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Abstract—Vehicular Cloud Computing is a network
infrastructure paradigm that has been largely used in the
vehicular systems landscape for improving drivers’ experience.
In particular, the higher computational resources made available
by cloud computing technologies have helped in coping with
the tremendous growth of data traffic exchanged within
vehicular networks. However, the advanced development of
such infrastructure, together with the relentless proliferation
of services and applications characterized by heterogeneous
and demanding requirements, has led to redefine the way
in which cellular-based vehicular networks assist vehicular
communications. As an example, Multi-Access Edge Computing
(MEC) is an emerging network paradigm that can be exploited
also in vehicular scenarios to foster a more effective and
flexible service delivery. Although in literature the migration
of vehicular systems towards a MEC-based approach has been
already envisaged giving rise to the concept of Vehicular Edge
Computing, a not fully investigated aspect is represented by
the lack of experimental insights that shed light on the actual
feasibility of this emerging network infrastructures. In this paper,
we try to fill the gap in this respect by presenting an extensive
empirical analysis performed through a vehicular system testbed.
In particular, our work aims at providing empirical insights on
the advantages that an edge cloud-based service provisioning
can enable in comparison to a centralized cloud-based approach.
Besides, by focusing only on the transmission of small-sized
workload—i.e. with payload comparable to the one produced
by In-Vehicle’s sensors—this work also aims at evaluating
the suitability of different application layer protocols (HTTP,
CoAP, and MQTT) in this peculiar context. In the performance
analysis, additional aspects have been also considered, including
the impact of vehicle’s speed as well as scalability issues.

I. INTRODUCTION

Vehicular cruising has never been easier, enjoyable and
safer than today, thanks to the possibility of connecting
vehicles to the Internet. In fact, nowadays vehicles have the
possibility to exploit a high amount of diversified services,
besides the possibility to interact with a set of heterogeneous
entities that vary from other vehicles, transportation and
network infrastructures, pedestrian, etc. [2]. In this respect,
the European Telecommunications Standards Institute (ETSI)
has defined what are the services required to build up an
Intelligent Transportation System (ITS), together with a set
of requirements that such services need to satisfy [1]. In such
context, it becomes clear how the connectivity becomes a key
aspect for enabling smart and highly-performing transportation

systems. With specific reference to the automotive context, a
key ITS enabler is represented by the network communication,
as it enables vehicles to interact among themselves as well as
with other entities. Those interactions can occur for different
purposes such as data exchange and information sharing with
the surrounding connected world. In the majority of cases, the
communication relies on cellular connectivity using 3rd Gener-
ation Partnership Project (3GPP) technologies. Alternatively,
non-3GPP technologies (e.g., Wi-Fi) can be also employed.
Another key aspect that must be constantly considered in the
automotive context is the possibility to ensure an effective
service provisioning. In particular, guaranteeing low-latency
communication can become crucial, especially for services
that need to satisfy demanding performance requirements. In
this regard, the possibility of placing the service provisioning
at the network edge, by exploiting the Multi-Access Edge
Computing (MEC) concept also in vehicular scenarios, can
be complementary to what the Vehicular Cloud Computing
is already capable to deliver [13, 11]. In this work, our
main goal is to empirically study—through the setup of
a vehicular system testbed—whether a service provisioning
issued at the network edge can generate performance benefits
in comparison to service provisioning from centralized cloud.
We focus on vehicle communications enabled by 4G network,
by also characterizing the performance of several application
layer protocols and taking into account further factors that
might influence the performance (e.g., vehicle’s speed and
scalability).

The main contributions of this paper can be summarized as
follows:

• We design and implement a testbed, which allows us to
faithfully reproduce a vehicular communication system,
by following the recommendations made by main stan-
dardization entities.

• For the particular case of small-size workload transmis-
sion, we empirically demonstrate the performance dif-
ference achieved by an edge-based service provisioning
when compared to a cloud-based service provisioning.

• Taking into account a wider availability of application
layer protocols, we extensively evaluate, through several
field tests, suitability and performance trade-off of three
most-widely used protocols, namely MQTT, CoAP, and
HTTP.



To the best of our knowledge, this is the very first empirical
contribution that, through the implementation of a vehicular
system testbed, tries to shed light on the suitability of multiple
protocols in this specific context, by considering also possible
compromises due to different service provisioning setup (edge
vs. cloud). The remainder of this paper is organized as
follows. Section II contextualizes our area of investigation and
thoroughly describes what is the scenario taken into account
in our work. In Section III, we provide a detailed description
of the testbed implementation. Section IV presents the result
of our extensive performance evaluation. Section V browses
the existing scientific literature in two respects: application
layer protocol comparison and emerging edge-based vehicular
systems. Finally, conclusions and future work are drawn in
Section VI.

II. RESEARCH CONTEXT

A. Vehicle Service Provisioning

The automotive scenario has dramatically changed in the
last decades. In past years, the driver experience was mainly
limited to the vehicle’s body design, engine, and ergonomic,
without including any communication with the outside world.
Differently, nowadays vehicles take part of more sophisticated
ecosystems, by enabling therefore an enhanced quality of
experience. This clear shift has led to the definition of a
new ecosystem known as Internet of vehicles (IoV), in which
the communication between vehicles and other entities enable
a fully-connected ecosystem scaling along with the growing
number of vehicles [6]. The concept of IoV has been matter of
common interest in many standardization organizations such as
ETSI and 3GPP [8]. A functional IoV demands the availability
of various communication technologies, in order to give to
the vehicles the possibility of exchanging information with
other IoV components (e.g., data center, edge entities, other
vehicles, service providers, and pedestrians). Enabling such
interconnection between those distinct components spawned
the concept of Vehicle-to-Everything (V2X) communication,
which is nowadays considered as a key enabler concept for
the deployment of effective IoV and automotive ITS. Clearly,
the increasing complexity of vehicular system infrastructures
becomes more challenging if we consider the big amount of
data traffic generated within it. In fact, nowadays connected
vehicles require a continuous stream of data for benefiting of a
varied set of services. Within the vehicles, data are elaborated
by means of sophisticated On-Board Unit (OBU) and data
generator applications are usually characterized by distinct
requirements and the quality of service that must be guaranteed
varies from case to case. As an example, for the execution
of a critical application, it is of vital importance to ensure a
seamless provisioning and low-latency communication. In this
respect, the IoV shall bear also a performing and scalable ser-
vice provisioning in such a way to satisfy the aforementioned
requirements.

B. Scenario

The vehicular scenario that we are considering is an im-
plementation of one ITS service defined by ETSI [3]. In

particular, we are referring to the specific use case of software
update over the air (SoTA) [4]. In this specific use case,
Vehicle to Cloud (V2C) communications are usually exploited
in order to enable the update of services that are realistically
running in different OBUs of a vehicle. The possible updates
can include e.g. security patches, service features update, Elec-
tronics Control Units (ECUs) updates, etc. In such scenario,
data centers are obviously playing a crucial role in hosting
services issued by the different providers and shall support all
V2C interactions expected in different use cases. However, the
emerging concept of Multi-Access Edge Computing is leading
to a change in the way vehicular network infrastructures are
designed. As a consequence of this, we deliberately revise
the ETSI scenario by considering two different approaches for
issuing the service provisioning: (i) edge-based and (ii) cloud-
based. In the first case, the service provider interacts with a
vehicle (or vice versa) through a MEC server placed between
base station and data center and therefore, closer to the
vehicle. In the second case, the vehicle interacts directly with
a remote data-center through cellular network base stations.
In both cases, 4G connection is used for the communication
vehicle-to-edge and vehicle-to-data center. Fig. 1 depicts the
aforementioned scenario. The sub-system is comprised of a
vehicle, a base station, and a MEC server, defining the so-
called vehicular edge computing area.

Fig. 1: Analyzed scenario.

III. METHODOLOGY AND EXPERIMENTAL SETUP

This section introduces the methodology and experimental
setup adopted for performing the empirical investigation. More
specifically, it highlights the implementation choices for the
setup of a vehicular system testbed, from both hardware and
software perspectives.

A. Testbed setup

In order to reproduce the scenario depicted in Fig. 1 in a
real environment, we set up a network infrastructure facility
that is distributed across two different sites. Fig.2 shows the
entire testbed setup. In this setup, it is possible to identify
two main domains: a data center area and a vehicular edge
computing area. The most significant features of the two areas



are outlined below, together with the environment setup of the
additional vehicle’s On-Board Unit (OBU) at our disposal.

Data center area – the data center facility used for our
work is located in Lund (Sweden), located 850 km from the
vehicular edge computing area (Jorvas, Finland). In the data
center, we set up an OpenStack environment in which a virtual
instance is running and makes available the necessary tools
(e.g., application layer protocols libraries) for enabling the
vehicle-to-cloud communication.

Vehicular edge computing area – the vehicular edge
computing area is deployed in Jorvas (Finland), nearby Er-
icsson Finland facilities. The core element of the VEC area
is the edge entity, which consists of a server machine with
the following characteristics: computer model Dell Precision
T5500, with Intel Xeon X5560 processor (8M Cache, 2.80
GHz, 4 physical cores, 8 threads), 12 GB memory (3x4 GB –
1333 MHz DDR3), and a 10 Gbps Network Interface Card
connected to the Internet. The edge entity is deliberately
deployed close to the area where the vehicle is cruising, and
can be considered as the equivalent of a Road Side Unit (RSU),
although characterized by higher computational capabilities.
The edge server is interfacing with the base station through
the mobile network of a Finnish operator. This also implies
that there is no local breakout between the base station and
the edge server, fully relying on the network setup provided
by the mobile network operator.

In-Car OBU – although nowadays most vehicles can
feature very sophisticated OBU that are designed in order to
provide a set of multi-purpose services, we decided to set up an
auxiliary OBU whose sole purpose was to interact either with
the data center or the edge entity. The supplementary OBU
is deployed in a general-purpose board, such as Raspberry Pi
3 (RPi31). Connectivity is provided by a system combining a
Sixfab base shield2 and a Quectel EC25 Mini PCle 4G/LTE
module3. Both boards are in turn connected to the RPi3
through GPIO interface.

It must be clarified that both the OpenStack instance running
in the data center and the edge entity are characterized by the
same software environment. The same underlying operating
system is used, as well as the libraries utilized for enabling the
connection between In-car OBU, edge entity, and data center.

B. Application layer protocols.

As already mentioned in Section II-B, the availability of dif-
ferent application layer protocols has increased the possibility
of choosing what protocol needs to be used as an enabler of the
service provisioning tasks. Obviously, the choice of one pro-
tocol over another highly depends on the particular analyzed
use case and on how service providers choose to handle the
workload generated with the use case itself. The main scope of
the following analysis is an empirical characterization of three
of the most widespread application protocols in the vehicular
context, which introduces several constraints mainly due to
aspects relating to mobility. In our analysis, we focus on data

1https://www.raspberrypi.org/
2http://sixfab.com/product/raspberry-pi-3g-4glte-base-shield-v2/
3http://sixfab.com/product/quectel-ec25-mini-pcle-4glte-module/

exchange and communication occurring between vehicles and
remote entities (e.g., deployed in the edge and/or in the cloud),
in which small sized payloads (e.g., hundreds of bytes) are
OTA transmitted. The reproduced scenario is analogous for
all the application protocols under evaluation. That is, given
an equal payload, we estimate what are the average values
of throughput and latency during the communication between
the interacting entities. Furthermore, we want to understand
whether complementary factors (e.g., vehicle’s speed) can
tangibly affect the performance. It is worth emphasizing that
being aware of the design and implementation differences
between the different evaluated protocols, the aim of our
performance study is not to determine which protocol has
the upper hand. Rather, our work has the ambition to provide
different empirical insights to the whole research community
regarding the effectiveness of such protocols in the vehicular
context.

MQTT – Mosquitto4 is an open source implementation of
the message broker that implements the MQTT protocol. In
our scenario, the MQTT broker runs either in the edge entity
or in the data center. In order to estimate the performance
during the communication, we take advantage of a benchmark
tool5 that allows publishing messages to a MQTT broker.
Through the benchmark tool, several protocol parameters can
be customized (e.g., message size, number of clients connected
to the broker, and QoS). The MQTT messages are published
by the In-Car OBU where the broker is running (i.e. edge
server or data center).

HTTP – the Apache HTTP Server Project6 is one among
the most frequently used open source implementation of an
HTTP (Web) server. The evaluation of the HTTP server is
done by means of the benchmarking tool ab7. In our testbed,
the HTTP server operates either in the edge entity or in the
data center. It serves the requests issued from the In-Car OBU.

COAP – we use a C implementation of CoAP called
libcoap8 for instantiating CoAP instances. The library allows
to easily run both coap-client and coap-server instances. The
first one simply interacts with different resources on a remote
server, while the second one is a basic server application that
provides different CoAP server features. Similarly to MQTT
and HTTP, CoAP clients run either in the edge entity or
in the data center and interact with a CoAP server entity
that is executed in the In-Car OBU. The benchmarking tool
CoAPBench9 has been employed for sending CoAP GET
requests towards the target CoAP server.

IV. MEASUREMENTS RESULTS AND ANALYSIS

In this section, we present the results of our empirical
analysis. It is organized into different subsections according to
separate case studies. It is worth emphasizing that for each case
study, we perform the comparison between edge and cloud.
With the aim of improving the readability of the paper, we

4https://mosquitto.org/
5https://github.com/krylovsk/mqtt-benchmark
6https://httpd.apache.org/
7https://httpd.apache.org/docs/2.4/programs/ab.html
8https://libcoap.net/
9https://www.eclipse.org/californium/



Fig. 2: Testbed setup.

report the most significant results achieved during our analysis.
Each measurement is repeated at least 5 times and the results
show the average value and related standard deviation.

Impact of Vehicle’s speed. The main goal of this evaluation
is to assess the impact of vehicle’s speed on the performance in
terms of throughput and latency for each of the analyzed pro-
tocols. From this outcome, it becomes also possible to quantify
the performance variation between edge-based provisioning
and cloud-based provisioning. Finally, we aim at identifying
the most efficient protocol for each specific case study.
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Fig. 3: Throughput variation as a function of vehicle’s speed
(km/h).

Fig. 3 shows the throughput in terms of the number of
messages per second. The main insights that can be derived
from this test are three-fold. First, it can be noticed that there is
no strict dependence between a vehicle’s speed increase and
throughput, as the latter remains approximately at the same
value. However, it is worth mentioning that the vehicle’s speed
variation is not very high. Indeed, in the vehicle’s cruising
area, it was not possible to drive faster because of speed
limits. By this analysis, it cannot be determined whether higher
speeds could lower the throughput performance. Second, it
clearly emerges how CoAP is outperforming both MQTT
(with QoS equal to 2) and HTTP. In more details, CoAP
throughput is double the HTTP one, while MQTT performs
slightly better than HTTP – on average, in the order of 16%
better. Finally, it appears clear how the edge-based service
provisioning brings tangible advantages when compared to
the cloud-based approach. However, this performance gain is

not uniform but ranges from approximately 20% (HTTP with
vehicle’s speed 40 km/h) up to 55% (CoAP with vehicle’s
speed 50 km/h).

The latency analysis, conducted in Fig. 4, provides simi-
lar insights. Effectively, CoAP is largely outperforming both
MQTT and HTTP, achieving a latency of approximately 40ms
in the case of edge-based provisioning and regardless the
vehicle’s speed. It is also worth highlighting how a cloud-
based provisioning does not worsen the latency performance
in a very tangible way (approximately 20%) when compared
to the edge case.
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Fig. 4: Latency variation as a function of vehicle’s speed
(km/h).

As a matter of fact, this percentage difference between
edge and cloud remains similar also in the case of MQTT
and HTTP. A further insight about this latency evaluation is
represented by the similar performance that MQTT and HTTP
achieve. However, it must be noticed that we are comparing
the case of MQTT with QoS 2, which is supposed to introduce
a higher latency delay when compared to alternative QoS setup
– part of the following empirical investigation also focuses on
the QoS impact in MQTT-enabled communication.

Impact due to number of connected clients – in this
second analysis, we are referring to a use case in which
the OBU makes available a set of heterogeneous services
and applications, which can vary from engine control, driving
assistance, customer relationship management (CRM), vendor
relationship management (VRM), monitoring and services, to
infotainment. The availability of a high number of services
implies a potentially high number of interactions between
providers and In-Car OBUs. Consequently, from the empirical
point of view, we aim to evaluate the impact, still in terms
of throughput and latency, produced by a higher number of
clients connected to the same In-Car OBU. From this analysis,
we can learn how much the throughput of a single client is
affected when a higher number of clients are taking part in
the communication.

Fig. 5 shows the average throughput per client when one
and ten clients connect to the same OBU. As a general rule,
we can observe how the average throughput delivered to
each client decreases when the number of connected clients
grows. However, such a decrease differs from a protocol to
another. CoAP remains the most efficient protocol with an
approximately 10% throughput decrease. The performance of



MQTT degrades by nearly 15%, while HTTP introduces a
tangible throughput reduction which stands around 60%. In
addition, the performance degradation does not depend on how
the service is being provisioned, i.e, from edge or cloud.

0	

5	

10	

15	

20	

25	

30	

Edge	 Cloud	 Edge	 Cloud	 Edge	 Cloud	

MQTT	(QoS	2)	 HTTP	 CoAP	

Th
ro
ug
hp

ut
	p
er
	c
lie
nt
	(m

sg
/s
ec
)	

Client	1	

Client	10	

Fig. 5: Throughput variation as a function of the number of
clients connected with the In-Car OBU.

From the latency perspective (Fig. 6), all the protocols intro-
duced a performance degradation similar to the one observed
for the throughput. In particular, by considering the same
number of instances processed per client, each MQTT client
requires on average approximately 18% more time to publish
the same number of messages, while each HTTP client needs
nearly twice the amount of time. Before proceeding to the next
analysis, it is worth mentioning that in the aforementioned
evaluation, packet loss has not been measured.
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Fig. 6: Latency variation as a function of the number of clients
connected with the In-Car OBU.

Impact of QoS in MQTT – the last part of our empirical
analysis seeks to analyze how a different value of the MQTT
QoS can affect the performance in terms of both throughput
and latency. Before discussing the outcome of such evaluation,
we briefly describe the main differences between the two
values of QoS that we considered in our work. The lowest
possible QoS that can be set (i.e. 0) was not considered as it
only guarantees a best effort delivery. That is, a message is
not acknowledged by the receiver or stored and redelivered by
the sender. The alternative values of QoS (i.e. 1 and 2) ensure
more reliability in terms of message delivery, somehow in a
similar way to how HTTP and CoAP ensure it – although it
must also be made clear that the three protocols are designed

in a very different way. The main difference among the
aforementioned setup is that a QoS set to 1 guarantees that
the transmitted message will be delivered once or more than
once to the receiver. Differently, with QoS 2, each message is
received only once by the receiver [7].

That being said, we previously mentioned how a higher
reliability is paid at the expenses of lower performance. We
want to quantify how much this performance trade-off is and
accordingly draw conclusions. There are two main empirical
insights we are interested in observing. First, we want to
estimate how throughput and latency are affected by different
values of QoS on a base scenario with only one client. Second,
we want to observe whether a higher number of clients (i.e. 10)
further influences these performance metrics. In the following,
we only report the results related to the cloud-based service
provisioning. In the case of edge-based provisioning, the same
empirical conclusions are valid.

Fig. 7 shows the comparison of the average throughput per
client for the two QoS values under analysis. The usage of a
higher QoS produces a throughput reduction in the order of
40%. This result remains comparable regardless of the number
of connected clients. With regard to the latency performance
(Fig. 8), higher QoS slows down the message transmission by
approximately 75%. Such analysis may prove useful especially
to services providers to determine a tradeoff between reliability
and performance.
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Fig. 7: Throughput variation as a function of two different
values for the MQTT QoS.
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V. RELATED WORK

The related work falling within the scope of this work can be
categorized into two main areas: (i) application layer protocols
comparison and (ii) multi-access edge computing in vehicular
networks. Regarding the former, several studies have been
focusing on evaluating the performance of different application
layer protocols. The authors in [14] deploy a common gateway
for exploiting the features of both CoAP and MQTT. The main
outcome of the empirical investigation carried out in this paper
shows how the performance of CoAP and MQTT – in terms of
delay and packet loss – depends on the size of the transmitted
message. In [9], Markel et al. perform an empirical study in
order to quantify overhead, latency and scalability both for
MQTT and CoAP by also considering the different levels
of QoS. In [10], CoAP, MQTT and WebSocket efficiency,
together with average RTT, are investigated by considering
the performance impact generated by the use of different
wireless radio technologies. A review of the previous literature
indicates no existing empirical study that compares several
application layer protocols.

Regarding MEC in vehicular scenarios, and accounting for
the remarkable benefits introduced by VEC, an increasing
number of works are exploiting such new ecosystems in order
to define new systems’ optimization and consequently em-
power the IoV. Jingyun et al. [5] propose a framework named
Autonomous Vehicular Edge (AVE). The framework aims
to increase the computational capabilities of vehicles at the
network edge. This framework includes many functionalities
such as job caching, job offloading and sharing of computation
resources. In [15], the authors introduced new task offloading
mechanisms based on predictions in order to increase the
resource computing of vehicles in MEC-IoV scenarios. In [12],
the authors offer a description of how MEC can boost the
efficiency of vehicular networks, particularly by facilitating
the execution of demanding computing tasks at the network
edge.

VI. CONCLUSION

In this paper, we empirically investigated the effects of
edge-based and cloud-based service provisioning in vehicular
networks. In particular, by harnessing design and implemen-
tation of a testbed, we conducted an extensive performance
evaluation that aimed at providing experimental insights useful
for an optimized design of current vehicular networks. We fo-
cused on scenarios in which vehicles interact with the network
infrastructure for exchanging small-sized data, comparable for
example to the ones produced by the vehicle’s sensors. Fur-
thermore, by considering that service providers may exploit a
wide set of application layer protocols for connecting vehicles
and other network facilities, we have evaluated the efficiency
of three of the most widespread protocols for the purpose
of better understanding the behavior of such protocols when
exploited in such a context.
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