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Abstract— Secure time synchronization is one of the 
key concerns for some sophisticated sensor network 
applications. Most existing time synchronization 
protocols are affected by almost all attacks. In this 
paper we consider heterogeneous sensor networks 
(HSNs) as a model for our proposed novel time 
synchronization protocol based on pairing and 
identity based cryptography (IBC). This is the first 
approach for time synchronization protocol using 
pairing-based cryptography in heterogeneous sensor 
networks. The proposed protocol reduces the 
communication overhead of the nodes as well as 
prevents from all the major security attacks. Security 
analysis shows, it robust against reply attacks, 
masquerade attacks, delay attacks, and message 
manipulation attacks. 

I. INTRODUCTION  
Time synchronization in sensor networks is a 

challenging task due to some non-determinism in the 
network dynamics such as physical channel access time 
and operation system overhead (e.g., system calls). All 
network time synchronization methods rely on some 
kind of message exchanges between nodes. Thus, secure 
time synchronization is more challenging. Additionally, 
resource constraints and lack of efficient key 
management in sensor networks make it more difficult. 
In this paper we consider secure time synchronization for 
heterogeneous sensor networks (HSNs), as several 
researches show HSNs have greater performance over 
homogeneous WSNs. In a recently proposed time 
synchronization scheme for HSN [1], High-end nodes 
(H-nodes) and Low-end nodes (L-nodes) need to pre-
load a number of keys. Some existing time 
synchronization schemes for HSNs, such as the 
Reference-Broadcast Synchronization (RBS) scheme [2], 
the Timing-sync Protocol for Sensor Networks (TPSN) 
[3], and the Flooding Time Synchronization Protocol 

(FTSP) [4] are also available. But none of these 
protocols [2-4] was designed with security in mind. 

A. Background 
Most existing time synchronization schemes [2-4] are 

vulnerable to the following attacks [1]. 
1)  Masquerade attack: This is a type of attack in 

which one system entity illegitimately poses as another 
entity to gain access to confidential systems; that is one 
system assumes the identity of another. Suppose that a 
node A sends out a reference beacon to its two neighbors 
B and C. An attacker E can pretend to be B and 
exchange wrong time information with C, disrupting the 
time synchronization process between B and C.  

2)  Replay attack: A replay attack is a form of 
network attack in which a valid data transmission is 
maliciously or fraudulently repeated or delayed. Suppose 
Alice wants to prove her identity to Bob. Bob requests 
her password as proof of identity, which Alice dutifully 
provides (possibly after some transformation like a hash 
function); meanwhile, Eve is eavesdropping the 
conversation and keeps the password. After the 
interchange is over, Eve connects to Bob posing as 
Alice; when asked for a proof of identity, Eve sends 
Alice's password read from the last session, which Bob 
must accept. 

 3)  Message manipulation attack: In this attack, an 
attacker may drop, modify, or even forge the exchanged 
timing messages to interrupt the time synchronization 
process [1]. 

4)  Delay attack: The attacker intentionally delays 
some of the time messages, e.g., the beacon message in 
the RBS scheme, so as to fail the time synchronization 
process. 

In the branch of Cryptography, Identity-Based 
Cryptography (IBC) [5] is an exception where an 
information that uniquely identifies users (e.g., IP or 
email addresses) can be used to both exchange keys and 
encrypt data, and thus Public Key Infrastructure (PKI) is 



unnecessary. It only has become truly practical with the 
advent on Pairing-Based Cryptography (PBC) [6]. The 
first known implementation of pairings for sensor nodes 
based on the 8-bit/7.3828-MHz ATmega128L 
microcontroller (e.g., MICA2 and MICAz motes) has 
been investigated in [7]. The investigation concludes that 
cryptography from pairings is indeed viable in resource-
constrained nodes. 

In this paper, we propose an efficient secure timing 
synchronization protocol in the form of pairing-based 
cryptography. Hence this protocol reduces key space and 
communication overhead comparing to the existing 
protocols.  

B. Contributions and Related Work 
In [1], before deployment or at deployment, all the L-

sensors and H-sensors need to store secret as well as 
public keys of the nodes. All the L-nodes under an H 
node are indexed with their corresponding secret keys. 
This incurs additional communication overhead. So, if a 
L-node moves from one group to another, re-
synchronization becomes required for the existing 
scheme [1], which incurs extra communication overhead 
for both the leaving group and the new group. On the 
other hand, L-nodes are hierarchically grouped under H-
nodes. Therefore, if there are N L-nodes under the same 
H-node and grouped into K groups, the H-node is 
required to broadcast the same timing message N/K 
times in the same group. Obviously, this shall incur 
significant communication overhead as the network 
scales up. 

In our proposed protocol, nodes do not need to store 
any private or public key of other nodes, during the 
deployment or in its life time. In fact, nodes generate 
their own secret key by sharing their identity with their 
neighboring nodes. Thus key space is less than any other 
existing scheme. Every nodes need to know its own ID 
and its corresponding secret that are taken from the 
trusted base (sink) station. In our protocol, nodes do not 
need to be static; they can be dynamic as long as 
adequate clustering is performed in the network. Nodes 
in the network can dynamically generate their own secret 
sharing keys. In addition, nodes do not need to be 
indexed and ordered. Finally, any node can move from 
one group to another without any extra overhead 
communication.  

C. Organization of the Paper 
The rest of this paper is organized as follows. Section 

II describes preliminaries which are useful for 
understanding the proposed protocol. In Section III, the 
architecture of the proposed protocol is described. In 
Section IV, the key management and authentication 
procedure is described. In Sections V and VI, the secure 

time synchronization procedure and some security 
analysis - in terms of prevention of attacks - are given, 
respectively.  Finally, conclusions drawn from the paper 
are presented in Section VII.  

II. PRELIMINARIES 
In this section, we describe some preliminaries and 

mathematical properties which are useful to understand 
our proposed protocol.  

A. Bilinear Pairing 
Let G1 be an additive group and G2 be a 

multiplicative group of the same prime order q. Let P be 
an arbitrary generator of G1. aP denotes P added to itself 
a times. Assume that discrete logarithm (DL) problem is 
hard in both G1 and G2. We can think G1 as a group of 
points on an elliptic curve over qF , and G2 as a subgroup 

of the multiplicative group of a finite field kq
F for 

some *
qZk ∈ , where Zq

* = {y | 1≤  y≤ q-1}. A mapping 
e:G1 × G1 → G2, satisfying the following properties is 
called a cryptographic bilinear pairing (bilinear map). 

• Bilinearity: e(aP, bQ) = e(P,Q)ab for all 1, GQP ∈  
and *, qZba ∈ . This can be restated in the 
following way. For 1,,, GSRQP ∈ , e(P+Q, S+R) 
= e(P,S) e(P,R), e(Q,S) e( Q,R).  

• Non-degeneracy: If P is a generator of G1, then 
e(P,P) is a generator of G2. In other words, 
e(P,P) not equal to one. Thus there must exist 

1, GQP ∈ with e(P,Q)≠1. 
• Computable: A mapping is efficiently 

computable if e(P,P) can be computed in 
polynomial-time for all 1, GQP ∈ . Thus there is 
an effiecient algorithm to compute e(P,Q), for 
any 1, GQP ∈  

For simplicity, a capital letter express an element of 
G1 and a small letter express an element of G2. Modified 
Weil Pairing [8] and Tate Pairing [9, 10] are examples of 
cryptographic bilinear maps.  

B. Diffie-Hellman Problems 
In this section, we recall the properties of Diffie-

Hellman gap families. First of all, we assume following 
terms to define Diffie Hellman gap families.  

• Let, P is a point on elliptic curve E given by 
y2=x3+αx+β  mod T where T is a prime number. 

• < P > is a subgroup of E generated by P. 
• |<P>|=q. 
• *, qZba ∈ . 



Hence we can think G1 as a group of points on the 
elliptic curve E. With this group we can define the 
following hard cryptographic problems applicable to our 
proposed protocol. 

− Computational Diffie-Hellman (CDH) Problem: 
Given a triple 1),,( GbPaPP ∈  for *, qZba ∈ , find 
if there exist any element EabP∈ . 

− Decision Diffie-Hellman (DDH) problem: Given 
a quadruple 1),,,( GcPbPaPP ∈  for *,, qZcba ∈ , 
decide whether c=ab mod q or not. 

− Gap Diffie-Hellman (GDH) Problem: A class of 
problems where the CDH problem is hard but 
DDH problem is easy. 

− Bilinear Diffie-Hellman (BDH) Problem: Given a 
quadruple 1),,,( GcPbPaPP ∈  for some 

*,, qZcba ∈ , compute e(P,P)abc. 
Groups where the CDH problem is hard but DDH 

problem is easy are called GAP Diffie-Hellman (GDH) 
groups. Details about GDH groups can be found in [11, 
12, 13]. 

C. Routing Structure in HSNs 
A HSN consisting of two types of sensors: a small 

number of H-sensors and a large number of L-sensors. 
Both H-sensors and L-sensors are powered by batteries 
and have limited energy supply. Clusters are formed in a 
HSN. For a HSN, it is natural to have powerful H-
sensors serve as cluster heads and form clusters around 
them. The assumptions and discussion are given in [14]. 
In brief, i) each L-sensor (and H-sensor) is static and 
aware of its own location (sensor nodes can use a secure 
location service such as that in [15] to estimate their 
locations; no GPS receiver is required at end-nodes), ii) 
each L-sensor (and H-sensor) has a unique node ID. 3) 
The sink (base) is trusted.  

1).  Cluster formation in HSNs: After sensor 
deployment, clusters are formed in a HSN [14]. An 
efficient clustering scheme for HSNs is given in [16]. 
For the sake of simplicity, we assume that each H-sensor 
can communicate directly with its neighbor H-sensors (if 
not, then relay via L-sensors can be used). All H-sensors 
form a backbone in a HSN. After cluster formation, a 
HSN is divided into multiple clusters, where H-sensors 
serve as the cluster heads. For reader’s convenience, the 
HSN clustering scheme is described briefly as follows, 
more details are in [16]. During the network 
initialization, each H-sensor broadcasts a Hello message 
to nearby L-sensors using the maximum power and with 
a random delay. The random delay is to avoid the 
collision of Hello messages from two neighbor H-
sensors. A Hello message includes the ID and location of 
the H-sensor. An L-sensor may receive Hello messages 

from one or more H-sensors. Each L-sensor sets a timer 
after receiving the first Hello message. When the timer 
expires, each L-sensor chooses the H-sensor whose 
Hello message has the best signal strength as the cluster 
head. Each L-sensor also records other H-sensors from 
which it receives the Hello messages, and these H-
sensors serve as backup cluster heads in case the primary 
cluster head fails. If an L-sensor U does not receive any 
Hello message during the initialization phase, it actively 
looks for a nearby H-sensor by broadcasting an Explore 
message. Neighbor L-sensors relay the Explore message 
until it reaches an L-sensor V that has already found a 
cluster head. Then sensor V sends a message back to 
sensor U and informs sensor U of the location of the 
cluster head. This scheme ensures that all connected L-
sensors have a cluster head. A sensor network is divided 
into multiple clusters, where each H-sensor serves as the 
cluster head. 

2).  Routing in HSN: In a HSN, the sink, H-sensors 
and L-sensors form hierarchical network architecture 
[14]. Clusters are formed in the network and H-sensors 
serve as cluster heads. All H-sensors form a 
communication backbone in the network. Powerful H-
sensors have sufficient energy supply, long transmission 
range, high date rate, and thus provide many advantages 
for designing more efficient routing protocols. In [17], 
an efficient routing protocol for HSNs is designed. 
Routing in a HSN consists of two phases: 1) Intra-cluster 
routing: each L-sensor sends data to its cluster head via 
multi-hops of other L-sensors; and 2) Inter-cluster 
routing: a cluster head (a H-sensor) aggregates data from 
multiple L-sensors and then sends the data to the sink via 
the H-sensor backbone. More details on routing are 
given in [17]. An intra-cluster routing scheme 
determines how to route packets from an L-sensor to its 
cluster head. The basic idea is to let all L-sensors (in a 
cluster) form a tree rooted at the cluster head H. It has 
been shown in [18] that: i) If complete data fusion is 
conducted at intermediate nodes, (i.e., two k-bit packets 
come in, and one k-bit packet goes out after data fusion) 
then a minimum spanning tree (MST) consumes the least 
total energy in the cluster. ii) If there is no data fusion 
within the cluster, then a shortest-path tree (SPT) 
consumes the least total energy. iii) For partial fusion, 
finding the tree that consumes the least total energy is a 
NP-complete problem. 

During the tree setup, two or more parent nodes are 
determined for each L-sensor. One parent node serves as 
the primary parent, and other nodes serve as backup 
parents. Given the tree-based routing structure within a 
cluster, each L-sensor only needs shared keys with its 
communication neighbors, i.e., its parent-nodes and 
child-nodes.  



III. PROPOSED PROTOCOL’S  ARCHITECTURE AND 
DESIGN 

The base station (sink or system administrator) has 
the following extra tasks during the boot strap of the 
network. 

• Determining two groups G1 and G2, of the same 
prime order q. We view G1 as an additive group 
and G2 as a multiplicative group as discussed in 
Subsection II.A. 

• Determining bilinear map g: G1× G1 → G2, 
collision resistant cryptographic hash functions 
H1 and H2, where H1:{0,1}*→ G1 is a mapping 
function from arbitrary-length strings to points in 
G1 and H2:{0,1}*→{0,1}μ forms another mapping 
function from arbitrary-length strings to μ-bit 
fixed length output. 

• Generating system’s secret ώ∈Zq
*, where Zq

* = 
{y | 1≤  y ≤  q-1}. Any one in the network does 
not know ώ except the base station (sink). Base 
station also uses this secret to generate the secret 
point of the non-adversary nodes.  

Thus, the system parameters <G1, G2, g, H1, H2 > are 
known to the non-adversary nodes. The base station also 
provides the following parameters for nodes, regarding 
their IDs and secret points. 

• Providing each nodes (L-nodes and H-nodes) 
with a unique ID: 
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 for N number of nodes and corresponding secret 
points { 121 ,...,, GSPSPSP RNRR ∈ } which are 
defined as (SPRi = ώ IDRi = ώ )(1

ℜ
RiIDH ), where 

i= 1,2,...,N. The base station also provides each 
node with a different random number RNi ∈Zq

*. If 
an L-node is not directly connected to an H-node, 
it then uses its secret point and its communication 
neighbor’s ID to generate the sharing secret key 
between the node and its communication 
neighbors. The secret point is also used to 
authenticate among nodes. If an L-node is 
directly connected to an H-node, it uses its secret 
point to generate the sharing secret key between 
the node and its corresponding H-node. The key 
is also used for authentication between the two 
nodes. The key generation and authentication 
technique is described in the next section. For a 
given set of <IDR, SPR>, no one can determine 
the system secret ώ as we discussed in 
Subsections II.A and II.B. 

• Providing each H-node with the IDs of all 
corresponding L-nodes and a corresponding 
random number RN ∈Zq

*. This random number is 
used to authenticate the L-node with its 
corresponding H-node. As will be explained in 
the next section, the random number of each L-
node is periodically updated and notified by the 
base station to its corresponding H-node. 

With the above information, any node can generate 
its own sharing secret key. Considering a node K, the 
node receives its ID, IDK, and its corresponding secret 
point, (SPK= ώIDK=ώ )(1

ℜ
KIDH ), from the base station. 

Hence, K can generate its own sharing secret key with its 
communication neighbor, node M with an ID, IDM and a 
corresponding secret point (SPM = ώIDM= )(1

ℜ
MIDH ). 

As a result, both K and M can generate their own secret 
sharing key without sharing their secret point as follows. 
K computes KKM = g(SPK, IDM) = g(IDK, IDM)ώ and M 
computes KMK = g(SPM, IDK) = g(IDM, IDK)ώ. These 
equations also hold the property mentioned in Section II: 
no one can determine the system secret ώ for a given set 
of ID and corresponding secret point <IDK, SPK>.  

IV. KEY MANAGEMENT AND AUTHENTICATION 
The base station works as a system administrator. It is 

responsible of generating IDs and corresponding secret 
points for all nodes in the network. At the boot strap of 
the network, each node knows it’s ID, its secret point, 
and its random number. Furthermore, each H-node 
knows IDs of all corresponding L-nodes as well as their 
random numbers. The random number of the nodes is 
periodically updated by the base station and is 
distributed to L-nodes via their corresponding H-nodes. 
The random number is used for authentication between 
an L-node and its L-node neighbors or between an L-
node and its corresponding H-node. The remainder of 
this section describes the key establishment and 
authentication processes. 

After boot strap and cluster formation of the network, 
all L-nodes know their corresponding H-nodes. Let’s 
consider an H-node with an ID, IDRH1, a corresponding 
secret point, SPRH1, and a random number, RH1. 
Similarly, we consider an L-node with an ID, IDRL1, a 
corresponding secret point, SPRL1, and a random number 
RL1. To authenticate to the L-node, IDRL1, H-node 
generates its sharing secret key {KH1L1 = g(SPRH1, IDRL1) 
= g(IDRH1, IDRL1)ώ} and an authentication code {Aut0 = 
H2(KH1L1 || IDRH1 || IDRL1 ||0)}. Only Aut0 is sent to IDRL1. 
On the other hand, the L-node generates its sharing 
secret key {KL1H1 =g(SPRL1, IDRH1) = g(IDRL1, IDRH1)ώ} 
and a verification code {Ver0 = H2(KL1H1 || IDRH1 || IDRL1 
||0)}. The node then compares Ver0 with Aut0. If Ver0 
matches with Aut0, then IDRL1 generates an another 



authentication code {Aut1 = H2(KL1H1 || IDRL1 || IDRH1 || 
RL1  || 1)} and sends it back to H-node. Finally, H-node 
computes {Ver1 = H2(KH1L1 || IDRL1 || IDRH1 || RL1 ||1)} 
and compares it with Aut1. If a match is found, the 
authentication is successful. Otherwise, it fails. In this 
fashion, all nodes (H-nodes and L-nodes) are 
authenticated to each other; either with their 
communication neighbors or with their corresponding H-
nodes. Therefore, nodes in the network can communicate 
securely with each other, as illustrated in Fig. 1.  

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Authentication procedure between two nodes “H” 
and “L” 

When the base station changes the random numbers 
of the L-nodes, it encrypts the random number with the 
secret key shared between the base station and the 
corresponding H-nodes. As L-nodes are authenticated 
with their corresponding H-nodes, H-nodes encrypt the 
random numbers with the secret key shared between the 
H-nodes and the corresponding L-nodes and send them 
to the L-nodes. If a L-node is not directly connected with 
its corresponding H-node, the H-node performs double 
encryptions. In the first encryption, it uses the secret key 
shared with the destination L-node. In the second 
encryption, it uses the secret key shared with its nearby 
L-node and sends the encrypted packet to its nearby L-
node. Consequently, the L-node decrypts the packet and 
looks at the destination ID and again encrypts the packet 
using the secret key shared with its L-node neighbor. 
This operation is repeated till the random number 
eventually reaches at the destined L-node. It should be 
noted that intermediate L-nodes cannot get any 
information about the random number as it is double 
encrypted by the H-node. Fig. 2 shows the hierarchical 

architecture and corresponding interaction among the 
nodes for distributing the random numbers. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  2.  Hierarchical architecture for distributing the 
random numbers among the nodes 

V. SECURE TIME SYNCHRONIZATION PROTOCOL 
After sensor deployment and secure key 

establishment, nodes are authenticated to each other as 
discussed in the previous section. Time synchronization 
among the nodes is performed in a hierarchical fashion. 
The base station first sends the timing message to the H-
nodes encrypted with the corresponding secret key of H-
nodes. The timing message contains the following fields: 
Position+ Timestamp+ Sequence# +MAC, where 
position indicates the position of the base station; 
timestamp indicate the local time read from the base 
station’s clock; sequence# number is the sequence 
number of each synchronization message; and MAC is 
calculated with the secret private key over Position+ 
Timestamp+ Sequence#. H-nodes can check the 
authenticity of the message by referring to the MAC 
values. 

Upon receiving a timing message from the base 
station, H-nodes replace the position information of the 
base station by their own position information and then 
calculate the MAC in the same way as the base station. 
Subsequently, they encrypt the MAC with the secret key 

(2)<Aut0>

(6)<Aut1>

H node’s: ID = IDRH1, Secret Point= SPRH1, 
Random # = RH1 

L node’s: ID = IDRL1, Secret Point= SPRL1, 
Random # = RL1 

(3) Generates sharing 
secret key KL1H1 and 
verification code Ver0

(4) Compares 
 
Ver0 = Aut0 

?

 
L 

(5) Generates Aut1

 
H 

(1) Generates 
sharing secret 
key KH1L1 and 
authentication 
code Aut0 

(7) Computes 
Ver1 and 
compares  
 
Ver1 = Aut1 

?



shared with the corresponding L-nodes and forward the 
message to the L-nodes.  

Upon receiving the timing message from higher-layer 
H-nodes, L-nodes use the signal strength to compute the 
distance between the sender and themselves. This 
distance is denoted as DistanceSignal, where 
DistanceSignal= F(signal); F is a function that relates 
between the signal strength and the distance. L-nodes 
also calculate another distance based on their 
corresponding relative position. This distance is denoted 
as DistancePosition, where DistancePosition =f(position); f is 
the function that calculates the geometrical distance 
based on given coordinates. Finally, DistanceSignal and 
DistancePosition are compared to check either they are 
equal or not. The authenticity is confirmed if the two 
distances are equal. Another authenticity check can be 
based on checking the MAC value. 

VI. SECURITY ANALYSIS 
In this section we discuss the cryptographic 

implementation points as well as cryptographic analysis 
of the proposed protocol. 

A. Cryptographic Implementation Point of View 
The bilinear map e can be the Tate pairing with some 

of the modifications and performance improvements 
described in [19] and elliptic curve E can be y2=x3+x. 
The aforementioned group order q is a large 160-bit 
prime based on another 512-bit prime p=2qr-1 (for some 
r large enough to make p be the correct size), such bit-
length configurations of p and q provide a comparable 
level of security to RSA cryptography with a key size of 
1024 bits [20]. Then G1 is a cyclic subgroup of the 
additive group of points of the elliptic curve E over the 
finite field Fp, while G2 is a cyclic subgroup of the 
multiplicative group associated to the finite field *

2pF . 

Regarding collision-resistant hash function H1 in 
section III, it can be simply inputted a given string into 
SHA-1 [21] to get the x-coordinate of a point, and then 
corresponding y-coordinate can be generated according 
to the elliptic curve equation.  

B. Cryptographic Analysis 
Key generation of the nodes in the network is based 

on the Deffie-Hellman problems described in section 
II.B. Therefore, if the intruder nodes capture the public 
messages such as the identities of the nodes IDs, and/or 
Aut0, Aut1 still they are not able to compute secret key. 
Because, key generation is a pairing function operation 
over elliptic curve with a secret point. Thus, no one 
outside of the authenticated nodes can generate the 
shared keys. 

VII. PERFORMANCE EVALUATION 
In this section, we discuss how the proposed 

approach can reduce the communications overhead and 
prevents different kinds of attack. 

A. Saving of Communications Overhead 
In the existing protocol [1], key space should be 

indexed by all the L-nodes corresponding to their secret 
key. If any node moves from one group to another then it 
is needed to be re-indexed again and synchronization is 
required. However, for our proposed protocol, there is no 
indexing of the nodes. Hence, any extra communications 
overhead does not exist. The communications overhead 
within the same group is presented in Figs. 3 and 4.  Fig. 
3 shows the communications overhead for the existing 
protocol according to the group formation and the 
number of nodes. The results show that the 
communications overhead linearly depended on the 
number of groups as well as the number of nodes within 
a group. Let’s assume the L-nodes vary from 10 to 200 
in the network. For two groups, the number of 
transmission varies from 5 to 100; for five groups, the 
number of transmission varies from 2 to 40; and for 
seven groups, the number of transmission varies from 2 
to 29. Fig. 4 shows the communications overhead for our 
proposed protocol where it presents there is only one 
communication required to update the timing message 
among the nodes. In the existing protocol, all the L-
nodes under H-nodes are indexed with their 
corresponding secret keys. Thus, for K groups, there will 
be N/K number of L-nodes in one group, where N is the 
number of L-nodes.  

B. Prevention of attacks 
In this sub-section, we discuss how the proposed 

approach can cope with different attack types. 

1). Masquerade attack: In our proposed protocol, all 
nodes along the communication path are authenticated. 
An intruder cannot disguise as a legitimate node and 
cannot exchange any false information between 
legitimate nodes.  

2.) Reply attack: In our proposed protocol, an attacker 
node cannot pass the authentication process. Even if a 
malicious node succeeds in that once, it will more likely 
not is able to make it for another round: the base station 
periodically updates the random number used in the 
computation of the verification/Authentication code.  

3). Message manipulation attack: To perform this 
attack, an attacker needs to take part in the message 
communication. This is not possible unless the attacker 
is a valid node in the network. In our protocol, an 
attacker cannot forge the path or the data packets. Thus, 



this attack cannot take place if the proposed protocol is 
in use. 

4). Delay attack: In our proposed protocol, nodes can 
calculate the distance to the senders. They therefore can 
estimate the traveling time of a packet; a feature that 
renders delay attacks not effective if the proposed 
protocol is in use. 

VIII. CONCLUSION 
In the recent literature, there are many existing time 

synchronization protocols for homogeneous sensors 
networks and only a few for heterogeneous sensor 
networks. Most (if not all) existing solutions exhibit 
drawbacks in terms of key space, security, and 
communication overhead. In this paper, we proposed a 
new secure time synchronization protocol for 
heterogonous sensor networks based on IBE and pairing 
based cryptography. The proposed protocol does not 
require any grouping or ordering of L-nodes under H-
nodes and the otherwise-required communication 
overhead is consequently reduced. Additionally, the 
proposed protocol prevents different possible attacks, 
such as masquerade attacks, reply attacks, message 
manipulation attacks and delay attacks. Mathematical 
security analysis and performance evaluation via 
computer simulations form the basis of our future work 
in this progressive research work.  
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Fig.3. Communication overhead for the existing 
protocol [1] depending on the number of portioned, K. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 4. Communication overhead for the proposed 
protocol depending on the number of portioned, K.  

 
 
 
 
 


