
Secure Timing Synchronization for Heterogeneous
Sensor Network using Pairing over Elliptic Curve

Sk. Md. Mizanur Rahman and Nidal Nasser
Department of Computing and Information Science,

University of Guelph,
Guelph, Ontario, N1G, Canada

{srahman, nnasser}@uoguelph.ca

Tarik TALEB
Graduate School of Information Sciences

 Tohoku University,
Sendai, Japan

talebtarik@ieee.org

Abstract— Secure time synchronization is one of the
key concerns for some sophisticated sensor network
applications. Most existing time synchronization
protocols are affected by almost all attacks. In this
paper we consider heterogeneous sensor networks
(HSNs) as a model for our proposed novel time
synchronization protocol based on pairing and
identity based cryptography (IBC). This is the first
approach for time synchronization protocol using
pairing-based cryptography in heterogeneous sensor
networks. The proposed protocol reduces the
communication overhead of the nodes as well as
prevents from all the major security attacks. Security
analysis shows, it robust against reply attacks,
masquerade attacks, delay attacks, and message
manipulation attacks.

I. INTRODUCTION
Time synchronization in sensor networks is a

challenging task due to some non-determinism in the
network dynamics such as physical channel access time
and operation system overhead (e.g., system calls). All
network time synchronization methods rely on some
kind of message exchanges between nodes. Thus, secure
time synchronization is more challenging. Additionally,
resource constraints and lack of efficient key
management in sensor networks make it more difficult.
In this paper we consider secure time synchronization for
heterogeneous sensor networks (HSNs), as several
researches show HSNs have greater performance over
homogeneous WSNs. In a recently proposed time
synchronization scheme for HSN [1], High-end nodes
(H-nodes) and Low-end nodes (L-nodes) need to pre-
load a number of keys. Some existing time
synchronization schemes for HSNs, such as the
Reference-Broadcast Synchronization (RBS) scheme [2],
the Timing-sync Protocol for Sensor Networks (TPSN)
[3], and the Flooding Time Synchronization Protocol

(FTSP) [4] are also available. But none of these
protocols [2-4] was designed with security in mind.

A. Background
Most existing time synchronization schemes [2-4] are

vulnerable to the following attacks [1].
1) Masquerade attack: This is a type of attack in

which one system entity illegitimately poses as another
entity to gain access to confidential systems; that is one
system assumes the identity of another. Suppose that a
node A sends out a reference beacon to its two neighbors
B and C. An attacker E can pretend to be B and
exchange wrong time information with C, disrupting the
time synchronization process between B and C.

2) Replay attack: A replay attack is a form of
network attack in which a valid data transmission is
maliciously or fraudulently repeated or delayed. Suppose
Alice wants to prove her identity to Bob. Bob requests
her password as proof of identity, which Alice dutifully
provides (possibly after some transformation like a hash
function); meanwhile, Eve is eavesdropping the
conversation and keeps the password. After the
interchange is over, Eve connects to Bob posing as
Alice; when asked for a proof of identity, Eve sends
Alice's password read from the last session, which Bob
must accept.

 3) Message manipulation attack: In this attack, an
attacker may drop, modify, or even forge the exchanged
timing messages to interrupt the time synchronization
process [1].

4) Delay attack: The attacker intentionally delays
some of the time messages, e.g., the beacon message in
the RBS scheme, so as to fail the time synchronization
process.

In the branch of Cryptography, Identity-Based
Cryptography (IBC) [5] is an exception where an
information that uniquely identifies users (e.g., IP or
email addresses) can be used to both exchange keys and
encrypt data, and thus Public Key Infrastructure (PKI) is

unnecessary. It only has become truly practical with the
advent on Pairing-Based Cryptography (PBC) [6]. The
first known implementation of pairings for sensor nodes
based on the 8-bit/7.3828-MHz ATmega128L
microcontroller (e.g., MICA2 and MICAz motes) has
been investigated in [7]. The investigation concludes that
cryptography from pairings is indeed viable in resource-
constrained nodes.

In this paper, we propose an efficient secure timing
synchronization protocol in the form of pairing-based
cryptography. Hence this protocol reduces key space and
communication overhead comparing to the existing
protocols.

B. Contributions and Related Work
In [1], before deployment or at deployment, all the L-

sensors and H-sensors need to store secret as well as
public keys of the nodes. All the L-nodes under an H
node are indexed with their corresponding secret keys.
This incurs additional communication overhead. So, if a
L-node moves from one group to another, re-
synchronization becomes required for the existing
scheme [1], which incurs extra communication overhead
for both the leaving group and the new group. On the
other hand, L-nodes are hierarchically grouped under H-
nodes. Therefore, if there are N L-nodes under the same
H-node and grouped into K groups, the H-node is
required to broadcast the same timing message N/K
times in the same group. Obviously, this shall incur
significant communication overhead as the network
scales up.

In our proposed protocol, nodes do not need to store
any private or public key of other nodes, during the
deployment or in its life time. In fact, nodes generate
their own secret key by sharing their identity with their
neighboring nodes. Thus key space is less than any other
existing scheme. Every nodes need to know its own ID
and its corresponding secret that are taken from the
trusted base (sink) station. In our protocol, nodes do not
need to be static; they can be dynamic as long as
adequate clustering is performed in the network. Nodes
in the network can dynamically generate their own secret
sharing keys. In addition, nodes do not need to be
indexed and ordered. Finally, any node can move from
one group to another without any extra overhead
communication.

C. Organization of the Paper
The rest of this paper is organized as follows. Section

II describes preliminaries which are useful for
understanding the proposed protocol. In Section III, the
architecture of the proposed protocol is described. In
Section IV, the key management and authentication
procedure is described. In Sections V and VI, the secure

time synchronization procedure and some security
analysis - in terms of prevention of attacks - are given,
respectively. Finally, conclusions drawn from the paper
are presented in Section VII.

II. PRELIMINARIES
In this section, we describe some preliminaries and

mathematical properties which are useful to understand
our proposed protocol.

A. Bilinear Pairing
Let G1 be an additive group and G2 be a

multiplicative group of the same prime order q. Let P be
an arbitrary generator of G1. aP denotes P added to itself
a times. Assume that discrete logarithm (DL) problem is
hard in both G1 and G2. We can think G1 as a group of
points on an elliptic curve over qF , and G2 as a subgroup

of the multiplicative group of a finite field kq
F for

some *
qZk ∈ , where Zq

* = {y | 1≤ y≤ q-1}. A mapping
e:G1 × G1 → G2, satisfying the following properties is
called a cryptographic bilinear pairing (bilinear map).

• Bilinearity: e(aP, bQ) = e(P,Q)ab for all 1, GQP ∈
and *, qZba ∈ . This can be restated in the
following way. For 1,,, GSRQP ∈ , e(P+Q, S+R)
= e(P,S) e(P,R), e(Q,S) e(Q,R).

• Non-degeneracy: If P is a generator of G1, then
e(P,P) is a generator of G2. In other words,
e(P,P) not equal to one. Thus there must exist

1, GQP ∈ with e(P,Q)≠1.
• Computable: A mapping is efficiently

computable if e(P,P) can be computed in
polynomial-time for all 1, GQP ∈ . Thus there is
an effiecient algorithm to compute e(P,Q), for
any 1, GQP ∈

For simplicity, a capital letter express an element of
G1 and a small letter express an element of G2. Modified
Weil Pairing [8] and Tate Pairing [9, 10] are examples of
cryptographic bilinear maps.

B. Diffie-Hellman Problems
In this section, we recall the properties of Diffie-

Hellman gap families. First of all, we assume following
terms to define Diffie Hellman gap families.

• Let, P is a point on elliptic curve E given by
y2=x3+αx+β mod T where T is a prime number.

• < P > is a subgroup of E generated by P.
• |<P>|=q.
• *, qZba ∈ .

Hence we can think G1 as a group of points on the
elliptic curve E. With this group we can define the
following hard cryptographic problems applicable to our
proposed protocol.

− Computational Diffie-Hellman (CDH) Problem:
Given a triple 1),,(GbPaPP ∈ for *, qZba ∈ , find
if there exist any element EabP∈ .

− Decision Diffie-Hellman (DDH) problem: Given
a quadruple 1),,,(GcPbPaPP ∈ for *,, qZcba ∈ ,
decide whether c=ab mod q or not.

− Gap Diffie-Hellman (GDH) Problem: A class of
problems where the CDH problem is hard but
DDH problem is easy.

− Bilinear Diffie-Hellman (BDH) Problem: Given a
quadruple 1),,,(GcPbPaPP ∈ for some

*,, qZcba ∈ , compute e(P,P)abc.
Groups where the CDH problem is hard but DDH

problem is easy are called GAP Diffie-Hellman (GDH)
groups. Details about GDH groups can be found in [11,
12, 13].

C. Routing Structure in HSNs
A HSN consisting of two types of sensors: a small

number of H-sensors and a large number of L-sensors.
Both H-sensors and L-sensors are powered by batteries
and have limited energy supply. Clusters are formed in a
HSN. For a HSN, it is natural to have powerful H-
sensors serve as cluster heads and form clusters around
them. The assumptions and discussion are given in [14].
In brief, i) each L-sensor (and H-sensor) is static and
aware of its own location (sensor nodes can use a secure
location service such as that in [15] to estimate their
locations; no GPS receiver is required at end-nodes), ii)
each L-sensor (and H-sensor) has a unique node ID. 3)
The sink (base) is trusted.

1). Cluster formation in HSNs: After sensor
deployment, clusters are formed in a HSN [14]. An
efficient clustering scheme for HSNs is given in [16].
For the sake of simplicity, we assume that each H-sensor
can communicate directly with its neighbor H-sensors (if
not, then relay via L-sensors can be used). All H-sensors
form a backbone in a HSN. After cluster formation, a
HSN is divided into multiple clusters, where H-sensors
serve as the cluster heads. For reader’s convenience, the
HSN clustering scheme is described briefly as follows,
more details are in [16]. During the network
initialization, each H-sensor broadcasts a Hello message
to nearby L-sensors using the maximum power and with
a random delay. The random delay is to avoid the
collision of Hello messages from two neighbor H-
sensors. A Hello message includes the ID and location of
the H-sensor. An L-sensor may receive Hello messages

from one or more H-sensors. Each L-sensor sets a timer
after receiving the first Hello message. When the timer
expires, each L-sensor chooses the H-sensor whose
Hello message has the best signal strength as the cluster
head. Each L-sensor also records other H-sensors from
which it receives the Hello messages, and these H-
sensors serve as backup cluster heads in case the primary
cluster head fails. If an L-sensor U does not receive any
Hello message during the initialization phase, it actively
looks for a nearby H-sensor by broadcasting an Explore
message. Neighbor L-sensors relay the Explore message
until it reaches an L-sensor V that has already found a
cluster head. Then sensor V sends a message back to
sensor U and informs sensor U of the location of the
cluster head. This scheme ensures that all connected L-
sensors have a cluster head. A sensor network is divided
into multiple clusters, where each H-sensor serves as the
cluster head.

2). Routing in HSN: In a HSN, the sink, H-sensors
and L-sensors form hierarchical network architecture
[14]. Clusters are formed in the network and H-sensors
serve as cluster heads. All H-sensors form a
communication backbone in the network. Powerful H-
sensors have sufficient energy supply, long transmission
range, high date rate, and thus provide many advantages
for designing more efficient routing protocols. In [17],
an efficient routing protocol for HSNs is designed.
Routing in a HSN consists of two phases: 1) Intra-cluster
routing: each L-sensor sends data to its cluster head via
multi-hops of other L-sensors; and 2) Inter-cluster
routing: a cluster head (a H-sensor) aggregates data from
multiple L-sensors and then sends the data to the sink via
the H-sensor backbone. More details on routing are
given in [17]. An intra-cluster routing scheme
determines how to route packets from an L-sensor to its
cluster head. The basic idea is to let all L-sensors (in a
cluster) form a tree rooted at the cluster head H. It has
been shown in [18] that: i) If complete data fusion is
conducted at intermediate nodes, (i.e., two k-bit packets
come in, and one k-bit packet goes out after data fusion)
then a minimum spanning tree (MST) consumes the least
total energy in the cluster. ii) If there is no data fusion
within the cluster, then a shortest-path tree (SPT)
consumes the least total energy. iii) For partial fusion,
finding the tree that consumes the least total energy is a
NP-complete problem.

During the tree setup, two or more parent nodes are
determined for each L-sensor. One parent node serves as
the primary parent, and other nodes serve as backup
parents. Given the tree-based routing structure within a
cluster, each L-sensor only needs shared keys with its
communication neighbors, i.e., its parent-nodes and
child-nodes.

III. PROPOSED PROTOCOL’S ARCHITECTURE AND
DESIGN

The base station (sink or system administrator) has
the following extra tasks during the boot strap of the
network.

• Determining two groups G1 and G2, of the same
prime order q. We view G1 as an additive group
and G2 as a multiplicative group as discussed in
Subsection II.A.

• Determining bilinear map g: G1× G1 → G2,
collision resistant cryptographic hash functions
H1 and H2, where H1:{0,1}*→ G1 is a mapping
function from arbitrary-length strings to points in
G1 and H2:{0,1}*→{0,1}μ forms another mapping
function from arbitrary-length strings to μ-bit
fixed length output.

• Generating system’s secret ώ∈Zq
*, where Zq

* =
{y | 1≤ y ≤ q-1}. Any one in the network does
not know ώ except the base station (sink). Base
station also uses this secret to generate the secret
point of the non-adversary nodes.

Thus, the system parameters <G1, G2, g, H1, H2 > are
known to the non-adversary nodes. The base station also
provides the following parameters for nodes, regarding
their IDs and secret points.

• Providing each nodes (L-nodes and H-nodes)
with a unique ID:

11

212111

)(

),...,(),(

GIDHID

IDHIDIDHID

RNRN

RRRR

∈=

==
ℜ

ℜℜ

 for N number of nodes and corresponding secret
points { 121 ,...,, GSPSPSP RNRR ∈ } which are
defined as (SPRi = ώ IDRi = ώ)(1

ℜ
RiIDH), where

i= 1,2,...,N. The base station also provides each
node with a different random number RNi ∈Zq

*. If
an L-node is not directly connected to an H-node,
it then uses its secret point and its communication
neighbor’s ID to generate the sharing secret key
between the node and its communication
neighbors. The secret point is also used to
authenticate among nodes. If an L-node is
directly connected to an H-node, it uses its secret
point to generate the sharing secret key between
the node and its corresponding H-node. The key
is also used for authentication between the two
nodes. The key generation and authentication
technique is described in the next section. For a
given set of <IDR, SPR>, no one can determine
the system secret ώ as we discussed in
Subsections II.A and II.B.

• Providing each H-node with the IDs of all
corresponding L-nodes and a corresponding
random number RN ∈Zq

*. This random number is
used to authenticate the L-node with its
corresponding H-node. As will be explained in
the next section, the random number of each L-
node is periodically updated and notified by the
base station to its corresponding H-node.

With the above information, any node can generate
its own sharing secret key. Considering a node K, the
node receives its ID, IDK, and its corresponding secret
point, (SPK= ώIDK=ώ)(1

ℜ
KIDH), from the base station.

Hence, K can generate its own sharing secret key with its
communication neighbor, node M with an ID, IDM and a
corresponding secret point (SPM = ώIDM=)(1

ℜ
MIDH).

As a result, both K and M can generate their own secret
sharing key without sharing their secret point as follows.
K computes KKM = g(SPK, IDM) = g(IDK, IDM)ώ and M
computes KMK = g(SPM, IDK) = g(IDM, IDK)ώ. These
equations also hold the property mentioned in Section II:
no one can determine the system secret ώ for a given set
of ID and corresponding secret point <IDK, SPK>.

IV. KEY MANAGEMENT AND AUTHENTICATION
The base station works as a system administrator. It is

responsible of generating IDs and corresponding secret
points for all nodes in the network. At the boot strap of
the network, each node knows it’s ID, its secret point,
and its random number. Furthermore, each H-node
knows IDs of all corresponding L-nodes as well as their
random numbers. The random number of the nodes is
periodically updated by the base station and is
distributed to L-nodes via their corresponding H-nodes.
The random number is used for authentication between
an L-node and its L-node neighbors or between an L-
node and its corresponding H-node. The remainder of
this section describes the key establishment and
authentication processes.

After boot strap and cluster formation of the network,
all L-nodes know their corresponding H-nodes. Let’s
consider an H-node with an ID, IDRH1, a corresponding
secret point, SPRH1, and a random number, RH1.
Similarly, we consider an L-node with an ID, IDRL1, a
corresponding secret point, SPRL1, and a random number
RL1. To authenticate to the L-node, IDRL1, H-node
generates its sharing secret key {KH1L1 = g(SPRH1, IDRL1)
= g(IDRH1, IDRL1)ώ} and an authentication code {Aut0 =
H2(KH1L1 || IDRH1 || IDRL1 ||0)}. Only Aut0 is sent to IDRL1.
On the other hand, the L-node generates its sharing
secret key {KL1H1 =g(SPRL1, IDRH1) = g(IDRL1, IDRH1)ώ}
and a verification code {Ver0 = H2(KL1H1 || IDRH1 || IDRL1
||0)}. The node then compares Ver0 with Aut0. If Ver0
matches with Aut0, then IDRL1 generates an another

authentication code {Aut1 = H2(KL1H1 || IDRL1 || IDRH1 ||
RL1 || 1)} and sends it back to H-node. Finally, H-node
computes {Ver1 = H2(KH1L1 || IDRL1 || IDRH1 || RL1 ||1)}
and compares it with Aut1. If a match is found, the
authentication is successful. Otherwise, it fails. In this
fashion, all nodes (H-nodes and L-nodes) are
authenticated to each other; either with their
communication neighbors or with their corresponding H-
nodes. Therefore, nodes in the network can communicate
securely with each other, as illustrated in Fig. 1.

Fig. 1. Authentication procedure between two nodes “H”
and “L”

When the base station changes the random numbers
of the L-nodes, it encrypts the random number with the
secret key shared between the base station and the
corresponding H-nodes. As L-nodes are authenticated
with their corresponding H-nodes, H-nodes encrypt the
random numbers with the secret key shared between the
H-nodes and the corresponding L-nodes and send them
to the L-nodes. If a L-node is not directly connected with
its corresponding H-node, the H-node performs double
encryptions. In the first encryption, it uses the secret key
shared with the destination L-node. In the second
encryption, it uses the secret key shared with its nearby
L-node and sends the encrypted packet to its nearby L-
node. Consequently, the L-node decrypts the packet and
looks at the destination ID and again encrypts the packet
using the secret key shared with its L-node neighbor.
This operation is repeated till the random number
eventually reaches at the destined L-node. It should be
noted that intermediate L-nodes cannot get any
information about the random number as it is double
encrypted by the H-node. Fig. 2 shows the hierarchical

architecture and corresponding interaction among the
nodes for distributing the random numbers.

Fig. 2. Hierarchical architecture for distributing the
random numbers among the nodes

V. SECURE TIME SYNCHRONIZATION PROTOCOL
After sensor deployment and secure key

establishment, nodes are authenticated to each other as
discussed in the previous section. Time synchronization
among the nodes is performed in a hierarchical fashion.
The base station first sends the timing message to the H-
nodes encrypted with the corresponding secret key of H-
nodes. The timing message contains the following fields:
Position+ Timestamp+ Sequence# +MAC, where
position indicates the position of the base station;
timestamp indicate the local time read from the base
station’s clock; sequence# number is the sequence
number of each synchronization message; and MAC is
calculated with the secret private key over Position+
Timestamp+ Sequence#. H-nodes can check the
authenticity of the message by referring to the MAC
values.

Upon receiving a timing message from the base
station, H-nodes replace the position information of the
base station by their own position information and then
calculate the MAC in the same way as the base station.
Subsequently, they encrypt the MAC with the secret key

(2)<Aut0>

(6)<Aut1>

H node’s: ID = IDRH1, Secret Point= SPRH1,
Random # = RH1

L node’s: ID = IDRL1, Secret Point= SPRL1,
Random # = RL1

(3) Generates sharing
secret key KL1H1 and
verification code Ver0

(4) Compares

Ver0 = Aut0

?

L

(5) Generates Aut1

H

(1) Generates
sharing secret
key KH1L1 and
authentication
code Aut0

(7) Computes
Ver1 and
compares

Ver1 = Aut1

?

shared with the corresponding L-nodes and forward the
message to the L-nodes.

Upon receiving the timing message from higher-layer
H-nodes, L-nodes use the signal strength to compute the
distance between the sender and themselves. This
distance is denoted as DistanceSignal, where
DistanceSignal= F(signal); F is a function that relates
between the signal strength and the distance. L-nodes
also calculate another distance based on their
corresponding relative position. This distance is denoted
as DistancePosition, where DistancePosition =f(position); f is
the function that calculates the geometrical distance
based on given coordinates. Finally, DistanceSignal and
DistancePosition are compared to check either they are
equal or not. The authenticity is confirmed if the two
distances are equal. Another authenticity check can be
based on checking the MAC value.

VI. SECURITY ANALYSIS
In this section we discuss the cryptographic

implementation points as well as cryptographic analysis
of the proposed protocol.

A. Cryptographic Implementation Point of View
The bilinear map e can be the Tate pairing with some

of the modifications and performance improvements
described in [19] and elliptic curve E can be y2=x3+x.
The aforementioned group order q is a large 160-bit
prime based on another 512-bit prime p=2qr-1 (for some
r large enough to make p be the correct size), such bit-
length configurations of p and q provide a comparable
level of security to RSA cryptography with a key size of
1024 bits [20]. Then G1 is a cyclic subgroup of the
additive group of points of the elliptic curve E over the
finite field Fp, while G2 is a cyclic subgroup of the
multiplicative group associated to the finite field *

2pF .

Regarding collision-resistant hash function H1 in
section III, it can be simply inputted a given string into
SHA-1 [21] to get the x-coordinate of a point, and then
corresponding y-coordinate can be generated according
to the elliptic curve equation.

B. Cryptographic Analysis
Key generation of the nodes in the network is based

on the Deffie-Hellman problems described in section
II.B. Therefore, if the intruder nodes capture the public
messages such as the identities of the nodes IDs, and/or
Aut0, Aut1 still they are not able to compute secret key.
Because, key generation is a pairing function operation
over elliptic curve with a secret point. Thus, no one
outside of the authenticated nodes can generate the
shared keys.

VII. PERFORMANCE EVALUATION
In this section, we discuss how the proposed

approach can reduce the communications overhead and
prevents different kinds of attack.

A. Saving of Communications Overhead
In the existing protocol [1], key space should be

indexed by all the L-nodes corresponding to their secret
key. If any node moves from one group to another then it
is needed to be re-indexed again and synchronization is
required. However, for our proposed protocol, there is no
indexing of the nodes. Hence, any extra communications
overhead does not exist. The communications overhead
within the same group is presented in Figs. 3 and 4. Fig.
3 shows the communications overhead for the existing
protocol according to the group formation and the
number of nodes. The results show that the
communications overhead linearly depended on the
number of groups as well as the number of nodes within
a group. Let’s assume the L-nodes vary from 10 to 200
in the network. For two groups, the number of
transmission varies from 5 to 100; for five groups, the
number of transmission varies from 2 to 40; and for
seven groups, the number of transmission varies from 2
to 29. Fig. 4 shows the communications overhead for our
proposed protocol where it presents there is only one
communication required to update the timing message
among the nodes. In the existing protocol, all the L-
nodes under H-nodes are indexed with their
corresponding secret keys. Thus, for K groups, there will
be N/K number of L-nodes in one group, where N is the
number of L-nodes.

B. Prevention of attacks
In this sub-section, we discuss how the proposed

approach can cope with different attack types.

1). Masquerade attack: In our proposed protocol, all
nodes along the communication path are authenticated.
An intruder cannot disguise as a legitimate node and
cannot exchange any false information between
legitimate nodes.

2.) Reply attack: In our proposed protocol, an attacker
node cannot pass the authentication process. Even if a
malicious node succeeds in that once, it will more likely
not is able to make it for another round: the base station
periodically updates the random number used in the
computation of the verification/Authentication code.

3). Message manipulation attack: To perform this
attack, an attacker needs to take part in the message
communication. This is not possible unless the attacker
is a valid node in the network. In our protocol, an
attacker cannot forge the path or the data packets. Thus,

this attack cannot take place if the proposed protocol is
in use.

4). Delay attack: In our proposed protocol, nodes can
calculate the distance to the senders. They therefore can
estimate the traveling time of a packet; a feature that
renders delay attacks not effective if the proposed
protocol is in use.

VIII. CONCLUSION
In the recent literature, there are many existing time

synchronization protocols for homogeneous sensors
networks and only a few for heterogeneous sensor
networks. Most (if not all) existing solutions exhibit
drawbacks in terms of key space, security, and
communication overhead. In this paper, we proposed a
new secure time synchronization protocol for
heterogonous sensor networks based on IBE and pairing
based cryptography. The proposed protocol does not
require any grouping or ordering of L-nodes under H-
nodes and the otherwise-required communication
overhead is consequently reduced. Additionally, the
proposed protocol prevents different possible attacks,
such as masquerade attacks, reply attacks, message
manipulation attacks and delay attacks. Mathematical
security analysis and performance evaluation via
computer simulations form the basis of our future work
in this progressive research work.

REFERENCES
[1] X. Du, M. Guizani, Y. Xiao, and H.H. Chen,

“Secure and Efficient Time Synchronization in
Heterogeneous Sensor Networks,” IEEE
Transactions on Vehicular Technology, Vol. 57, No.
4, Jul. 2008.

[2] M. L. Sichitiu and C. Veerarittiphan, “Simple,
Accurate Time Synchronization for Wireless Sensor
Networks,” in Proc. of WCNC 2003, New Orleans,
Louisiana, USA, Mar. 2003.

[3] S. Ganeriwal, R. Kumar, and M. B. Srivastava,
“Timing-sync Protocol for Sensor Networks,” in
Proc. of the 1st International Conference on
Embedded Networked Sensor Systems (ACM
SenSus’03), Losangeles, CA, USA, Nov. 2003.

[4] M. Maroti, B. Kusy, G. Simon, A. Ledeczi, “The
Flooding Time Synchronization Protocol,” in Proc.
of the Second ACM SenSys, Baltimore, MD, USA,
Nov. 2004.

[5] A. Shamir, “Identity-based Cryptosystems and
Signature Schemes,” in proc. of CRYPTO’84: on
Advances in Cryptology, Springer-Verlag, Santa
Barbara, California, USA, Aug. 1984.

[6] R. Sakai, K. Ohgishi, and M. Kasahara,
“Cryptosystems Based on Pairing,” in proc. of
Symposium on Cryptography and Information
Security (SCIS2000), Okinawa, Japan, Jan. 2000.

[7] L. B. Oliveira, D. F. Aranha, E. Morais, F. Daguano,
J. Lopez, and D. Ricardo, “TinyTate: Computing the
Tate Pairing in Resource-Constrained Sensor
Nodes,” in Proc. of Sixth IEEE International
Symposium on Network Computing and
Applications, (NCA 2007), Cambridge, MA, USA,
Jul. 2007

[8] D. Boneh and M. Franklin, “Identity Based
Encryption from the Weil Pairing,” SIAM Journal of
Computing, Vol. 32, No. 3, Mar. 2003, pp. 586-615.

[9] P. S. L. M. Berreto, H. Y. Kim and M. Scott,
“Efficient Algorithms for Pairing-based
Cryptosystems,” Advances in Cryptology -
Crypto’2002, LNCS 2442, Springer-Verlag, 2002,
pp.354-368.

[10]S. Galbraith, K. Harrison and D. Soldera,
“Implementing the Tate Pairing,” Algorithm Number
Theory Symposium - ANTS V, LNCS 2369,
Springer- Verlag (2002), pp. 324-337

[11]D. Boneh and M. Franklin, “Identity-based
Encryption from the Weil Pairing,” Advances in
Cryptology – CRYPTO, Lecture Notes in Computer
Sci. 2139, 2001, pp.213-229.

[12]D. Boneh, B. Lynn and H. Shachum, “Short
signatures from the Weil pairing,” Advances in
cryptology –ASIACRYPT, Lecture Notes in Comput
Sci. 2248, 2001, pp.514-532.

[13]A. Joux and K. nguyen, “Separating decision Diffie-
Hellman from Diffie-Hellman in Cryptographic
groups,” Cryptology ePrint Archive, Report
2001/03, available at http://eprint.iacr.org/2001/03/.

[14] X. Du, M. Guizani, Y. Xiao, and S. Ci, H.H. Chen,
“A Routing-Driven Elliptic Curve Cryptography
Based Key Management Scheme for Heterogeneous
Sensor Networks,” IEEE Transactions on Wireless
Communications, Accepted for publication, Apr.
2007.

[15]L. Lazos and R. Poovendran, “SeRLoc: Secure
Range-Independent Localization for Wireless Sensor
Networks,” in Proc. of 2004 ACM Workshop on
Wireless Security, Philadelphia, PA, 2004.

[16]X. Du and F. Lin, “Maintaining Differentiated
Coverage in Heterogeneous Sensor Networks,”
EURASIP Journal on Wireless Communications and
Networking, Issue 4, 2005, pp 565-572.

[17]X. Du and Y. Xiao, “Energy Efficient Chessboard
Clustering and Routing in Heterogeneous Sensor
Network,” International Journal of Wireless and
Mobile Computing (IJWMC), Vol. 1, No. 2, Jan.
2006, pp. 121 -130.

[18]R. Cristescu and B. Beferull-Lozano, “Lossy
Network Correlated Data Gathering with High-
Resolution Coding,” in Proc. of IEEE IPSN 2005,
UCLA, Los Angeles, California, USA, Apr. 2005.

[19]P.S.L. M. Barreto, H.Y. Kim, B. Bynn, and M.
Scott, “Efficinet Algorithms for Pairing-Based
Cryptosystems,” In Proc. CRYPTO 02, Springler
Verlag, August 2002.

[20]D. Balfanz, G. Durface and N. Shankar et al.,
“Secure Handshakes from Pairing-Based Key
Agreements,” IEEE Symposium on Security &
Privacy, May 2003.

[21] NIST, Digital Hash Standard, Federal Information
Processing Standards Publication 180-1, April 1995.

Fig.3. Communication overhead for the existing
protocol [1] depending on the number of portioned, K.

Fig. 4. Communication overhead for the proposed
protocol depending on the number of portioned, K.

