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Abstract We propose a suspect fault screening assisted graph aggregation network for intra-/inter-node 
failure localization in ROADM-based optical networks, which is validated in both simulated topology and 
testbed. Results show that it achieves satisfactory accuracy under different percentage of OPMs and 
the number of service requests. ©2022 The Author(s) 

Introduction 
In optical networks, failure localization is crucial 
to stable operation and service restoration[1]. 
Several approaches were presented to achieve 
accurate failure localization, including rule-based 
reasoning with routing and alarms[2-3], and the 
analysis of alarms and monitoring data through 
machine learning[4-7]. These above works were 
mainly investigating the failure localization of 
nodes and inter-nodes, where the failures of 
inter-node include fibers and EDFA. However, 
due to the increase of traffic and demand for 
flexibility, the reconfigurable optical add/drop 
multiplexer (ROADM) node is evolving towards 
multi-degree architecture, e.g., 32-degree[8-10]. 
Thus, its internal composition will contain multiple 
devices, such as wavelength selective switch 
(WSS) and splitter, which makes the failures of 
intra-node become more complex. In this context, 
failure localization of intra-node can effectively 
reduce the pressure on operators to further find 
specific devices. Moreover, it also ensures that 
partial degrees within ROADM node are available 
when service re-routing. Therefore, failure 
localization of intra-/inter-node is essential for 
multi-degree ROADM-based optical networks. 

To locate failure of intra-/inter-node, it is an 

effective method to deploy a mass of optical 
performance monitors (OPMs) into intra-/inter-
node for monitoring network status. However, 
operators expect to deploy fewer OPMs for 
reducing CAPEX, which may result in ambiguity 
of failure locations. Moreover, because of traffic 
exchange between different degrees and nodes, 
it reinforces the complex dependency between 
monitoring data. Thus, it is difficult to analyse 
these interacting data. The above issues make 
failure localization of intra-/inter-node become an 
imperative challenge. 

In this paper, we propose a Suspect Fault 
Screening assisted Graph aggRegation Network 
(SFS-GRN) to locate failure of intra-/inter-node in 
ROADM-based optical networks. SFS is used to 
reduce ambiguity of failure locations through 
screening out potential fault devices from all 
devices. GRN is responsible for analysing these 
interacting data and determining the most likely 
failure location between potential fault devices. 
We evaluate our scheme in both emulated 
network and testbed network carrying live traffic. 
Experimental results show that different failure 
types are localized with satisfactory accuracies 
under different percentage of OPM deployment 
and the number of service requests.  

Tab. 1: Failure devices of intra-/inter-node and 
corresponding influences. 

Failure Devices Failure Influences 

EDFA 
Insufficient amplification  

(0%~50% of normal) 

Fiber 

Extra attenuation 
(150%~200% of normal) 

Splitter 

WSS 

AWG 

Transponder 
Insufficient launch power 

(0%~50% of normal) 
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Fig. 1: (a) ROADM-based optical network; (b) Bidirectional lightpath 

between two nodes; (c) 3-degree B&S ROADM and E-switch. 



Network Architecture and Intra-/Inter-Node 
Failure Model 
Fig. 1(a) shows a ROADM-based optical network 
carrying multiple service requests. For each link, 
the bidirectional lightpaths are provided for traffic 
transmission, and each of them includes two fiber 
spans and one EDFA shown in Fig. 1(b). For 
each node, it consists of an electrical switch (E-
switch) and a broadcast-and-selected (B&S) 
ROADM shown in Fig. 1(c). E-switch is equipped 
with several transponders for sending and 
receiving traffic. The ROADM is composed of 
arrayed waveguide grating (AWG), EDFA, splitter 
and WSS. It achieves flexible switching between 
different degrees (e.g., D1~D3 in Fig. 1(c)) and 
nodes (e.g., N1~N3 in Fig. 1(a)). Meanwhile, we 
consider two ways to deploy OPMs, in which 
random and uniform ways mean that their 
locations are randomly or uniformly selected in 
proportion from all available positions. 

In ROADM-based optical networks, several 
devices at intra-/inter-node may fail and result in 
service disruption. As shown in Tab.1, we take all 
failures into three categories: 1) amplification 
failures include all EDFA, and they will provide 
insufficient amplification to signals; 2) attenuation 
failures contain fiber, splitter, WSS and AWG, 
where they bring extra attenuation into network; 
3) launch failures include all transponders, and 
they can’t ensure sufficient launch power. In 
addition, multiple devices usually don’t fail 
simultaneously. Thus, we only consider single 
failure localization. 

Suspect Fault Screening Assisted Graph 
Aggregation Network (SFS-GRN) 
SFS-GRN is a collaborative way for intra-/inter-
node failure localization. The whole scheme 
consists of two modules shown in Fig. 2. 

Module1: Screening of suspect fault devices 
by SFS. Firstly, we establish a bipartite graph 
between all services and device set 𝐷 based on 
routing and wavelength assignment (RWA) 

results, in which each link denotes a service 
passing through a corresponding device. Then, 
total services are divided into abnormal set 𝐴 and 
normal set 𝑁  according to whether they have 
alarms. These links are further transformed into 
two matrices, i.e., 𝑀(஽,஺)

ଵ  and 𝑀(஽,ே)
ଶ , where the 

subscript is the size of matrix. Moreover, several 
operations are designed to distinguish between 
all devices that are normal or suspect fault 
devices. This design is mainly based on two 
principles: 1) failure is not a device that normal 
services pass through; 2) failure is one of devices 
through which all abnormal services pass. These 
operations can be expressed as follows: 

R(஽,ଵ)
ଵ = 𝑀:,ଵ

ଵ  && 𝑀:,௝
ଵ  (∀ 1 < 𝑗 ≤ A)          (1) 

R(஽,ଵ)
ଶ = 𝑀:,ଵ

ଶ  || 𝑀:,௝
ଶ  (∀ 1 < 𝑗 ≤ N)           (2) 

𝑅(஽,ଵ) = 𝑅௜
ଵ &&  (¬𝑅௜

ଶ)  (∀ 1 < 𝑖 ≤ D)        (3) 

where &&, || and ¬ denote local “AND”, “OR” and 
“NOT” operators respectively. The final output 𝑅 
is a 𝐷-dimensional vector, in which “1” and “0” 
indicate whether each device is suspect fault or 
normality respectively.  

Module2: Locating of failure device by GRN. 
After screening by SFS, failure location will be 
limited to a small space, but it is usually unable to 
directly find a specific failure location. Therefore, 
the GRN is used to explore monitoring data from 
OPMs and further locate failure device. Firstly, 
these monitoring results of each ROADM node 
and its adjacent links are split into multiple 
vectors, e.g., F1~F3 of network layer in Fig. 2, 
where the number of vectors depends on the 
degree of this ROADM. Then, these vectors are 
aggregated by bidirectional recurrent neural 
network (RNN)[11], and the output results are 
concatenated as node-features into feature 
graph. Meanwhile, graph neural network (GNN) 
is responsible for exploiting these graph-features 
in network-wide[12], and the analysed results are 
flattened into artificial neural network (ANN) for 
locating failure between suspect fault devices.  
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Fig. 2: Intra-/inter-node failure localization scheme based on SFS-GRN. 



Experimental Setup and Results 
We evaluate our scheme on simulated and real 
testbed networks respectively. Fig. 3(a) shows 
the simulated topology, which consists of nine 
nodes and twelve bidirectional links. For each 
node, the launch power of transponder is -1 dBm, 
while EDFA with gain of 15 dB is used to amplify 
signal power. The attenuation of each WSS, 
splitter and AWG are set as 6 dB, 2 dB and 6 dB 
respectively. For each link, the fiber span ranges 
from 20 to 60 km with 0.2 dB/km attenuation, 
while the gain of EDFA is set as 20 dB to 
withstand fiber attenuation. Three wavelengths 
with total capacity of 3×10 Gbps are used to carry 
traffic. These above parameters mainly depend 
on our testbed and existing works[13].  Meanwhile, 
we generate 20 ~ 100 services with random 
source-destination pairs and bandwidth demands 
collected from nine real geo-distributed areas[14]. 
Auxiliary graph (AG) model[15-17] performs RWA 
for each service request. Moreover, we also 
develop a real network (see Fig. 1(a)), and field 
trial is shown in Fig. 3(b). It is a ROADM-based 
testbed presented in our previous work [14]. The 
traffic generator and analyser (TGA) is connected 
to E-switch for injecting live traffic, while variable 
optical attenuator (VOA) is used to simulate 
failures. These real data are collected by OPMs 
and reported to network management system 
(NMS) for validating our scheme. Besides, GRN 
of two layers with 20×30 neurons are applied, 
while ANN of three layers is taken as benchmark. 

Fig. 3(c) shows failure localization accuracy 
under different percentage of OPM deployment, 
in which the number of services is set as 40. It 
can be observed that SFS-GRN achieves higher 
accuracy followed by GRN and ANN. In addition, 
uniform deployment obtains higher accuracy than 
random. This is because random may cause 

OPMs to be centrally placed on a few nodes and 
links, which is not beneficial to feature exploration. 
Fig. 3(d) shows localization accuracy with the 
number of service requests under uniform OPM 
placement, where SFS-GRN improves accuracy 
of 7.64% and 4.1% on average when OPM ratio 
is 20% and 60% respectively. It also shows that 
our scheme has no strong correlation with the 
number of services. Meanwhile, we present 
location accuracy of different failure types under 
uniform and 60% OPM, and results are shown in 
Fig. 3(e), where our scheme obtains satisfactory 
results regardless of failure types. Fig. 3(f) shows 
the distribution of suspect fault space after SFS 
screening, in which SFS removes more than 98% 
of devices. This is beneficial to further detection 
and repair of operators. Moreover, SFS-GRN is 
validated in real testbed network, and the 
experimental results are shown in Fig. 3(g). 
Uniform OPM deployment obtains more superior 
results than random. The above results indicate 
that our scheme achieves similar performance in 
both simulated and real network scenarios. 

Conclusions 
To further reduce the pressure of operation and 
keep partial transmission ability of ROADM node 
under failure, we proposed an SFS-GRN scheme 
to locate failure of intra-/inter-node in ROADM-
based optical networks. It obtained satisfactory 
accuracy in both simulated and real testbed 
scenarios. This approach has the potential to 
achieve accurate failure localization for multi-
degree ROADM-based optical networks. 
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Fig. 3: (a) Simulated network; (b) ROADM-based testbed; (c) Percentage of OPM deployment vs. accuracy; (d) No. of service 

requests vs. accuracy; (e) Accuracy of different failure types; (f) No. of service requests vs. No. of suspect fault devices;  
(g) Percentage of OPM deployment vs. accuracy in testbed network. 
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