nodes are
utilized to execute the given input tasks. The placement of
computing tasks at the SDN-enabled nodes is modeled as an
Integer Linear Programming problem with the objective of
network usage minimization while respecting the predefined
tasks delay constraints. The optimal solution has been found
by CPLEX optimization tool. The in-network computation is
task execution which is performed by SDN-enabled nodes.
The simulation results illustrate that with delay constraints up
to 100 ms, the task offloading to cloud has been reduced by a
factor of 99%, while the amount of exchanged data has been
reduced by a factor of 10× in comparison with a cloud-based
computation approach.

Cooke et al. [143] considers a distributed and hybrid compu-
tational environment consisting of computing nodes distributed
in various layers including from layer at very edge of the
network, middle layers (e.g., gateways, and routers), as well as
cloud data center. The nodes have capability of both software
and hardware-accelerated implementation. The problem of de-
ciding about implementation of computation nodes, as well as
allocating nodes to tasks has been modeled as an optimization
problem. With a focus on an object tracking use case (by
camera), they have evaluated the effect of distributing tasks

with various implementation scenarios on performance metrics
including latency, throughput, energy consumption, as well as
cost. Various scenarios apply in-network computing on various
layers. The in-network computation is task execution which is
implemented by FPGA acceleration. The proposed approach
is co-design since tasks are executed by both software (on
general-purpose computation nodes) and hardware-accelerated
resources. For the aforementioned use case, adding FPGA
accelerators has gained latency of 0.8 s, throughput of 133
camera frames per second, and energy of 1.56 (unit of energy),
while implementing with cloud processing has gained 1.9 s,
3.4 camera frames per second, and 30 respectively for latency,
throughput and energy.

Xu et al. [144] propose a FPGA-based accelerated method
deployed at the network edge for the purpose of offloading
compute-intensive tasks to accelerate the mobile applications.
The authors propose a system architecture at which mobile
devices are connected to a wireless edge network including a
WiFi router and an FPGA board connected via Ethernet. Edge
offload manager component within wireless edge network
would decide either to carry out the requested computation
within an edge processor enhanced with an FPGA accelerator
or forward the request to a remote cloud (See Fig. 8). Three
applications has been considered: (i) Handwritten digit number
recognition which operates based on a convolution neural net-
work model similar to LeNet-5. (ii) Object recognition which
is performed based on a binarized neural network model.
(iii) Face detection which operates based on a similarity-
checking based computer vision algorithm. The in-network
computation is neural network inference and computer vision
algorithm operations which are implemented in ARMA-FPGA
board (Xilinx Zc706). The proposed method is a co-design
approach since only the operations that can be performed in
accelerator are offloaded to FPGA, while the rest are per-
formed in a general-purpose CPU. Experimental results shows
that compared with general purpose CPU-based edge/cloud
offloading, the proposed method reduces the response time
and execution time by up to 3× and 15× respectively and
saves 29.5% and 16.2% of energy for mobile device and edge
nodes respectively.

3) Security: In this subsection, we explain security mech-
anisms we found among our surveyed studies in the scope of
edge computing. Migrating access control procedures running
on centralized servers to the edge data plane equipment, in
order to reduce the transmission overhead and improve service
capacity, in massive machine communication for industrial
IoT, has been proposed by Song et al. [145]. Fig. 9 illustrates
the structure of proposed method. Various heterogeneous ter-
minals send requests for different services e.g., sensing, data
upload, and required control signaling. The whole procedure is
done in four steps: (i) System initialization: at this step, admin-
istrator sets up appropriate access control policies through a
network management application within the control plane. The
policies are defined according to some context variables e.g.,
the sensing frequency of the terminal, the distance between
terminal and service object. The actions are defined based on
the values of the context variables, and the whole policies
will be set up by controller in edge programmable switches

45

Fig. 8. Computation at edge enhanced with FPGA accelarator [144].

Fig. 9. The structure of the access control for massive machine communication [145].

close to terminals. (ii) Request sending: A terminal sends
its request for a service as well as the context information
to the access equipment. (iii) Request process: The access
equipment i.e., switch extracts the context, from packet header,
and according to the matched service object applies the core-
spondent rule i.e., allow, deny, alert, re-authentication. There
will be real-time interaction with the controller for updating
the polices. (iv) Secure logs generation: The access behaviour
of terminals will be recorded and assessed, in order to calculate
a trust value for the terminal based on reported contexts,
request upload characteristics, and the history of terminal’s
misbehavior. The switch will calculate the statistics e.g., size,
frequency, and requested service objects. Base on the logs,
sophisticated attack detection (e.g., DoS attack) methods can
be implemented on server. To ensure the trustworthiness of
logs, the authors employ blockchain as the data structure. To
cope with switch storage limitation, an algorithm is proposed
that dynamically deploys the policies on the switches. The in-
network computation is calculating the statistics of accessing
services, as well as running access control policies which are
implemented in BMv2. The proposed method is a co-design
scheme due to real-time interaction of controller with data

plane for updating policies as well as attack detection which
is implemented in server. In comparison with a centralized
approach, the authorization decision time, has been reduced up
to 8 ms due to pipeline speed of switch as well as processing
at edge near the terminals. Through filtering of illegal traffic,
as well as responding at edge, the transmitted traffic volume
in the network has been reduced up to a factor of almost 3×.

Zhang et al. [146] propose a signal processing-based secure
big image data processing method through fog computing
environment. We have considered this study in this category,
since the main focus of the authors are about making the
processing procedure secure. In the proposed method, a color
image, represented by the discrete wavelet transformation is
sampled and compressed using an advanced signal processing
technology called compressive sensing. The sine logistic mod-
ulation map is employed to construct a measurement matrix
used to perform the compressive sensing encoding. Further-
more, for security purposes authenticated measurements are
also generated as encoding the color image. The generated
measurements are normalized (for security purposes) and are
sent to the fog nodes for image post-processing boosted with
specific security mechanisms i.e., extracting the value order,

46

decomposing the measurements, and masking the energy value
(based on a permutation-diffusion architecture to hide the
energy information). Finally, the relevant data are transmitted
to the data center for the purpose of storage, reconstruction,
and integrity authentication. The authors have implemented the
proposed processing in fog nodes in FPGA for the purpose
of acceleration. The in-network computing is image post-
processing boosted with security mechanisms which is imple-
mented in DE2-70 FPGA. The proposed method is co-design
since cloud data center is used for storage, reconstruction,
and integrity authentication. Experimental results shows the
privacy assurance of the proposed method under some attacks.
Furthermore, using the proposed method the reconstruction
time has been reduced up to a factor of 2×.

C. 4G/5G/6G
We first give a review of the studies that leverage in-network

computing in Radio Access Network (RAN) of 4G/5G/6G.
Then, we explain studies have been done with the focus on
mobile core network. Finally, we review the studies that have
leveraged in-network computing in other areas of 4G/5G/6G.

1) Radio Access Network: In [147], an edge gateway facil-
ity has been deployed in RAN of LTE. The study in [148]
offloads parts of next generation NodeB functionalities to
programmable switches. Finally, the study in [149] improves
the handover operation in RAN by leveraging in-network
computing.

Aghdai et al. [147] propose an edge gateway in radio-access
network of LTE that enables service operators deploy network
functions at a close proximity to mobile users. They consider
two functionalities as the major functionalities of the edge
gateway: (i) content delivery to the users at the mobile edge;
(ii) steering the received traffic to one of the MEC services
while applying a load balancing strategy in traffic distribu-
tion. The in-network computation i.e., aforementioned edge
gateway functionality is implemented in Netronomr NFP4000
P4 target at the edge of IP transport. For a simple topology
at which UE is connected via intermediate gateway to a node
hosting SPGW, HSS, and MME components, the end-to-end
delay of LTE protocol stack and the proposed gateway is in
average 50 µs.

Voros et al. [148] focus on implementation of 5G RAN Next
generation NodeB (gNodeB) using programmable switches
for their high throughput. Considering that some of gN-
odeB functionalities e.g., ciphering/deciphering can not be
implemented in programmable switches, a hybrid approach
using programmable switch and external services is followed.
Indeed, the main packet processing is implemented in a
programmable switch while the complex functionalities are
carried out by external services. The in-network computation
i.e., a fraction of functionalities of gNodeB is implemented
in P4 hardware switch. The proposed method is a co-design
approach since complex functionalities of gNodeB is served by
services using general purpose processors. The evaluation on
a P4 hardware switch demonstrates that the proposed hybrid
approach could be an alternative to existing gNodeB solutions.

Palagummi et al. [149] consider a next generation RAN,
where the Base Band Unit functions are split across a Central

Unit (CU) and multiple Distributed Units (DUs). The authors
focus on a handover problem at which giving service to
the mobile User Equipment (UE) needs handover between
DUs. The authors propose a resource allocation at which
resources are allocated ahead of the UE on its path. The
functionality of the CU/DU is decomposed between three
components including compute servers, P4 switches, and a
controller. P4-based switches operates between the CU and
the DUs. Among the functionalities of CU/DU, the in-network
computation consists of tracking the mobility behaviour of UE
and performing the resource allocation in DU, in advance,
which are implemented in P4BM software switches. As a
fraction of CU/DU functionalities are offloaded to the network,
the proposed method is a co-design approach. Implementation
shows that the proposed method have around 18% and 25%
reduction in handover time.

2) Mobile Packet Core: The study in [150] describes a
redesign for LTE EPC mobile packet core with offloading
some control plane procedures to the programmable switch.
The study in [151] proposes a gateway implemented in a pro-
grammable switch for 5G mobile packet core. Finally, [152]
leverages in-network computing for implementing the user
plane of Serving Gateway, while [153] proposes an in-network
implementation for the User Plane Function.

The control plane of LTE EPC mobile packet core include
procedures attach, detach, S1 release, servicerequest and
handover. Major of the signaling traffic is related to the
procedures S1 release, and the service request, which
manages the forwarding status of the user when it becomes idle
or active. As these procedures operate on user-specific context,
Shah et al. [150] propose offloading of these procedures into
the packet processing pipeline of programmable data plane
switches, thereby, improving throughput and latency in the
control plane. Three challenges have also been considered:
First, diverging of the state of control plane stored in switches
from the master copy in the centralized control plane. To deal
with this challenge, the state of the offloaded control plane
is synchronized with its master copy. Second, to store the
user context in the data plane, while respecting the memory
limitation of the switches, user context is partitioned across
multiple switches. Third, to deal with switch failures and avoid
loss of the user context stored in switches, user context is
replicated across switches, accordingly a mechanism to tackle
switch failures is proposed. The in-network computation i.e.,
S1 release and service request procedures in the control
plane of LTE EPC is implemented by BMv2 and Netronome
Agilio CX smartNICs. The proposed method is a co-design
approach because the rest of LTE EPC control plane function-
alities are implemented in non-network elements. The hard-
ware prototype shows throughput and latency improvements
by up to 102× and 98% respectively when the switch hardware
stores the state of 65K concurrent users.

Singh et al. [151] focus on 5G mobile packet core architec-
ture. According to this architecture, the uplink and downlink IP
traffic are routed to radio network eNodeB stations through the
signaling gateway (SGW). Indeed, multiple eNodeBs and the
handover between them is managed by SGWs. The connection
between the mobile packet core and external IP networks, as

47

well as functionalities like packet filtering, charging policies,
and quality of service management are handled by Packet Data
Network Gateway (PGW). On the other hand, the Mobility
Management Entity (MME) performs security procedure e.g.,
user authentication, session handling, and tracking of the user
across the network.
The authors define Evolved Packet Gateway (EPG) that is
a merge of the functions of both SGW and PGW. The
authors implement vEPG user plane functions on a top of
programmable switch, while keeping vEPG control plane on
a x86 server. The pipeline to implement vEPG user plane
include tables of L2 tables, firewall tables for uplink and
downlink, GTP encapsulation and decapsulation table, and
IPv4 routing tables. The in-network computation i.e., user
plane functionalities of SGW and PGW in mobile packet core
architecture, is implemented in Barefoot Tofino hardware. The
proposed method runs at line rate with latency less than 2 µs.

Shen et al. [152] describe a simplified architecture for
packet processing at 5G. In this architecture, the Serving
Gateway (SGW) comprised of control plane (SGW-C) and
user plane (SGW-U), at which several SGW-Us are controlled
by one SGW-C. Backhaul provides connectivity among the
based stations, core network, and edge network and the traffic
transmission in the Backhaul is based on GPRS Tunneling
Protocol (GTP).
GTP packets from the Backhaul are converted to Ethernet
packets though SGW-U, before being sent to the servers at
the edge. From the other hand, conversion of the Ether-
net packets at the edge servers to the GTP packets before
traversing toward the Backhaul is required. In this regard,
a dedicated software/hardware is responsible for handling
GTP headers. Since the software-based approach have low
transmission throughput, the authors utilize programmable
network elements to implement a SGW-U system for 5G
mobile edge network. The in-network computation i.e., SGW-
U functionalities is implemented using Realtek RLT 9310
switch and FPGA platform. The experimental results show
the throughput of 10 Gbps and the packet-processing latency
of 5 µs have been achieved.

Paolucci et al. [153] provides a 5G X-haul testbed that
has been enhanced with P4 switches implementing the User
Plane Function (UPF) module. The in-network computation
i.e., UPF functionalities composed of GTP protocol encap-
sulation/decapsulation function, as well as N3-N6-N9 traffic
steering in 5G MEC architecture. Furthermore, the monitor-
ing of GTP flows performance metrics e.g., the experienced
latency, has also been implemented in the network through
BMv2 and using the P4 code. Experienced latency for a flow
of traffic is below 200 µs.

3) Other INC Applications: There are several studies that
leverage in-network computing in other 4G/5G/6G applica-
tions. Processing of 5G slice flows and 6G tasks has been
considered in respectively [154] and [155]. Ricart et al. [154]
demonstrate an in-network solution which allows the process-
ing of the flows in 5G network slices. They define a network
slice by 6-tuple: 5G user source and destination IPs; 5G
user source and destination ports; differentiated services code
point; and GTP Tunnel ID which is related to a radio tunnel

established between user equipment and 5G core network. The
aforementioned 6-tuple are employed in a TCAM table in
match/action stage, to define a network slice. The actions are
defined to perform over slices. The network element pipeline
has been extended to implement a queuing discipline to apply
a priority-based discipline in processing the flows of the slices.
According to the queuing discipline a low-priority queue will
not be processed until the higher-priority queues have been
processed. Indeed, several different queues are defined which
allows various types of QoS for slices be defined. The in-
network computation i.e., the Processing of 5G slice flows
is implemented in P4-NetFPGA. The evaluation results on
a deployed 5G edge-to-core infrastructure in a private data
centre, shows end-to-end latency under 0.5 ms for the highest
priority queue and under 3 ms for the lowest priority queue
in an end-to-end communication.

Hu et al. [155] propose an architecture, illustrated in Fig.
10 for applying in-network computing in 6G. The proposed
architecture offloads network functions into the host systems
equipped with switch chips at which packet processing func-
tion is implemented in a high-performance switching chip. In
this regard, flexibility in application deployment as well as the
capability of application migration will be provided. Indeed, a
virtualization environment can be set up at the hosts, with the
capability of application running in containers, which can be
migrated among hosts according to a scheduling policy. The
authors model the decision for offloading tasks operating over
a data flow to the in-network computing devices as a multi-
objective optimization problem that minimizes overall data
transmission overhead, energy consumption, as well as idle
rate of resources. An algorithm is proposed to solve the opti-
mization. The in-network computing is task execution which
is implemented through INC-Server contained a PX30Cortex-
A35 CPU. For the a data aggregation applications the load on
cloud server reduces up to 60% due to in-network processing
and the energy consumption reduces up to 50%.

Wu et al. [156] focus on IoT applications that include
several orders of magnitude higher connections in comparison
with enhanced Mobile Broadband applications. From the other
hand, the data traffic provided by each connected device is
much lower than the volume of traffic in legacy 4G com-
munications. Considering the scenario of data transmission to
multiple destinations, multiple small-data will be encoded into
a chunk at a P4 switch before the data frames be transmitted.
Then, through an eMBMS bearer, the chunk is transmitted
from switch to the destination devices in the LTE-M cell. The
decoding will be done at the destination after packet received
at the IoT device. Using the proposed method the number
of radio resource blocks used for data transmission has been
reduced by 8× in comparison with the benchmarks.

Gokarslan et al. [157] propose a programmable data plane
for industrial 5G networks in P4, which reduces processing,
provides a network monitoring mechanism, as well as en-
hancing the security of the network. The proposed data plane
pipeline operates on the connection between RAN and User
Plane Function (UPF). The routing decision for either sending
GTP packets to the UPF or forwarding the packets to another
gNodeB is offloaded to the P4 switches between gNodeBs. The

48

Fig. 10. In-Network computing architecture based on a virtualization platform. [155].

authors also deploy monitoring and security functionalities
at P4 pipeline to enhance the performance of industrial 5G.
The in-network computation i.e., decision about routing of
traffic, monitoring, and security capabilities are implemented
in BMv2. In comparison with the traditional 5G architecture,
the proposed method reduces intra-cellular network latency up
to 2×. Furthermore, security rules can be updated within 10
ms with a 95% confidence interval.

Ricart et al. [158] propose a hardware accelerated layer 4
firewall for 5G mobile networks. The proposed firewall oper-
ates between the edge and the core network in order to provide
protection for 5G users, as well as the infrastructure. The
firewall is implemented by adopting parser, match-action table,
and deparser. Headers of MAC, IP, UDP/TCP and General
Packet Radio Service Tunneling Protocol (GTP) are defined
to be parsed. After the parsing, the packet will be processed
by the match-action pipeline, where the extracted fields of
the packet define a drop or forward action. A TCAM table is
defined to include 5G user source/destination IPs and ports,
transport protocol type, and GTP tunnel information as the
match section. The DROP action will be applied for malicious
packets while there is an allow-by-default policy. Finally, the
non-dropped packets will be reconstructed and transmitted
through the 5G infrastructure. The authors extended their
study in [159], to support multi-tenancy in 5G. In-network
computation i.e., layer 4 firewall policies is implemented in
a P4-NetFPGA NIC [160]. In the evaluations, the latency of
packet processing in the network is 2493 times faster than a
software-based solution and the throughput gain between edge
and core nodes is up to 3.5 Gb/s.

D. Network Function Virtualization

Network Function Virtualization (NFV) is a paradigm,
which decouples network functions from Application-Specific
Integrated Circuits (ASICs) and specific hardware and im-
plements them in virtualized infrastructures (e.g., virtual
machines and containers). This effort results in handling
of network functions, with lower cost and more flexibility

for updating the functions. The deployment of virtual ma-
chines/containers consumes high resources, causes overheads
by the operating system over the hypervisor, and furthermore
the required performance and throughput for VNFs might
not be provided. In-network computing has been leveraged
to overcome these problems. The studies are categorized in
two groups: Hardware-Accelerated Network Functions, and
Framework/Deployment Solutions.

1) Hardware-Accelerated Network Functions: In order to
diminish the performance issue when Network Functions
(NFs) are running as software on top of common-off-the-
shelf hardware, hardware acceleration techniques have been
utilized for virtual network functions. NFs require tasks such
as IP/MAC look-up for routing operations, encapsulation and
decapsulation of packets for tunnel-based forwarding, encryp-
tion and decryption of packets for security. To perform such
tasks frequent monitoring of NIC and processing the IP packet
through the NF is required, which consumes high CPU cycles
as well as I/O interactions. Hardware acceleration techniques
which are categorized into custom and dedicated techniques
can improve the efficiency of the process.

Dedicated hardware acceleration is designed in hardware
for a specific function with limited or no capability of re-
programming and changing the behaviour of the hardware.
Thus, dedicated hardware acceleration is not in the scope of in-
network computing which demands the flexibility in general-
purpose programming of network element. Custom acceler-
ation is more cost efficient, programmable and configurable
which lets to adopt new network functions and protocols
depending on the application. The general idea behind these
accelerators is to offload some processing to network element
e.g., FPGA, smart NIC, programmable switches, so that the
processing can be applied on the packets before or after
the processing performed by general CPU. In the context of
network functions, checksum computations, encryption and
decryption, splitting and rebuilding the packets [161], routing
[162], load balancing [163] are examples of functionalities that
can be offloaded to the network element to save CPU cycles
and enhance the network function performance. We refer the

49

interested readers to [45], [161] for more details.
2) Framework/Deployment Solutions: This category of

studies propose framework and deployment solutions to ex-
ploit in-network computing in an NFV computing environ-
ment. While there is a category of studies that focus on
deployment of VNFs in network elements, the other category
of studies provide framework/deployment solutions in a NFV
environment empowered with in-network computing.

a) Deployment of VNFs in Network Element: Kundel et
al. [164], [165] use P4 and develop a Broadband Network
Gateway data plane which is deployed in a Central Office Re-
architected as a Datacenter (CORD) environment and provides
the requirements of a telecommunication provider. The virtual
network functions of Broadband Network Gateway system are
discussed: traffic rate enforcement, customer tunneling, traffic
access control, traffic separation, authentication, authorization
and accounting, queing and hierarchical scheduling etc. The
Broadband Network Gateway functions are performed in data
plane on the upstream and downstream packets. The in-
network computation i.e., Broadband Network Gateway func-
tions is implemented in Barefoot Tofino, BMv2, Netronome
SmartNIC, and P4-NetFPGA. For a scenario at which a
subscriber is connected to core network via a subsequent of
FPGA and P4 data plane (Tofino), and for 10000 packet VOIP
transmission, the end-to-end latency is maximum 14.5 µs.
Similarly, Osinski et al. [166] offload some functionalities of
virtual Broadband Network Gateway to programmable ASIC,
however there is no details or evaluation in their study.

Osinski et al. in [167], [168] propose a NFV framework
in data centers that let the VNFs be instantiated in software
switches or hardware devices like top of the rack switches,
SmartNICs or FPGAs. A prototype of the framework is
implemented based on OpenStack Neutron, P4 language and
BMv2 software switch.

Mafioletti et al. [169] propose the deployment of VNFs on
network elements, based on analyzing the functional com-
ponents of the VNFs. The authors propose a framework to
decompose VNFs into small embedded Network Functions
(eNFs) to be deployed on network elements. The functional
components of VNFs in a service function chain are examined
to discover the repetitions in the processing of traffic. Accord-
ingly, the common components in the VNFs are merged into
a new component, according which the eNFs are defined to be
offloaded to the network element. Finally, the corresponding
P4 primitives including parsing and classification of headers
and the actions required for packet dropping and counting, as
well as the functionalities of eNFs are defined. A chaining
mechanism based on a hash table and a bloom filter is also
defined that allows to determine the network traffic direction
in the chain. The in-network computation i.e., small network
functions is implemented on smart NIC. For a firewall VNF
chain application with three VNFs, when all VNFs are run in
the network, the latency can be reduced up to a factor of 76×
(43 µs) in comparison with the case that all VNFs are running
at software (3300 µs). Throughput enhancement up to 8× has
been achieved.

The studies in [170], [171] design a framework for service
function chaining (SFCs) on the P4-capable devices with the

hardware capability as well as P4 programmability, to enhance
performance, as well as flexibility in the implementation of
Service Function Chains (SFCs). As shown in Fig. 11, the
proposed framework offers several high-level primitives to
the operators so that they could generate the required SFC
requests. Furthermore, a converter generates the corresponding
P4-program according to the given SFC requests. Converter
applies an algorithm based on Longest Common Subsequence
in order to merge multiple SFCs in a P4 program. The in-
network computation i.e., network functions is implemented
on Tofino. The evaluation on real world SFC, illustrate that in
comparison with software-based NFV solution, the throughput
is enhanced up to a factor of 104×. Similarly the latency will
be reduced up to a factor of 104×.

b) NFV Empowered With INC: Framework/Deployment So-
lutions With Hybrid Substrate Network: Deployment of VNFs
over hybrid substrate network including network elements and
general compute nodes has been considered in [172], [173].
Lopes et al. [172] propose a platform for the management
and allocation of VNF components which are common across
different VNFs, upon heterogeneous architectures comprised
of FPGAs and general purpose processors. The authors give
guidelines and discussion of properties of VNF components
to help selecting the appropriate substrate for each VNF com-
ponent. The in-network computation i.e., VNF components
is implemented on NetFPGA. The proposed method is a co-
design approach because VNF components are deployed over a
hybrid substrate environment including both network elements
and general purpose processors. For deep packet inspection
and firewall functions, in comparison with software solution,
the proposed method has enhanced throughput by a factor of
2×, up to 800 Mbps.

An optimization framework for the deployment of VNFs
on hybrid substrate network has been presented by Moro et
al. [173]. The authors, decompose VNFs into several smaller
functions, namely called µVNFs and distribute them over a
hybrid infrastructure consisting of programmable switches,
NICs, and edge/fog compute nodes. Then, the authors develop
an optimization framework to select the decomposition with
minimum cost of deployment, as well as identifying the node
at which each µVNFs is deployed. The authors also deploy
a tool through which multiple µVNFs are integrated within
a single P4 program in order to be instantiated on a pro-
grammable switch. The robustness of the proposed algorithm
in the condition of link failure is investigated. The in-network
computation in the proposed method is µVNFs execution. The
propose method is a co-design approach because the execution
of µVNFs is distributed over a hybrid substrate environment
including both network elements and edge/fog compute nodes.
The proposed method has enhanced the deployment cost by
3× in comparison with baselines.

E. Summary, Comparisons, Insights and Lessons Learned

In this subsection, we first briefly summarize the technology
specific applications, and then discuss the insights and the
lessons learned.

50

Fig. 11. A service function chaining framework on P4-enabled devices [170].

TABLE XII
COMPARISON OF WORKS IN CLOUD COMPUTING. DS (DATA STRUCTURE), OBJ. FUNC. (OBJECTIVE FUNCTION), PLAT. (PLATFORM), Y (YES), N

(NO), H (HADRWARE), S (SOFTWARE).

Scope Ref. Main Contribution
Methodology Evaluation
In-network Compu-
tation

Co-
Design

DS Optimization/Obj.
Func. Network Element Plat. Main Results

L
oa

d
B

al
an

ci
ng

[137]
Proposing to use switching
ASICs to build fast load bal-
ancers in data centers

Load balancing N Bloom
filter;
Hash
Table

N P4 switch ASIC H Throughput up to ten million
connections at line rate

[138]
Proposing a weighted
equal-cost multi-path load-
balancing scheme in data
center networks.

Detecting flowlets;
Estimating utilization
of paths; Packet
routing

N Hash
Table

N BMv2 S Up to 2% reduction in flow
completion time

[139]
Proposing a transport proto-
col targeting latency-sensitive
RPC calls within a datacenter
with the approach of load bal-
ancing

Load balancing
policies i.e., Random,
Round-Robin, JSQ
and Join-Bounded-
Shortest-Queue

N - N Software router
Tofino

H/S
Latency reduction by 5.7×
Throughput incereamnet by
more than 4.8×

[140]
Proposing a combination of
in-network computing and
software implementation to
provide a flexible, fast, and
with high capacity load bal-
ancing method for data cen-
ters

Traffic splitting;
Packet encapsulation

Y Hash
Table

N Simulation based
switch

S By more than 10× latency
reduction

R
es

ou
rc

e
A

llo
ca

tio
n

[27]
Proposing a method that of-
floads application execution
from data center server to net-
work element in an online
manner

Application execution Y Hash
Table

N NETFPGA
Tofino

H By 1000× power consump-
tion reduction

[28]
Proposing a resource alloca-
tion based on heuristic that
allocates resources to maxi-
mum number of requests in
a computational environment
containing a hybrid of server
and network resources

Application
component
computing

Y -

Y (Allocate
resources to
maximum
number of
requests)

- -
Up to 20% bandwidth saving
Up to 50% placement latency
reduction

[141]
Leveraging in-network com-
puting to provide resource al-
location in an environment
containing a hybrid of cloud
provider and add-on providers

Distribute packets be-
tween add-on VMs
and cloud services

N - N - - -

51

TABLE XIII
COMPARISON OF WORKS IN THE SCOPE OF EDGE COMPUTING. OBJ. FUNC. (OBJECTIVE FUNCTION), PLAT. (PLATFORM), Y (YES), N (NO), H

(HADRWARE), S (SOFTWARE).

Scope Ref. Main Contribution
Methodology Evaluation
In-network Compu-
tation

Co-
Design

Optimization/Obj.
Func.

Network Element Plat. Main Results

E
dg

e
In

te
lli

ge
nc

e

[15]
Proposing an architecture for
mobile edge computing for
industrial IoT which is based
on offloading critical subtasks
involved in provisioning of
edge intelligence service to
the network

Lightweight critical
subtasks e.g., matrix
multiplication
in a robotic
motion controlling
application

Y N P4 switch S Accuracy 100%

[81]
Proposing a federated learn-
ing method implemented by
edge gateways and cloud ag-
gregator in a multi-domain
edge/cloud environment

Neural network Y N BMv2 S Accuracy 95%

[69]
Proposing a federated
learning method at edge
based on an adopted concept
of service-centric networking
which lets the data be trained
at workers close to data
source with the capability of
in-network computing

Caching and model
training

N N Open vSwitch S -

R
es

ou
rc

e
A

llo
ca

tio
n/

Ta
sk

O
ffl

oa
di

ng

[58]
Proposing an architecture for
fog services over a Wireless
Mesh Network, as well as an
in-network resource selection
algorithm for services

Microservice execu-
tion

N Y (selection
of fog node
with minimum
response time

Mesh network el-
ement

S Latency less than 6 ms

[142]
Proposing a linear optimiza-
tion for task offloading de-
cision in an edge computing
domain with SDN-enabled
nodes

Task execution N Y (network
usage
minimization)

SDN-enabled
node

S Bandwidth saving by a factor
of 10x

[143]

Proposing an optimization
framework for deciding about
implementing hardware-
acceleration in computational
nodes as well as allocation of
edge tasks to nodes

Task execution Y Y(Has defined
only constraints)

FPGA S
2× Latency reduction
44× Throughput increment
20× Energy reduction

[144]
Proposing a FPGA-based ac-
celerated method deployed at
the network edge for the pur-
pose of offloading compute-
intensive tasks to accelerate
mobile applications of hand-
written digit number recogni-
tion, object recognition, and
face detection.

neural network infer-
ence and computer vi-
sion algorithm opera-
tions

Y N ARMA-FPGA
board (Xilinx
Zc706)

H Up to 15× latency reduction
Up to 16% of energy reduction

Security
[145]

Proposing an access control
method for massive machine
communication with access
control implementation at ac-
cess equipment and securing
the access control procedure
by block chain.

calculating the statis-
tics of accessing ser-
vices and running ac-
cess control policies

Y
Y (Optimal
selection of
policies)

BMv2 S
Up to 8 ms latency reduction
Up to a factor of 3×
bandwidth saving

[146]
Proposing a secure big im-
age data processing method
through fog computing envi-
ronment with in-network pro-
cessing at fog-layer

image post-
processing boosted
with specific security
mechanisms

Y N DE2-70 FPGA H Up to 2× latency reduction

1) Summary: There are several studies that apply
in-network computation in cloud computing. Works
in [137], [138], [139], [140] leverage in-network computing
to provide load balancing in data centers. They offload load
balancing to the network element. The studies in [27], [28],
[141] provide resource allocation for data center applications
in a cloud environment augmented with INC. At both
[27], [28], network elements are utilized to perform
application or application component computation. The study
in [141] leverage in-network computing in a hybrid cloud
provider and add-on providers.

There are also several studies in the scope of edge comput-
ing. Some studies apply in-network computing with the aim of
edge intelligence provisioning. While [15] offload only critical
subtasks of an intelligent recognition or controlling scenario
to the network, the studies in [69], [81] exploit in-network
computing for optimizations on federated learning. There are
also some studies that provide resource allocation or task
offloading methods in an edge computing empowered with in-
network computing [58], [142], [143], [144]. Furthermore, the
studies in [145] and [146] provide security mechanisms for
respectively access control provisioning for massive machine

52

TABLE XIV
COMPARISON OF WORKS IN THE SCOPE 4G/5G/6G. TECH. (TECHNOLOGY), OBJ. FUNC. (OBJECTIVE FUNCTION), PLAT. (PLATFORM), Y (YES), N

(NO), H (HADRWARE), S (SOFTWARE).

Scope Tech. Ref. Main Contribution
Methodology Evaluation
In-network Compu-
tation

Co-
Design

Optimization/Obj.
Func. Network Element Plat. Main Results

R
ad

io
A

cc
es

s
N

et
w

or
k

LTE
[147]

Proposing an edge gateway in
radio-access network of LTE
to deploy network functions
at a close proximity to mobile
users

Load balancing; Con-
tent delivery

N N Netronomr
NFP4000 P4
target

H Latency 50 µs

5G
[148]

Proposing a hybrid approach
using programmable switch
and external services to im-
plemente 5G RAN next gen-
eration NodeB functionalities

A fraction of func-
tionalities of gNodeB

Y N P4 hardware
switch

H Throughput enhancement

5G
[149]

Proposing a handover
solution for mobile UE in
RAN 5G environment with
a focus on implementing
the functionalities of the
CU/DU through servers and
P4 switches

Tracking the mobil-
ity of UEs; Perform-
ing the resource allo-
cation in DU

Y N P4BM software
switches

S 18% to 25% Handover time
reduction

M
ob

ile
Pa

ck
et

C
or

e

LTE
[150]

Proposing to offload LTE
EPC control plane procedures
that operate based on user-
context to the programmable
switches in the data plane

S1 release and
service request
procedures in the
control plane of LTE
EPC

Y N BMv2;
Netronome
Agilio CX
smartNICs

H
Up to 102× throughput
increment
98% Latency decrements

5G
[151]

Proposing a gateway through
merging the functionalities of
PGW and SGW in mobile
packet core and accelerating
gateway functionalities with
in-network computing

User plane
functionalities of
SGW and PGW in
mobile packet core
architecture

N N Barefoot Tofino H Latency less than 2 µs

5G
[152]

Utilizing programmable net-
work elements to implement a
SGW-U system for 5G mobile
edge network

SGW-U
functionalities

N N
Realtek RLT
9310;
FPGA

H Throughput 10Gbps
Latency of 5 µs

5G
[153]

providing a 5G X-haul testbed
that has been enhanced with
P4 switches implementing the
User Plane Function (UPF)
module

UPF functionality;
Monitoring of GTP
flows

N N BMv2 S Latency below 200 µs

O
th

er
s

5G
[154]

Proposing an in-network so-
lution for processing of the
flows in 5G network slices

Processing of 5G
slice flows

N N P4-NetFPGA H Up to 3 ms latency

6G
[155]

Proposing a host-based archi-
tecture for in-network com-
puting and developing an op-
timization model for offload-
ing 6g tasks to in-network el-
ements

Task execution N Y (minimize
data transmission
overhead, energy
consumption, as
well as idle rate
of resources)

PX30Cortex-A35
CPU as INC-
server

H Up to 60% bandwidth saving
Up to 50% energy saving

LTE
[156]

Proposing an aggregation
method for aggregating
multiple small data frames
using P4 Switches for IoT
application in LTE cellular
environment

Data encoding N N P4 switch S Up to 8x radio resource block
usage reduction

5G
[157]

Proposing a novel data path
for industrial 5G networks
which is located between
RAN and user plane and per-
forms routing and security
functionalities

Decision about rout-
ing traffic; Monitor-
ing; Security capabil-
ities

N N BMv2 S Up to 2× latency reduction.

5G
[158]
,
[159]

Proposing a hardware accel-
erated layer 4 firewall for 5G
mobile networks

Layer 4 firewall poli-
cies

N N NetFPGA NIC H 2493× Latency reduction
Up to 3.5 Gb/s throughput

53

TABLE XV
COMPARISON OF SOLUTION/DEPLOYMENT WORKS IN THE SCOPE OF NFV

Scope Ref. Main Contribution
Methodology Evaluation
In-network Compu-
tation

Co-
Design

Optimization/Obj.
Func.

Network Element Plat. Main Results

D
ep

lo
ym

en
t

of
V

N
Fs

in
N

et
w

or
k

E
le

m
en

t [164],
[165]

Proposing a P4-based de-
sign and implementation of a
Broadband Network Gateway
data plane which runs in a
Central Office Re-architected
as a Datacenter

Broadband Network
Gateway functions

N N Barefoot
Tofino; BMv2;
Netronome
SmartNIC; P4-
NetFPGA

H Up to 14.5 µs latency

[167],
[168]

Proposing a framework to de-
ploy VNFs inside network el-
ements

VNF N N - - -

[169]
Proposing a framework to
decompose virtual network
functions into small network
functions and deploy them on
network elements

Small network func-
tions

N N Smart NIC H
Up to 76× latency decrement
Up to 8× throughput
increment

[171]
[170]

Proposing a framework for
implementing Service Func-
tion Chains on the P4-capable
devices

Network functions N N Tofino H
Up to 104× throughput
increment
Up to 104× latency decrement

Solutions
With
Hy-
brid
Sub-
strate
Network

[172]
Proposing a platform for
accelerating the execution of
VNFs exploiting a hybrid
hardware acceleration and
software solutions

VNF components Y N NetFPGA H Up to 2× throughput
increment

[173]
Proposing an optimization
framework based on
decomposing functionality
of VNFs for the deployment
of VNFs on hybrid substrate
network

µVNF Y
Y (VNF cost
deployment
minimization)

- - Up to 3× deployment cost
reduction

communication and fog-based image processing.
Several studies have been done in the scope of 4G/5G/6G.

The studies in [147], [148], [149] leverage in-network com-
puting in Radio Access Network (RAN) to achieve higher
throughout and lower latency. In these studies, computa-
tions like traffic steering, load balancing, some functional-
ities of gNodeB, and radio resource allocation have been
offloaded to the programmable switches. Several studies
i.e., [150], [151], [152], [153] have leveraged in-network
computing to facilitate mobile packet core. They have lever-
aged network elements to perform some control plane pro-
cedures, or offloadable mobile packet core network functions
like Serving Gateway and User Plane Function. The studies
in [154], [155], [156], [157], [158] have leveraged in-network
computing for faster processing in other areas of 4G/5G/6G
including 5G network slicing, 6G applications, LTE serving
IoT application, and monitoring/securing 5G networks.

Network function virtualization suffer high consump-
tion of resources due to the deployment of virtual ma-
chines/containers. Furthermore, there are overheads caused
by the operating system over the hypervisor, that might end
to not satisfaction of the required performance and through-
put. In-network computing has been leveraged in several
studies to overcome these problems. Hardware-accelerated
network functions have been considered in surveys [45],
[161]. There are studies that propose framework/deployment
solutions to exploit in-network computing in NFV environ-
ment. Some studies focus on deployment of VNFs in net-
work elements [164], [165], [167], [168], [169], [170], [171].
Generally, the proposed frameworks/deployment, suggest the

execution of the whole VNF or a fraction of VNF func-
tionality achieved by decomposing the VNF, be imple-
mented in network elements e.g. SmartNICs, FPGAs, pro-
grammable switches. The studies in [172], [173] provide
framework/deployment solutions in a NFV environment em-
powered with in-network computing i.e., hybrid of network
elements and general-purpose computing nodes.

2) Comparisons, Insights and Lessons Learned: Tables
XII, XIII, XIV, and XV compares the technology specific
studies in the scopes of cloud, edge, 4G/5G/6G and NFV.
The studies are compared from the aspect of the contribu-
tion, methodology (in-network computation, co-design, opti-
mization/objective function), and evaluation (network element,
platform in simulation, main results). There are some insights
from which some lessons can be learned.

• Fault Tolerance: An overall insight is that few studies
e.g., [140], [150], have considered fault tolerance in
technology-specific applications. Fault tolerance is crucial
for in-network computing, since the network elements,
particularly switches may fail. Furthermore, congestion
might cause the network elements become unavailable.
Considering 5G RAN as an example, when the execution
of the offloaded RAN functionality to the switch fails
due to switch failure, some potential malfunctions which
is not acceptable for services with high availability re-
quirement might happen: e.g., the connection between
UE and the core network might be disconnected, the
malfunctioning of handover. A lesson we learn is that
more research effort is required to provide fault tolerance
techniques for in-network computing.

54

TABLE XVI
COMPARISON OF FULLY-IN-NETWORK IMPLEMENTED FUNCTIONALITIES OF TECHNOLOGIES, WITH SERVER/DEDICATED HARDWARE-BASED SCHEMES

Scheme Computing Node Advantages Disadvantages
In-Network Implemented
Schemes • Network Element

• Hybrid with general
purpose computers
or dedicated
hardware (e.g.,
VNF middle wares,
gNodeB)

• Lower cost
– Utilizing already existed the

data plane elements
– Omitting the necessity of high

cost computational resources
e.g., servers for load balanc-
ing, gNodeB in 5G, special-
ized gateway, SGW and PGW
in LTE

• Lower latency/higher throughput
due to high processing capa-
bilities of network elements as
well as proposing the computa-
tion closer to end-devices

• Lower power consumption than
servers in cloud, edge, and NFV
environment.

• Less capability in implementing
complex functions

• Less capability in implementing
functions requiring high volume
of data

• More complex resource alloca-
tion strategy due to hybrid com-
putational environment and high
number of variables involved in
optimization

Server/Dedicated
Hardware-Based Schemes • General purpose

computers
• Dedicated hardware

e.g., gNodeB, VNF
middleware

• Higher capability in implement-
ing complex radio, core, and
application-level functions

• Higher Cost
• Higher Latency
• Lower Throughput
• Higher Power Consumption

TABLE XVII
COMPARISON OF SCHEMES FOR RESOURCE ALLOCATION IN HYBRID COMPUTATION ENVIRONMENT

Technique Operation Advantages Disadvantages
Online Dynamically allocate network ele-

ments or general purpose comput-
ing resources for computations at
run time

• Capability to adopt the allo-
cation at run time

• Providing opportunity for
switching between network
elements and general pur-
pose computating resources
when performing computa-
tion

• Higher capability for fault
tolerance

Overhead at run-time decision

Offline Allocate network elements or gen-
eral purpose computing resources
for computations at compile time

• Capability to find optimal al-
location strategy

• No overhead at run time

• Not to be able to adopt the
allocation at run time

• Not to be fault tolerant

• Computing Environment Empowered with INC: Another
insight is that most of the studies focus on implementing
required functions on network elements. However, in-
frastructure consists of heterogeneous resources including
a hybrid of network elements and compute nodes with
each have its own capability and property. While network
elements provide considerable higher processing speed,
they have less flexibility in comparison with compute
nodes with powerful processing and memory capabilities.
In this regard, an optimization is required to customize the
trade-off and reach to an optimal decision. Few studies
have followed the optimization over hybrid substrate
network: [28] focuses on maximizing the admission of re-
quests in a cloud empowered with INC, [173] minimizes
VNF cost deployment in an NFV empowered with INC.
We learn a lesson that more research effort is required
to decide about optimal distribution of computation in an
hybrid infrastructure, particularly in 5G/6G environment
that lacks such optimization view in the existent studies.

• Optimization: The surveyed studies mostly consider ex-
ploitation of in-network computing through implementing
the required functionality e.g., 5G RAN, mobile packet
core functionalities in new generations of mobile com-
munications, virtual network functions, edge intelligence.
However, providing the solutions to decide about optimal
strategy for optimization of the system or application
related performance criteria, in the targeted computing
environment is required to efficiently exploit in-network
computing besides the existent technologies. Few studies
have considered this optimization approach, mostly in the
scope of edge computing [58], [142], [145] with focuses
on response time and resource utilization optimization.
A learned lesson is that more research effort is required
to provide solutions with the approach of optimizing
various system/application related criteria, for particularly
technologies like NFV, cloud computing, and 5G/6G.
This is particularly important for optimizing power con-
sumption due to offloading computation from general

55

purpose-computing nodes with high power consumption
to network elements with lower power consumption, as
the only study that considers this matter is [155]. Energy
efficiency is particularly an important focus of design
in 6G and providing power-efficient optimizations for
resource allocation in 6G augmented with in-network
computing, can be regarded as a future research trend.

In the rest, we provide more comparison from the aspect
of computing node, performance metrics and methodology.
Generally, the studies have applied in-network processing in
these technologies to gain outperforming in QoS crieteria
e.g., throughput, and latency enhancement as well as improv-
ing resource-utilization criteria e.g., power consumption and
bandwidth consumption reduction, in comparison with existent
server/dedicated hardware-based solutions. The main achieved
outperforming in these criteria have been reported in Tables
XII, XIII, XIV, and XV. For the purpose of better comparison,
Table XVI compares the in-network implemented functionali-
ties versus serve/dedicated hardware-based schemes, which are
baselines for comparison in many studies e.g., [157], [169],
[170], [171], [172]. We provide more details as below:

• Computing Node: Server/Dedicated hardware-based so-
lutions exploit general purpose computers or dedicated
hardware (e.g., VNF middle wares, gNodeB) as com-
puting nodes. In contrast, in in-network implemented
schemes network elements play an important role as
computing nodes, although exploiting a hybrid of network
elements and other non-network element resources is also
possible.

• Cost: In contrast with server/dedicated hardware-
schemes, in-network implemented schemes, will reduce
cost by managing the processing in already existed the
data plane elements and omitting the necessity of high
cost of computational resources e.g., servers for load bal-
ancing [137], [140], or dedicated hardware e.g., gNodeB
in 5G [148] or specialized gateway e.g., SGW and PGW
in 5G [151].

• Latency/Throughput: In-network schemes can end to so-
lutions with lower latency/higher throughput in com-
parison with server/dedicated-hardware based solutions
due to high processing capabilities of network elements
as well as proposing the computation closer to end-
devices. Latency reduction by 10× in comparison with
a software-based cloud load balancer [140], up to 15×
latency reduction in mobile applications due to FPGA
acceleration at edge [144], latency less than 6 ms for
end-to-end message delivery through mesh relay/routing
nodes playing the role of fog nodes [58], as well as
latency of 50 µs for in-network LTE protocol stack and
gateways processing [147], and up to 25% reduction in
handover time between Distributed Units in next genera-
tion RAN [149], have been reported in the literature. As
examples of throughput enhancement, the evaluations on
real world service function chains in [170], [171] illus-
trate that software-based NFV solution will have roughly
0.01 Mbps throughput in software-based approach, while
it will end to roughly 102 Mbps throughput utilizing

the in-network implementation of network functions. As
another example, up to 102× throughput increcrement has
been reported through offloading LTE EPC control plane
operations to the programmable switches [150].

• Power Consumption: The processing capability of net-
work elements per watt usage of energy is considerably
higher than servers in cloud, edge, and NFV environment.
For example, billions of operations is performed in pro-
grammable switches per watt usage. However, most of
the surveyed studies have not assessed in-network com-
puting effect in power consumption and more research is
required for this assessment. The study in [27], shows that
through offloading cloud applications with high volume
of message exchanges to the network or offloading a
high power-consumed application from a server to the
network, the power consumption is improved by 100× in
comparison with a software system on commodity CPU
in cloud computing environment. Furthermore, energy
saving up to 50% has been reported in [155] due to in-
network processing of 6G tasks.

• Disadvantages of In-network implemented Schemes: In
comparison with server/hardware-dedicated based solu-
tions, there are two disadvantages:
(i) Due to hardware limitations, in-network implemented
solutions have less capability in implementing functions
with complexity or high volume of data requirement.
The functions can be application-level functions in NFV,
cloud/edge, or new generations of communications, as
well as radio-access or core functions in 4G/5G/6G. Co-
design schemes that utilize general-purpose computing
units besides network element extend the capability of
in-network solutions. The study in [15] is an example in
robotic motion control application that offloads control
matrix learning to MEC server, while performing the
multiplication of matrix with current state vector in
the programmable switches. As another example is the
study in the application of machine communication [145],
which implements access control policy at edge of the
network in programmable switch and keeps the complex
attack detection in the server. Considering the volume
of data, partitioning of virtual-IP to direct-IP mapping
elements for the purpose of load balancing in data centers
among programmable switches is a strategy that has been
used in [140] to cope with memory limitation. Similarly
in [150], user context to deal with LTE EPC mobile
packet core procedures are divided among switches.
(ii) Considering a hybrid computation environment in-
cluding non-network resources (i.e., general computation
resources in cloud, edge, NFV, 4G/5G/6G) as well as
network elements, in comparison with server/dedicated
hardware solutions, resource allocation decision will
become more complex. The studies in [28] with the
objective of allocating resources to maximum number
of cloud applications, and [173] with the objective of
VNF deployment minimization have suggested optimiza-
tion techniques to cope with heterogeneity of resources.
However, high dimensions of optimization variables can
be involved in the problem e.g., resources utilization

56

of network elements, communication cost/time between
network elements and general computational resources,
processing capability of network elements etc. Due to
high number of optimization variables, conventional opti-
mization methods might not be efficient and investigation
of more advanced optimization methods like machine
learning can be a future potential research.

At the end of this section, we compare existent re-
source allocation schemes in aforementioned technologies
empowered with INC. Among the surveyed studies,
[27], [28], [58], [172], [173] perform resource allocation in an
hybrid computation environment. They either perform the allo-
cation in an online manner [27], [58] or offline manner [172],
[173]. Table XVII compares the online and offline schemes.
In online schemes resources are allocated dynamically at run
time. One advantage is capability to adopt the allocation at run
time as well as providing an opportunity for switching between
network resources and conventional computing resources. As
an example, the study in [27] provides an opportunity to
dynamically switch the run of application between network
element and cloud server, depending on parameters like power
consumption of application and message exchange variations.
Furthermore, online schemes propose higher capability for
fault tolerance due to capability of changing the already
allocated failed resource with another one. This is critical as
network elements like switches are prone to failure or conges-
tion. On the other hand, the disadvantage is the overhead of
decision for resource allocation at run-time. In offline schemes,
network elements and general-purpose computing resources
are allocated to computations at compile time, having no
overhead at run time, as well as offering the capability of
finding optimal placement of computations. The disadvantage
is not to have flexibility at run time and not to be fault tolerant
in the case that a resource fails.

VIII. RESEARCH DIRECTIONS

In this section, we discuss the most important research
directions, mainly derived from lessons learned from our
literature review, that will be invaluable as in-network com-
puting matures. We will have a separate subsection of Generic
Research Directions which includes research directions that
can be applied for various applications i.e., in-network analyt-
ics, in-network caching, in-network coordination, in-network
security, as well as technology-specific applications.

A. In-Network Analytics

In comparison with a host based analytics where the data is
transmitted to a centralized host in order to be aggregated,
in-network analytics can reduce the volume of traffic flow
in the network as well as reducing analytics time. Several
studies have shown the potential of in-network analytics in the
areas of data aggregation, machine learning, and other types of
analytics in the network e.g., heavy flow detection, controlling,
and query processing.

1) Machine Learning: Few studies have implemented ma-
chine learning in programmable network elements, and those
studies are far from machine learning methods that are
implemented on general purpose computers. Viable starting
points for neural network implementation can be the studies
in [79], [81]. However, [79] uses quantization to simplify
the neural operations, and [81] uses binary weights and sign
function as the activation function. As those simplifications
can end to a lower accuracy, a research direction is to examine
the feasibility of implementing neural networks in the network
elements or a hybrid of network elements and general purpose
computers, without any simplification in order to achieve lower
inference latency without compromising accuracy. Considering
deep neural network, as a trend of research in machine
learning, storing all neural network parameters in the network
element might be impossible due to memory limitations. A
research direction is to utilize the techniques suggested by
studies to overcome the memory limitation of programmable
data plane devices, and adapting the machine learning im-
plementation accordingly. The study in [174] has proposed
utilizing external memory with Remote Direct Memory Access
(RDMA) facility to expand the memory in switches. The au-
thors in [175] propose an architecture which let the flow tables
of the top-of-rack switches be installed either in local memory
or externally on multiple servers in the rack. External flow
tables can be accessed with RDMA, which can be supported
with either the RDMA-based network adapters or normal
network adapters. Therefore, an interesting research avenue
is to adapt the deep neural network implementation under
memory extension mechanisms. Considering non-neural based
learning methods, in-network implementation of decision tree
has been done in [59], [117]. Implementing other non-neural
based learning methods on network elements could be another
research direction. The study in [78] can be a starting point
for Naive Bayse and SVM. However, this study assumes that
the calculations of required mathematical functions are being
previously set up as look up tables inside the device and does
not give any detail on such provisioning of calculations. In or-
der to achieve a complete implementation of non-neural based
learning methods, investigating the feasibility of implementing
the required mathematical functions in the programmable
network elements or a hybrid of network elements and general
purpose computers, is required.

2) Co-design Analytics: Due to processing and memory
limitations in network elements, not every kind of analytics
might be implementable in network elements. Furthermore,
the required functionalities for a specific analytic might be
difficult to be mapped if not impossible, to the network
forwarding architectures like match-action tables. Co-design
approaches that perform analytics utilizing a conjunction of
network elements with non-network elements (eg., servers,
controllers) seems to be promising for in-network analysis.
The functions or operations in the analytics that are infeasible
to be implemented in network elements or have implemen-
tation complexity can be performed at common compute
nodes (eg., servers, controllers). Few studies exploit co-design
approaches for analytics. An example is the study in [86]
that proposes a co-design approach for query processing at

57

which simpler operations are performed in data plane, while
complex operations are performed by a stream processor. The
co-design approaches can be an invaluable research direction
particularly for machine learning analytics with complex dis-
criminator functions or kernel based calculations, at which
the implementation on network elements might be complex
or infeasible.

B. In-Network Caching

The studies in the literature e.g., [92], [93], [94], [95], [96],
exploit in-network caching fabric to facilitate content/item
access. The surveyed studies provide protocols for accessing
and modifying the content/item. However, to have an efficient
in-network caching fabric more criteria can be considered. For
example, end-devices that initiate the requests for content/item
might be mobile. In this regard the issue of re-configuring the
data stored in network elements within in-network caching
fabric might rise to provide the contents at the proximity of
the end-devices. As in-network computing is in infancy state,
our surveyed studies lack mobility coverage and reconfigura-
tion solutions for in-network caching fabric. For a key-value
based retrieval system, this problem becomes complex when
a content might be composite i.e., consists of several keys
distributed among the network elements. Thus, a potential re-
search direction would be provisioning optimization solutions
and controlling mechanisms to decide about reconfiguration of
data stored in in-network caches according to mobility patterns
of end-devices.

C. In-Network Security

The in-network security has received much more atten-
tion from the research community than in-network analyt-
ics, caching, and coordination. However, as discussed in the
lessons learned, there are still some research gaps that need
to be filled. We discuss possible research directions, mainly
derived from the lessons learned from our surveyed studies.

1) Machine Learning Based Attack Detection: Most of
the attack detection methods in the literature are threshold
based at which attack is detected through comparison of
traffic statistics (e.g., SYN/ACK packets statistic, TCP/UDP
packets and connections statistics, statistics about flows and
subnets) with some thresholds. However, machine learning
techniques can be implemented on network elements and can
tackle the attack detection with a higher accuracy. A starting
point is the study in [117] that uses random forest method to
detect attacks in the network. Other machine learning methods,
particularly neural networks whose implementation has shown
to be feasible in network elements, can be investigated for
detecting a variety of network attacks.

2) Co-design Attack Detection/Mitigation: The surveyed
studies in the scope of in-network security have shown promis-
ing results when programmable network elements are utilized
to perform security related functionalities e.g., estimating
traffic statistics, calculating some traffic features, detecting the
attack, and attack mitigation. However, each network element
can establish a model for traffic distribution according to
the local traffic it serves. The local traffic distribution can

not effectively determine the parameters to detect the attack
occurrence. Through applying a co-design approach, network
elements can be utilized in conjunction with (SDN) controller
in detecting and mitigating attacks. Controller can provide
a global view to the established models by the network
elements, accordingly it can decide about the attack detection
parameters (e.g., thresholds) more accurately. Thus, a co-
design approach with collaboration of controller and network
elements to detect and mitigate network attacks can be an
interesting research direction. The studies in [104], [109] have
proposed co-design methods with the aim of including a global
model for attack mitigation. The study in [109] focuses on
filtering spoofed traffic, while [104] focuses on DDoS attack
mitigation. Co-design approaches to elaborate global models
with collaboration of network elements and global entities like
controller to mitigate attacks in the network can be investigated
for a wide-range of other attacks in the network.

D. Technology Specific Applications

A quarter of studies have leveraged in-network computing
for a specific technology including cloud/edge computing,
4G/5G, and network function virtualization. However, there
are still some research gaps that need to be filled before in-
network computing matures. In this subsection, we introduce
these research directions.

1) Orchestration in a Hybrid Environment: In these en-
vironments, the network infrastructure offers a variety of
heterogeneous resources including a hybrid of network ele-
ments (e.g., programmable switches and routers, FPGA, smart
NICs) and other nodes (e.g., physical compute nodes, vir-
tual machines, virtual network functions, storage nodes). The
network elements can provide considerable high processing
speeds at line rate and can operate on the packets on the
path, omitting the necessity of long packet traversal. However,
network elements have less flexibility in comparison with
compute nodes with powerful processing and memory capa-
bilities. Furthermore, depending on the required functionality,
it might be complex or infeasible to implement every network
functionality in the network elements. An invaluable research
direction is therefore orchestrating various resources to handle
the required application which demands resource allocation
and traffic steering solutions to deploy the required appli-
cations. However, as discussed in the lessons learned, most
of the studies focus on implementing required functions on
network elements e.g., [58], [147], [150], [152], [153], [165].
The study in [143] decides about implementing hardware-
acceleration in computational edge nodes however, it does not
optimize any specific objective function. The study in [28]
provides resource allocation in a hybrid of network elements
and cloud computing nodes with the objective of maximum
requests admission. The study in [173] considers VNF de-
composition in a hybrid infrastructure composed of network
elements and NFV computing nodes with the objective of
deployment cost minimization. Investigating orchestration ap-
proaches while considering other objectives e.g., throughput
maximization, bandwidth minimization, power consumption
minimization and quality of service metrics (e.g., latency,

58

reliability) deserves further studies and efforts. Furthermore,
research is required to provide orchestration mechanisms suit-
able for 5G/6G systems empowered with in-network com-
puting as the current state of the art lacks orchestration
mechanisms.

2) Fault Tolerant In-Network Computation: Fault tolerance
is crucial for in-network computing, since the network ele-
ments, particularly switches, may fail or become unavailable
due to congestion. Failure of a switch hosting mobile packet
core or 5G RAN can end to failure of the service. In an
application like fire detection, where the fire detection and
sensing alarm are offloaded to the switch as in [15], there could
be catastrophic consequences as a result of switch failure.
Thus, it is crucial to provide fault tolerance mechanisms for in-
network computing applications. Among our surveyed studies
in technological domains, few studies e.g., [140], [150], have
considered fault tolerance. More research effort is required to
provide fault tolerance techniques for in-network computing
applications.

3) Migration of Computation: Considering that the tech-
nologies of cloud, edge, 5G/6G and NFV serve services to
end-devices, the mobility of end devices (e.g., vehicular in
vehicular network, cell phones) demands solutions that let the
computation be performed in the proximity of end-devices
to meet the ultra-low latency requirement of applications.
In this regard migration of computation/task among network
elements due to end-device mobility can be beneficial to meet
the required latency. As in-network computing is in infancy
state, among our surveyed studies, migration of computation
has not been investigated yet. Within the context of in-
network computing the migration of computation in FPGA,
NIC, or programming switch demands re-programming of the
network element in destination. To avoid, such overhead of
reprogramming, an initial attempt is the study in [155] that
suggests treating hosts with virtualization environment and
equipped with high performance switch chips (for the purpose
of packet processing), as a kind of in-network computing
nodes. However, the architecture in [155] is an abstract archi-
tecture and the paper does not provide detail discussion or any
evaluation of the architecture. A potential research direction
will be on providing in-network computing architectures and
optimization solutions that facilitate migration of computations
among in-network computing nodes.

E. Generic Research Directions

In this section, we discuss research directions that can be
introduced independent of in-network computing application
or a specific technology at which in-network computing is
applied.

1) Collaborative In-Network Computing: Unlike common
computers and servers, a challenge with network elements
is the scarcity of resources i.e., computational power and
storage limitations. In this regard, designing solutions based
on collaboration among switches can be regarded as a valuable
research direction to cope with scarcity of resources. In a
collaborative scenario, distribution of required functionality
or data among network elements, as well as communication

among switches to perform the required function or decision
is expected. Many of our surveyed studies make efforts
to implement the functionality that fits in a programmable
network element and does not intrinsically demand collabo-
ration e.g., [119], [136], [139], [151]. However, in-network
computing has the potential to be applied in scenarios with
large space of functionalities at which fitting the required
functionality in a single device is not possible. An example
of such collaborative scenario is the study in [176], at which
switches play the role of a DNS server. As the domain name
space can be large and cannot fit into a single switch, an
iterative resolution is implemented by referring from one
switch to another switch. A valuable research direction is to
leverage in-network computing in a collaborative manner to
solve the problems that require large space of functionalities.
5G/6G mobile packet core functionality provisioning or the
service function chaining in NFV are examples of problems
that demand a collection of functionalities, not all of them can
fit into a single network element, and thus have the potential of
leveraging the approach of collaborative in-network computing
to meet the required functionalities.

2) Appropriate Network Element Selection: Various net-
work elements are different in provisioning of computational
power, storage capacity, and throughput [13]. Therefore, var-
ious criteria can be used to select an appropriate network
element for a particular application e.g., the type and number
of computations that are required to be performed on a
packet, the size of fan-out data after it was processed by
the network element, the being statefull or stateless of the
computation, and the size of the required data to be stored
in the network element. Most of our surveyed studies in
the scope of in-network computing have implemented the in-
network computation with programmable switches and few
studies consider implementation on either FPGAs or smart
NICs, without discussing the reason for network element
selection. Thus, a research direction can be analyzing the
application requirement and devices capabilities to provide
directions on an appropriate selection of the network element
for a particular application. Starting points can be the studies
in [13], [177]. While [177] explores the design spaces of
seven state-of-the-art software switches and compares their
performance under specific application of routing NFV traffic,
[13] have a more general view. Indeed, [13] gives some
guidelines to implement several applications based on a few
application features i.e., number of operations per packet,
required storage per packet processing, and output size after
packet processing. However, it lacks any evaluation to assess
the provided guidelines. Finally, [13] does not talk about
applications like in-network security, in-network coordination
or technology specific applications.

3) In-Network Computing and Constraints of Network De-
vices: An important challenge in in-network computing appli-
cation development is the constraints of network elements in
terms of computation and memory. Current network elements
like programmable switches support a limited number of
arithmetic operations performed on non-floating values. An
approach to deal with computation limitation is implementing
co-designed approaches at which the complex computations

59

are performed by general purpose processors e.g., [15], [86].
Through a co-design approach, the latency will increase but
still a fraction of computations will be performed with high
performance in the network. Another approach is applying
simplification and approximation techniques e.g., [79], [81].
This approach trades off accuracy for keeping performance
in the network. These techniques can be investigated more to
cope with computation limitations.
The amount of data stored in network elements is limited by
the size of the on-chip memory (e.g., in ranges from tens to
hundreds of megabytes for programmable switches). Recently,
some enhancement regarding memory limitation have been
proposed. For example, [174] has expanded the memory
capacity of switches through utilizing external memory with
Remote Direct Memory Access (RDMA) facility. Expanding
flow tables of the top-of-rack switches by installing them in
servers of the rack has been proposed in [175]. In-network
computing applications particularly, in-network caching and
in-network analytics which their performance highly depends
on the accessible memory, can be investigated in the future to
be applied in such enhanced scenarios.

4) Performance Aspect of In-network Computing: The
studies in the literature have extensively illustrated the out-
performance of in-network solutions in comparison with
server/controller/software-based solutions particularly in terms
of latency and throughput enhancement. However, the perfor-
mance of network element (e.g., programmable switch, NIC)
might vary under various traffic load and with various packet
size. For example, in [169], it has been discussed that for
a firewall VNF chain application with three VNFs, when the
packet size is less than 1280 byte and all VNFs are offloaded to
the smart NIC, the latency will be reduced by a factor of 76×
(from 3300 µs in software-based solution to 43 µs in network-
based solution). However, when the packet sizes increase,
packet processing at NIC can cause a negative impact on
the latency measurements. Indeed, with 1518-byte packets, the
latency enhancement between no offloading and full offloading
is roughly 100 µs. In this situation, the authors in [169] discuss
that it is appropriate to offload partial of VNFs to the network.
However, still we have a research gap, to assess the benefit of
in-network computing under various conditions of the network
traffic and packet sizes in various applications which can be
a potential research direction.

IX. CONCLUSION

Technologies of SDN, programmable data plane, edge
computing, as well as protocols like information/service-
centric networking enable In-Network Computing (INC).
This manuscript provides the first survey on the topic of
INC. The proposed categorization of studies comprises in-
network analytics, in-network caching, in-network security,
in-network coordination, and technology specific applica-
tions in the scopes of cloud/edge computing, 5G/6G, and
NFV. The related studies are compared considering pro-
posed methodology/implementation-related criteria e.g., the
performed computation in the network, following a fully-in-
network implementation or a co-design approach, the utilized

network element/data structure, as well as the performance
gain in terms of latency, throughput, bandwidth saving, and
power consumption. Furthermore, application specific criteria
are proposed for comparison of approaches.

Our study shows that in comparison with server/SDN-
controller based schemes, INC-based schemes will gain ben-
efits considering application specific criteria. In-network ana-
lytics can gain higher inference speed, with less bandwidth
consumption for data transmission. Either shallow/deep in-
network caching schemes offer storage at edge, thereby reduc-
ing content access delay, bandwidth consumption for content
transmission, as well as providing an enhanced balancing of
serving requests. In-network security schemes offer lower miti-
gation latency and reduce bandwidth consumption required for
traffic analysis. In comparison with server/dedicated hardware-
based schemes, in-network implementation of functionalities
of technologies (e.g., RAN/mobile packet core functionalities
of new generations of mobile communications, virtual network
functions, edge intelligence), will reduce required computa-
tional cost and power consumption in implementation, while
offering a lower experience of latency and higher throughput.

However, our study shows that there exist possible compro-
mised application specific criteria due to hardware limitation
of network elements. For each category of applications, the
compromised criteria and the techniques to cope with hard-
ware limitations have been extensively discussed in the survey.
Furthermore, co-design approaches have been investigated as
mechanisms to enrich INC with general purpose computa-
tion, and both the benefit gains and compromised application
specific criteria in comparison with fully-in-network imple-
mented schemes, have been discussed for various categories
of applications. Complementary assessing of the resource
allocation schemes for technology-specific applications to deal
with hybrid computational environment have been provided.
Finally, we discuss the potential research directions in this
newly emerging topic.

ACKNOWLEDGMENT

This research work is partially supported by the Euro-
pean Unions Horizon 2020 Research and Innovation Program
through the Charity and aerOS projects under Grant No.
101016509 and 101069732, respectively; the Academy of
Finland 6Genesis project under Grant No. 318927 and the
Academy of Finland IDEA-MILL project under Grant No.
352428.

REFERENCES

[1] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-
the-art and research challenges,” J. Internet Services and Applications,
vol. 1, pp. 7–18, 2010.

[2] V. Ziegler et al., “6G architecture to connect the worlds,” IEEE Access,
vol. 8, pp. 173 508–173 520, 2020.

[3] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless
networks: A comprehensive survey,” IEEE Communications Surveys &
Tutorials, vol. 18, pp. 1617–1655, 2016.

[4] “Amazon cloud service: https://aws.amazon.com/ec2/instance-types/.”
[5] C. Mouradian et al., “A comprehensive survey on fog computing: State-

of-the-art and research challenges,” IEEE Communications Surveys &
Tutorials, vol. 20, pp. 416–464, 2017.

60

[6] A. J. Ferrer, J. M. Marquès, and J. Jorba, “Towards the decentralised
cloud: Survey on approaches and challenges for mobile, ad hoc, and
edge computing,” ACM Computing Surveys, vol. 51, pp. 1–36, 2019.

[7] M. Mehrabi et al., “Device-enhanced MEC: Multi-access edge comput-
ing (MEC) aided by end device computation and caching: A survey,”
IEEE Access, vol. 7, pp. 166 079–166 108, 2019.

[8] B. A. Nunes et al., “A survey of software-defined networking: Past,
present, and future of programmable networks,” IEEE Communications
Surveys & Tutorials, vol. 16, pp. 1617–1634, 2014.

[9] N. McKeown et al., “OpenFlow: enabling innovation in campus net-
works,” ACM SIGCOMM Computer Communication Review, vol. 38,
pp. 69–74, 2008.

[10] R. Bifulco and G. Rétvári, “A survey on the programmable data plane:
Abstractions, architectures, and open problems,” in Conf. on High
Performance Switching and Routing, 2018, pp. 1–7.

[11] S. Han et al., “Virtualization in programmable data plane: A survey
and open challenges,” IEEE J. of the Communications Society, vol. 1,
pp. 527–534, 2020.

[12] A. Sapio et al., “In-network computation is a dumb idea whose time
has come,” in Conf. on Hot Topics in Networks, 2017, pp. 150–156.

[13] D. R. Ports and J. Nelson, “When should the network be the computer?”
in Conf. on Hot Topics in Operating Systems, 2019, pp. 209–215.

[14] “Intel second-generation programmable switch:
https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch.”

[15] T. Mai, H. Yao, S. Guo, and Y. Liu, “In-network computing powered
mobile edge: Toward high performance industrial IoT,” IEEE Network,
2020.

[16] “https://www.sigarch.org/in-network-computing-draft/.”
[17] H. Stubbe, “P4 compiler & interpreter: A survey,” J. Future Internet

and Innovative Internet Technologies and Mobile Communication,
vol. 47, 2017.

[18] E. Kaljic, A. Maric, P. Njemcevic, and M. Hadzialic, “A survey on data
plane flexibility and programmability in software-defined networking,”
IEEE Access, vol. 7, pp. 47 804–47 840, 2019.

[19] X. Zhang et al., “A survey on stateful data plane in software defined
networks,” J. Computer Networks, vol. 184, p. 107597, 2021.

[20] T. Dargahi et al., “A survey on the security of stateful SDN data planes,”
IEEE Communications Surveys & Tutorials, vol. 19, pp. 1701–1725,
2017.

[21] W. L. da Costa Cordeiro, J. A. Marques, and L. P. Gaspary, “Data
plane programmability beyond openflow: Opportunities and challenges
for network and service operations and management,” J. Network and
Systems Management, vol. 25, pp. 784–818, 2017.

[22] E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An exhaustive survey
on P4 programmable data plane switches: Taxonomy, applications,
challenges, and future trends,” IEEE Access, 2021.

[23] M. G. Venkata, G. Bloch, G. Shainer, and R. Graham, “Accelerating
openshmem collectives using in-network computing approach,” in
Symp. on Computer Architecture and High Performance Computing,
2019, pp. 212–219.

[24] E. Bulut and M. Yuksel, “Integrating in-network computing for secure
and efficient cascaded delivery in DTNs,” in Workshop on Network
Meets Intelligent Computations, 2019, pp. 19–24.

[25] I. Kettaneh et al., “Falcon: Low latency, network-accelerated schedul-
ing,” in P4 Workshop in Europe, 2020, pp. 7–12.

[26] F. Yang et al., “Understanding the performance of in-network comput-
ing: A case study,” in IEEE Conf. on Parallel & Distributed Processing
with Applications, Big Data & Cloud Computing, Sustainable Comput-
ing & Communications, Social Computing & Networking, 2019, pp.
26–35.

[27] Y. Tokusashi et al., “The case for in-network computing on demand,”
in EuroSys Conf., 2019, pp. 1–16.

[28] M. Blöcher, L. Wang, P. Eugster, and M. Schmidt, “Switches for
hire: resource scheduling for data center in-network computing,” in
ACM Conf. on Architectural Support for Programming Languages and
Operating Systems, 2021, pp. 268–285.

[29] R. L. Graham et al., “Scalable hierarchical aggregation protocol
(SHARP): a hardware architecture for efficient data reduction,” in
Workshop on Communication Optimizations in HPC, 2016, pp. 1–10.

[30] T. A. Benson, “In-network compute: Considered armed and dangerous,”
in Workshop on Hot Topics in Operating Systems, 2019, pp. 216–224.

[31] P. G. Kannan and M. C. Chan, “On programmable networking evolu-
tion,” CSI Trans. on ICT, vol. 8, pp. 69–76, 2020.

[32] A. Doria et al., “Forwarding and control element separation (ForCES)
protocol specification. rfc 5810,” 2010.

[33] “Floodlight, an open SDN controller.
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview.”

[34] “Beacon. https://openflow.stanford.edu/display/beacon/home.”
[35] M. R. Nascimento et al., “Virtual routers as a service: the routeflow

approach leveraging software-defined networks,” in Conf. on Future
Internet Technologies, 2011, pp. 34–37.

[36] A. Doria et al., “Forwarding and control element separation (ForCES)
protocol specification.” RFC, vol. 5810, pp. 1–124, 2010.

[37] “Barefoot Tofino: World’s fastest P4-programmable ethernet switch
ASICs. https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch/tofino-series/tofino.html.”

[38] “Xpliant ethernet switch product family.
https://www.openswitch.net/cavium/.”

[39] “Intel flexpipe. https://www.intel.com/content/dam/www/public/us/en/
documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf.”

[40] B. Pfaff et al., “The design and implementation of open vswitch,”
in USENIX Symp. on Networked Systems Design and Implementation,
2015, pp. 117–130.

[41] M. Shahbaz et al., “Pisces: A programmable, protocol-independent
software switch,” in ACM SIGCOMM Conf., 2016, pp. 525–538.

[42] A. Panda et al., “NetBricks: Taking the V out of NFV,” in USENIX
Symp. on Operating Systems Design and Implementation, 2016, pp.
203–216.

[43] “Bmv2 software switch. http://bmv2.org/.”
[44] N. Gebara et al., “Challenging the stateless quo of programmable

switches,” in ACM Workshop on Hot Topics in Networks, 2020, pp.
153–159.

[45] P. Shantharama, A. S. Thyagaturu, and M. Reisslein, “Hardware-
accelerated platforms and infrastructures for network functions: A
survey of enabling technologies and research studies,” IEEE Access,
vol. 8, pp. 132 021–132 085, 2020.

[46] O. Michel, R. Bifulco, G. Retvari, and S. Schmid, “The programmable
data plane: abstractions, architectures, algorithms, and applications,”
ACM Computing Surveys, vol. 54, pp. 1–36, 2021.

[47] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,
“NetFPGA SUME: Toward 100 Gbps as research commodity,” IEEE
Micro, vol. 34, pp. 32–41, 2014.

[48] A. Forencich, A. C. Snoeren, G. Porter, and G. Papen, “Corundum: An
open-source 100-Gbps NIC,” in Symp. on Field-Programmable Custom
Computing Machines, 2020, pp. 38–46.

[49] G. P. Katsikas, T. Barbette, M. Chiesa, D. Kostić, and G. Q. Maguire,
“What you need to know about (smart) network interface cards,” in
Conf. on Passive and Active Network Measurement, 2021, pp. 319–
336.

[50] P. M. Phothilimthana et al., “Floem: A programming system for NIC-
accelerated network applications,” in USENIX Symp. on Operating
Systems Design and Implementation, 2018, pp. 663–679.

[51] S. Choi, M. Shahbaz, B. Prabhakar, and M. Rosenblum, “λ-NIC:
Interactive serverless compute on programmable smartNICs,” in Conf.
on Distributed Computing Systems, 2020, pp. 67–77.

[52] “P4: Language specification. https://opennetworking.org/wp-
content/uploads/2020/10/p416-language-specification.htmlfig-p4prg.”

[53] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “Openstate:
Programming platform-independent stateful openflow applications in-
side the switch,” ACM SIGCOMM Computer Communication Review,
vol. 44, pp. 44–51, 2014.

[54] A. Sivaraman et al., “Packet trans.: High-level programming for line-
rate switches,” in ACM SIGCOMM Conf., 2016, pp. 15–28.

[55] C. J. Anderson et al., “NetKAT: Semantic foundations for networks,”
ACM Sigplan Notices, vol. 49, pp. 113–126, 2014.

[56] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Computer Communication Review, vol. 44,
pp. 87–95, 2014.

[57] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE pervasive Computing,
vol. 8, pp. 14–23, 2009.

[58] S. Ali, M. Pandey, and N. Tyagi, “Wireless-fog mesh: A framework
for in-network computing of microservices in semipermanent smart
environments,” J. of Network Management, vol. 30, 2020.

[59] X. Zhang, L. Cui, F. P. Tso, and W. Jia, “pHeavy: Predicting heavy
flows in the programmable data plane,” IEEE Trans. on Network and
Service Management, 2021.

[60] Y. Afek, A. Bremler-Barr, and L. Shafir, “Network anti-spoofing with
SDN data plane,” in Conf. on Computer Communications, 2017, pp.
1–9.

61

[61] T.-Y. Lin et al., “Mitigating SYN flooding attack and ARP spoofing in
SDN data plane,” in Asia-Pacific Network Operations and Management
Symp., 2020, pp. 114–119.

[62] A. Yazdinejad, R. M. Parizi, A. Dehghantanha, and K.-K. R. Choo,
“P4-to-blockchain: A secure blockchain-enabled packet parser for
software defined networking,” J. Computers & Security, vol. 88, 2020.

[63] A. Morrison, L. Xue, A. Chen, and X. Luo, “Enforcing context-aware
byod policies with in-network security,” in USENIX Workshop on Hot
Topics in Cloud Computing, 2018.

[64] Q. Kang et al., “Programmable in-network security for context-aware
BYOD policies,” in USENIX Security Symp., 2020, pp. 595–612.

[65] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti, “A local search
mechanism for peer-to-peer networks,” in Conf. on Information and
knowledge management, 2002, pp. 300–307.

[66] Q. Lv et al., “Search and replication in unstructured peer-to-peer
networks,” in Conf. on Supercomputing, 2002, pp. 84–95.

[67] M. Gritter and D. R. Cheriton, “An architecture for content routing
support in the internet.” in Symp. on Internet Technologies and Systems,
vol. 1, 2001.

[68] G. Xylomenos et al., “A survey of information-centric networking
research,” IEEE Communications Surveys & Tutorials, vol. 16, pp.
1024–1049, 2013.

[69] X. Li et al., “Advancing software-defined service-centric networking
toward in-network intelligence,” IEEE Network, vol. 35, pp. 210–218,
2021.

[70] A. Nasrallah et al., “Ultra-low latency (ULL) networks: The IEEE
TSN and IETF detnet standards and related 5G ULL research,” IEEE
Communications Surveys & Tutorials, vol. 21, pp. 88–145, 2018.

[71] R. Ahmed and R. Boutaba, “A survey of distributed search techniques
in large scale distributed systems,” IEEE Communications Surveys &
Tutorials, vol. 13, pp. 150–167, 2010.

[72] A. Biswas, S. Mohan, and R. Mahapatra, “Optimization of semantic
routing table,” in Conf. on Computer Communications and Networks,
2008, pp. 1–6.

[73] R. F. Martins, F. L. Verdi, R. Villaça, and L. F. U. Garcia, “Using
probabilistic data structures for monitoring of multi-tenant P4-based
networks,” in IEEE Symp. on Computers and Communications, 2018,
pp. 00 204–00 207.

[74] F. Yang et al., “SwitchAgg: A further step towards in-network com-
puting,” in IEEE Conf. on Parallel & Distributed Processing with
Applications, Big Data & Cloud Computing, Sustainable Computing
& Communications, Social Computing & Networking, 2019, pp. 36–
45.

[75] A. L. R. Madureira, F. R. C. Araújo, and L. N. Sampaio, “On
supporting IoT data aggregation through programmable data planes,”
J. Computer Networks, vol. 177, p. 107330, 2020.

[76] C. Li and H. Dai, “Efficient in-network computing with noisy wireless
channels,” IEEE Trans. on Mobile Computing, vol. 12, pp. 2167–2177,
2012.

[77] C. Li et al., “Towards efficient designs for in-network computing with
noisy wireless channels,” in IEEE INFOCOM Conf., 2010, pp. 1–8.

[78] Z. Xiong and N. Zilberman, “Do switches dream of machine learning?
toward in-network classification,” in ACM Workshop on Hot Topics in
Networks, 2019, pp. 25–33.

[79] D. Sanvito, G. Siracusano, and R. Bifulco, “Can the network be the AI
accelerator?” in Workshop on In-Network Computing, 2018, pp. 20–25.

[80] Y.-S. Lu and K. C.-J. Lin, “Enabling inference inside software
switches,” in Asia-Pacific Network Operations and Management Symp.,
2019, pp. 1–4.

[81] Q. Qin, K. Poularakis, K. K. Leung, and L. Tassiulas, “Line-speed and
scalable intrusion detection at the network edge via federated learning,”
in Networking Conf., 2020, pp. 352–360.

[82] V. Sivaraman et al., “Heavy-hitter detection entirely in the data plane,”
in Symp. on SDN Research, 2017, pp. 164–176.

[83] R. Harrison, Q. Cai, A. Gupta, and J. Rexford, “Network-wide heavy
hitter detection with commodity switches,” in Symp. on SDN Research,
2018, pp. 1–7.

[84] J. Vestin, A. Kassler, and J. Åkerberg, “FastReact: In-network control
and caching for industrial control networks using programmable data
planes,” in Conf. on Emerging Technologies and Factory Automation,
vol. 1, 2018, pp. 219–226.

[85] F. E. R. Cesen et al., “Towards low latency industrial robot control in
programmable data planes,” in IEEE Conf. on Network Softwarization,
2020, pp. 165–169.

[86] A. Gupta et al., “Sonata: Query-driven streaming network telemetry,”
in ACM special Interest Group on Data Communication, 2018, pp.
357–371.

[87] R. Teixeira, R. Harrison, A. Gupta, and J. Rexford, “PacketScope:
Monitoring the packet lifecycle inside a switch,” in Symp. on SDN
Research, 2020, pp. 76–82.

[88] T. Jepsen et al., “Life in the fast lane: A line-rate linear road,” in Symp.
on SDN Research, 2018, pp. 1–7.

[89] T. Kohler et al., “P4CEP: Towards in-network complex event process-
ing,” in Workshop on In-Network Computing, 2018, pp. 33–38.

[90] J. Hypolite et al., “DeepMatch: practical deep packet inspection in
the data plane using network processors,” in Conf. on Emerging
Networking Experiments and Technologies, 2020, pp. 336–350.

[91] Y. Tokusashi, H. Matsutani, and N. Zilberman, “Lake: The power of
in-network computing,” in Conf. on ReConFigurable Computing and
FPGAs, 2018, pp. 1–8.

[92] Q. Wang et al., “Concordia: Distributed shared memory with in-
network cache coherence,” in USENIX Conf. on File and Storage
Technologies, 2021, pp. 277–292.

[93] X. Jin et al., “Netcache: Balancing key-value stores with fast in-
network caching,” in Symp. on Operating Systems Principles, 2017,
pp. 121–136.

[94] M. Liu et al., “Incbricks: Toward in-network computation with an in-
network cache,” in Conf. on Architectural Support for Programming
Languages and Operating Systems, 2017, pp. 795–809.

[95] Z. Liu et al., “Distcache: Provable load balancing for large-scale
storage systems with distributed caching,” in USENIX Conf. on File
and Storage Technologies, 2019, pp. 143–157.

[96] X. Jin et al., “Netchain: Scale-free Sub-RTT coordination,” in USENIX
Symp. on Networked Systems Design and Implementation, 2018, pp.
35–49.

[97] V. Jacobson et al., “Networking named content,” in Conf. on Emerging
Networking Experiments and Technologies, 2009, pp. 1–12.

[98] D. Scholz, S. Gallenmüller, H. Stubbe, and G. Carle, “SYN flood
defense in programmable data planes,” in P4 Workshop in Europe,
2020, pp. 13–20.

[99] F. Musumeci et al., “Machine-learning-assisted DDoS attack detection
with P4 language,” in Conf. on Communications, 2020, pp. 1–6.

[100] J. Xing, W. Wu, and A. Chen, “Architecting programmable data plane
defenses into the network with FastFlex,” in ACM Workshop on Hot
Topics in Networks, 2019, pp. 161–169.

[101] Â. C. Lapolli, J. A. Marques, and L. P. Gaspary, “Offloading real-
time ddos attack detection to programmable data planes,” in Symp. on
Integrated Network and Service Management, 2019, pp. 19–27.

[102] L. A. Q. González et al., “BUNGEE: An adaptive pushback mechanism
for DDoS detection and mitigation in P4 data planes,” in Symp. on
Integrated Network Management, 2021, pp. 393–401.

[103] X. Z. Khooi, L. Csikor, D. M. Divakaran, and M. S. Kang, “DIDA:
Distributed in-network defense architecture against amplified reflection
DDoS attacks,” in Conf. on Network Softwarization, 2020, pp. 277–281.

[104] K. Friday, E. Kfoury, E. Bou-Harb, and J. Crichigno, “Towards a
unified in-network ddos detection and mitigation strategy,” in IEEE
Conf. on Network Softwarization, 2020, pp. 218–226.

[105] M. Zhang et al., “Poseidon: Mitigating volumetric DDoS attacks with
programmable switches,” in Conf. of NDSS, 2020.

[106] Z. Liu et al., “Jaqen: A high-performance switch-native approach for
detecting and mitigating volumetric DDoS attacks with programmable
switches,” in USENIX Security Symp., 2021.

[107] X. Yang, J. Cao, and M. Xu, “SEC: Secure, efficient, and compatible
source address validation with packet tags,” in Performance Computing
and Communications Conf., 2020, pp. 1–8.

[108] H. Gondaliya, G. C. Sankaran, and K. M. Sivalingam, “Compar-
ative evaluation of IP address anti-spoofing mechanisms using a
P4/NetFPGA-based switch,” in P4 Workshop in Europe, 2020, pp. 1–6.

[109] G. Li et al., “NETHCF: Enabling line-rate and adaptive spoofed IP
traffic filtering,” in IEEE Conf. on Network Protocols, 2019, pp. 1–12.

[110] J. Bai, J. Bi, M. Zhang, and G. Li, “Filtering spoofed IP traffic using
switching ASICs,” in ACM SIGCOMM Conf. on Posters and Demos,
2018, pp. 51–53.

[111] P. Kuang, Y. Liu, and L. He, “P4DAD: Securing duplicate address
detection using P4,” in IEEE Conf. on Communications, 2020, pp. 1–
7.

[112] M. Dimolianis, A. Pavlidis, and V. Maglaris, “A multi-feature DDoS
detection schema on P4 network hardware,” in Conf. on Innovation in
Clouds, Internet and Networks and Workshops, 2020, pp. 1–6.

[113] P. Vörös et al., “T4P4S: A target-independent compiler for protocol-
independent packet processors,” in Conf. on High Performance Switch-
ing and Routing, 2018, pp. 1–8.

62

[114] C. Monsanto et al., “Composing software defined networks,” in
USENIX Symp. on Networked Systems Design and Implementation,
2013, pp. 1–13.

[115] P. Vörös and A. Kiss, “Security middleware programming using P4,”
in Conf. on Human Aspects of Information Security, Privacy, and Trust,
2016, pp. 277–287.

[116] R. Datta, S. Choi, A. Chowdhary, and Y. Park, “P4Guard: Designing
P4 based firewall,” in IEEE Military Communications Conf., 2018, pp.
1–6.

[117] J.-H. Lee and K. Singh, “SwitchTree: in-network computing and traffic
analyses with random forests,” J. Neural Computing and Applications,
pp. 1–12, 2020.

[118] T. Datta, N. Feamster, J. Rexford, and L. Wang, “Spine: Surveillance
protection in the network elements,” in USENIX Workshop on Free and
Open Communications on the Internet, 2019.

[119] D. Chang, W. Sun, and Y. Yang, “A SDN proactive defense mechanism
based on IP transformation,” in Conf. on Safety Produce Informatiza-
tion, 2019, pp. 248–251.

[120] G. Liu et al., “P4NIS: Improving network immunity against eaves-
dropping with programmable data planes,” in IEEE Conf. on Computer
Communications Workshops, 2020, pp. 91–96.

[121] J. Xing, A. Morrison, and A. Chen, “NetWarden: Mitigating network
covert channels without performance loss,” in USENIX Workshop on
Hot Topics in Cloud Computing, 2019.

[122] A. Laraba et al., “Defeating protocol abuse with P4: Application to
explicit congestion notification,” in Networking Conf., 2020, pp. 431–
439.

[123] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for
network intrusion detection systems,” in Military Communications and
Information Systems Conf., 2015, pp. 1–6.

[124] A. El Kamel, H. Eltaief, and H. Youssef, “On-the-fly (D)DoS attack
mitigation in SDN using deep neural network-based rate limiting,” J.
Computer Communications, vol. 182, pp. 153–169, 2022.

[125] H. T. Dang et al., “NetPaxos: Consensus at network speed,” in ACM
SIGCOMM Symp. on Software Defined Networking Research, 2015,
pp. 1–7.

[126] H. T. Dang, M. Canini, F. Pedone, and R. Soulé, “Paxos made switch-
y,” ACM SIGCOMM Computer Communication Review, vol. 46, pp.
18–24, 2016.

[127] H. T. Dang et al., “P4xos: Consensus as a network service,” IEEE/ACM
Trans. on Networking, vol. 28, pp. 1726–1738, 2020.

[128] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R. Ports, “Just say
NO to Paxos overhead: Replacing consensus with network ordering,”
in USENIX Symp. on Operating Systems Design and Implementation,
2016, pp. 467–483.

[129] Y. Zhang, B. Han, Z.-L. Zhang, and V. Gopalakrishnan, “Network-
assisted RAFT consensus algorithm,” in SIGCOMM Posters and De-
mos, 2017, pp. 94–96.

[130] M. Kogias and E. Bugnion, “HovercRaft: achieving scalability and
fault-tolerance for microsecond-scale datacenter services,” in Conf. on
Computer Systems, 2020, pp. 1–17.

[131] E. Sakic et al., “P4BFT: A demonstration of hardware-accelerated BFT
in fault-tolerant network control plane,” in ACM SIGCOMM Posters
and Demos, 2019, pp. 6–8.

[132] E. Sakic, N. Deric, E. Goshi, and W. Kellerer, “P4BFT: Hardware-
accelerated Byzantine-resilient network control plane,” in IEEE Global
Communications Conf., 2019, pp. 1–7.

[133] S. Han, S. Jang, H. Lee, and S. Pack, “Switch-centric Byzantine fault
tolerance mechanism in distributed software defined networks,” IEEE
Communications Letters, vol. 24, pp. 2236–2239, 2020.

[134] Z. Yu et al., “Netlock: Fast, centralized lock management using
programmable switches,” in ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication, 2020, pp. 126–138.

[135] J. Li, E. Michael, and D. R. Ports, “ERIS: Coordination-free consistent
trans. using in-network concurrency control,” in Symp. on Operating
Systems Principles, 2017, pp. 104–120.

[136] Z. István, D. Sidler, G. Alonso, and M. Vukolic, “Consensus in a
box: Inexpensive coordination in hardware,” in USENIX Symp. on
Networked Systems Design and Implementation, 2016, pp. 425–438.

[137] R. Miao et al., “Silkroad: Making stateful layer-4 load balancing fast
and cheap using switching ASICs,” in ACM Special Interest Group on
Data Communication, 2017, pp. 15–28.

[138] J.-L. Ye, C. Chen, and Y. H. Chu, “A weighted ECMP load balancing
scheme for data centers using P4 switches,” in Conf. on Cloud
Networking, 2018, pp. 1–4.

[139] M. Kogias et al., “R2P2: Making RPCs first-class datacenter citizens,”
in USENIX Annual Technical Conf., 2019, pp. 863–880.

[140] R. Gandhi et al., “Duet: Cloud scale load balancing with hardware and
software,” ACM SIGCOMM Computer Communication Review, vol. 44,
pp. 27–38, 2014.

[141] Z. Wu and H. V. Madhyastha, “Rethinking cloud service marketplaces,”
in Workshop on Hot Topics in Networks, 2016, pp. 134–140.

[142] G. Lia et al., “Optimal placement of delay-constrained in-network
computing tasks at the edge with minimum data exchange,” in IEEE
5G World Forum, 2021, pp. 481–486.

[143] R. A. Cooke and S. A. Fahmy, “A model for distributed in-network
and near-edge computing with heterogeneous hardware,” J. Future
Generation Computer Systems, vol. 105, pp. 395–409, 2020.

[144] C. Xu et al., “The case for FPGA-based edge computing,” IEEE
Transactions on Mobile Computing, 2020.

[145] F. Song et al., “Smart collaborative contract for endogenous access
control in massive machine communications,” IEEE Internet of Things,
2021.

[146] Y. Zhang et al., “Privacy-assured FogCS: Chaotic compressive sensing
for secure industrial big image data processing in fog computing,” IEEE
Transactions on Industrial Informatics, vol. 17, pp. 3401–3411, 2020.

[147] A. Aghdai, M. Huang, D. Dai, Y. Xu, and J. Chao, “Transparent edge
gateway for mobile networks,” in Conf. on Network Protocols, 2018,
pp. 412–417.

[148] P. Vörös, G. Pongrácz, and S. Laki, “Towards a hybrid next generation
NodeB,” in P4 Workshop in Europe, 2020, pp. 56–58.

[149] P. Palagummi and K. M. Sivalingam, “SMARTHO: A network initiated
handover in NG-RAN using P4-based switches,” in Conf. on Network
and Service Management, 2018, pp. 338–342.

[150] R. Shah, V. Kumar, M. Vutukuru, and P. Kulkarni, “TurboEPC:
leveraging dataplane programmability to accelerate the mobile packet
core,” in Symp. on SDN Research, 2020, pp. 83–95.

[151] S. K. Singh, C. E. Rothenberg, G. Patra, and G. Pongracz, “Offloading
virtual evolved packet gateway user plane functions to a programmable
ASIC,” in Workshop on Emerging In-Network Computing Paradigms,
2019, pp. 9–14.

[152] C.-A. Shen et al., “A programmable and FPGA-accelerated GTP
offloading engine for mobile edge computing in 5G networks,” in Conf.
on Computer Communications Workshops, 2019, pp. 1021–1022.

[153] F. Paolucci et al., “User plane function offloading in P4 switches for
enhanced 5G mobile edge computing,” in Conf. on the Design of
Reliable Communication Networks, 2021, pp. 1–3.

[154] R. Ricart-Sanchez, P. Malagon, J. M. Alcaraz-Calero, and Q. Wang,
“P4-NetFPGA-based network slicing solution for 5G MEC architec-
tures,” in Symp. on Architectures for Networking and Communications
Systems, 2019, pp. 1–2.

[155] N. Hu, Z. Tian, X. Du, and M. Guizani, “An energy-efficient in-network
computing paradigm for 6G,” IEEE Trans. on Green Communications
and Networking, vol. 5, pp. 1722–1733, 2021.

[156] X. Wu, Z. Jin, W.-K. Jia, and X. Shi, “Aggregating multiple small-data
frames using arithmetic encoding in P4 switches,” in Annual Consumer
Communications & Networking Conf., 2021, pp. 1–6.

[157] K. Gökarslan, Y. S. Sandal, and T. Tugcu, “Towards a URLLC-aware
programmable data path with P4 for industrial 5G networks,” in IEEE
Conf. on Communications Workshops, 2021, pp. 1–6.

[158] R. Ricart-Sanchez, P. Malagon, J. M. Alcaraz-Calero, and Q. Wang,
“Hardware-accelerated firewall for 5G mobile networks,” in Conf. on
Network Protocols, 2018, pp. 446–447.

[159] R. Ricart-Sanchez et al., “NetFPGA-based firewall solution for 5G
multi-tenant architectures,” in Conf. on Edge Computing, 2019, pp.
132–136.

[160] J. W. Lockwood et al., “NetFPGA–an open platform for Gigabit-rate
network switching and routing,” in Conf. on Microelectronic Systems
Education, 2007, pp. 160–161.

[161] L. Linguaglossa et al., “Survey of performance acceleration techniques
for network function virtualization,” Proceedings of the IEEE, vol. 107,
pp. 746–764, 2019.

[162] C. Fernández, S. Giménez, E. Grasa, and S. Bunch, “A P4-enabled
RINA interior router for software-defined data centers,” J. Computers,
vol. 9, p. 70, 2020.

[163] H. Ballani et al., “Enabling end-host network functions,” ACM SIG-
COMM Computer Communication Review, vol. 45, pp. 493–507, 2015.

[164] R. Kundel et al., “P4-BNG: Central office network functions on
programmable packet pipelines,” in Conf. on Network and Service
Management, 2019, pp. 1–9.

63

[165] K. Ralf et al., “OpenBNG: Central office network functions on pro-
grammable data plane hardware,” J. of Network Management, vol. 31,
2021.

[166] T. Osiński et al., “Unleashing the performance of virtual BNG by
offloading data plane to a programmable ASIC,” in P4 Workshop in
Europe, 2020, pp. 54–55.

[167] T. Osiński, H. Tarasiuk, L. Rajewski, and E. Kowalczyk, “DPPx: A P4-
based data plane programmability and exposure framework to enhance
NFV services,” in Conf. on Network Softwarization, 2019, pp. 296–300.

[168] T. Osiński, M. Kossakowski, H. Tarasiuk, and R. Picard, “Offloading
data plane functions to the multi-tenant cloud infrastructure using
P4,” in Symp. on Architectures for Networking and Communications
Systems, 2019, pp. 1–6.

[169] D. R. Mafioletti et al., “PIaFFE: A place-as-you-go in-network frame-
work for flexible embedding of vnfs,” in Conf. on Communications,
2020, pp. 1–6.

[170] D. Zhang et al., “P4SC: A high performance and flexible framework
for service function chain,” IEEE Access, vol. 7, pp. 160 982–160 997,
2019.

[171] X. Chen et al., “P4SC: Towards high-performance service function
chain implementation on the P4-capable device,” in Symp. on Integrated
Network and Service Management, 2019, pp. 1–9.

[172] F. B. Lopes, G. L. Nazar, and A. E. Schaeffer-Filho, “VNFAccel: An
FPGA-based platform for modular VNF components acceleration,” in
Symp. on Integrated Network Management, 2021, pp. 250–258.

[173] D. Moro, G. Verticale, and A. Capone, “A framework for network
function decomposition and deployment,” in Conf. on the Design of
Reliable Communication Networks, 2020, pp. 1–6.

[174] D. Kim et al., “Generic external memory for switch data planes,” in
ACM Workshop on Hot Topics in Networks, 2018, pp. 1–7.

[175] Y. Xue and Z. Zhu, “Hybrid flow table installation: Optimizing remote
placements of flow tables on servers to enhance PDP switches for
in-network computing,” IEEE Trans. on Network and Service Manage-
ment, 2020.

[176] J. Woodruff, M. Ramanujam, and N. Zilberman, “P4DNS: in-network
DNS,” in Symp. on Architectures for Networking and Communications
Systems, 2019, pp. 1–6.

[177] T. Zhang et al., “Performance benchmarking of state-of-the-art software
switches for NFV,” J. Computer Networks, vol. 188, 2021.

Somayeh Kianpisheh received Ph.D. degree in
computer engineering from Tarbiat Modares Univer-
sity. From 2018 to 2020, for a period of two years,
she was a Postdoctoral Researcher at Concordia Uni-
versity, Canada. She also has a postdoctoral research
experience at Aalto University, Finland in 2021.
Since 2022, she has been a postdoctoral researcher at
University of Oulu, Finland. Her research interests
include in-network computing, programmable data
plane, SDN, edge computing, NFV, fog/cloud sys-
tems, and 5G and beyond.

Prof. Tarik Taleb is currently a Professor at the
Centre for Wireless Communications (CWC) – Net-
works and Systems Unit, Faculty of Information
Technology and Electrical Engineering, The Uni-
versity of Oulu. He is the founder and director of
the MOSA!C Lab (www.mosaic-lab.org). Between
Oct. 2014 and Dec. 2021, he was a Professor at the
School of Electrical Engineering, Aalto University,
Finland. Prior to that, he was working as Senior
Researcher and 3GPP Standards Expert at NEC
Europe Ltd, Heidelberg, Germany. Before joining

NEC and till Mar. 2009, he worked as assistant professor at the Graduate
School of Information Sciences, Tohoku University, Japan, in a lab fully
funded by KDDI, the second largest mobile operator in Japan. From Oct.
2005 till Mar. 2006, he worked as research fellow at the Intelligent Cosmos
Research Institute, Sendai, Japan. He received his B. E degree in Information
Engineering with distinction, M.Sc. and Ph.D. degrees in Information Sciences
from Tohoku Univ., in 2001, 2003, and 2005, respectively.
Prof. Taleb’s research interests lie in the field of telco cloud, network
softwarization network slicing, AI-based software defined security, immersive
communications, mobile multimedia streaming, next generation mobile
networking. Prof. Taleb has been also directly engaged in the development
and standardization of the Evolved Packet System as a member of 3GPP’s
System Architecture working group 2.
Prof. Taleb served as the general chair of the 2019 edition of the IEEE
Wireless Communications and Networking Conference (WCNC’19) held in
Marrakech, Morocco. He was the guest editor in chief of the IEEE JSAC
Series on Network Softwarization Enablers. He was on the editorial board of
the IEEE Transactions on Wireless Communications, IEEE Wireless Commu-
nications Magazine, IEEE Journal on Internet of Things, IEEE Transactions
on Vehicular Technology, IEEE Communications Surveys Tutorials, and a
number of Wiley journals. Till Dec. 2016, he served as chair of the Wireless
Communications Technical Committee, the largest in IEEE ComSoC. He also
served as Vice Chair of the Satellite and Space Communications Technical
Committee of IEEE ComSoc (2006 - 2010).
Prof. Taleb is the recipient of the 2021 IEEE ComSoc Wireless Commu-
nications Technical Committee Recognition Award (Dec. 2021), the 2017
IEEE ComSoc Communications Software Technical Achievement Award
(Dec. 2017) for his outstanding contributions to network softwarization.
He is also the (co-) recipient of the 2017 IEEE Communications Society
Fred W. Ellersick Prize (May 2017), the 2009 IEEE ComSoc Asia-Pacific
Best Young Researcher award (Jun. 2009), the 2008 TELECOM System
Technology Award from the Telecommunications Advancement Foundation
(Mar. 2008), the 2007 Funai Foundation Science Promotion Award (Apr.
2007), the 2006 IEEE Computer Society Japan Chapter Young Author Award
(Dec. 2006), the Niwa Yasujirou Memorial Award (Feb. 2005), and the Young
Researcher’s Encouragement Award from the Japan chapter of the IEEE
Vehicular Technology Society (VTS) (Oct. 2003). Some of Prof. Taleb’s
research work have been also awarded best paper awards at prestigious IEEE-
flagged conferences.

