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ABSTRACT In this paper, the goal is to reduce the time needed for the placement and migration of
services of Connected Automated Vehicles (CAV) using precise hybrid positioning method. First, to place
a service in a Multi-access Edge Computing (MEC) node, there should be sufficient resources in the
served MEC node; otherwise, the service would be placed on the neighboring MEC node or even on the
core node, resulting in higher delays. We start by modeling our problem with the aid of traffic theory to
analytically obtain the necessary number of resources for achieving the desired delay. Second, to reduce
the migration process delay, the migration should begin before the vehicle reaches the MEC node. Thus, an
AI lane-based scheme is proposed to predict candidate nodes for migration based on precise positioning.
Precise positioning data is acquired from a Real-Time Kinematic Global Navigation Satellite System (RTK-
GNSS) measurement campaign. The obtained imbalanced raw data is treated and used in the prediction
scheme, and the resulting prediction accuracy achieves 99.3%. Finally, we formulate a service placement
and migration delay optimization problem and propose an algorithm to solve it. The algorithm shows a
latency reduction of approximately 50% compared to the core placement and up to 29% compared to the
benchmark prediction algorithm. Moreover, the simulation results for the proposed service placement and
migration algorithm show that in case the MEC resource calculations are not used, the delay is 2.2 times
greater than when they are used.

INDEX TERMS 5G, Beyond 5G, MEC, RTK, Service Migration, Position prediction, Service placement,
and Vehicular Communication.

I. Introduction

DELAY sensitive services are of great importance for
applications in verticals, such as Intelligent Transporta-

tion Systems (ITS), especially for Connected Automated
Vehicles (CAV) [1], [2]. One of the main requirements
for CAV use cases is to move such services closer to the
vehicle by utilizing Multi-access Edge Computing (MEC)

[3], [4]. To avoid excessive delay in a mobile environment,
the serving node should be changed (when necessary and
if possible) to maintain the expected service quality level
and minimize the delay. Therefore, services must be flexibly
deployed and seamlessly migrated as close to the vehicle as
possible to minimize service delays [5]- [6].
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In general terms, migration can be described as the process
of transferring the state, memory, and storage used by a
service from one physical machine to another. There are
three types of migration: cold, warm, and hot migration.
While warm and hot are known as live, cold is known as non
live migration [7]. In this paper, we are interested in delay-
sensitive CAV applications and, consequently, we focus on
live migration.

As for service placement and migration in the case of cel-
lular networks (e.g., 5G and 6G), specifically for autonomous
driving, the typical latency requirements are mostly between
10 and 100 ms [8], [9]. For example, in [9], the Virtual
reality and online gaming use cases are associated to a
maximum tolerable latency of 20 ms. For these latency-
sensitive scenarios, the cellular network should include MEC
nodes in addition to the core node to reduce the delay.

In this paper, we consider a cellular network composed of
core and MEC nodes. Vehicles within the MEC service area
either request services or require service migrations. In the
case when a service is migrated, there is a delay resulting
from the migration process. Moreover, the delay is strongly
affected by the amount of MEC resources, such as CPU and
memory. The goal is to minimize the service placement and
migration delay by optimizing the amount of MEC resources,
minimizing the migration process delay, and optimizing the
service placement, that is, choosing the core node or one of
the MEC nodes that minimizes the delay.

A. State of the art of service placement and migration
In this section, we review the most relevant research carried
out on service placement and migration. As explained, the
migration process causes a delay; therefore, position pre-
diction is highly beneficial in reducing it. However, many
studies in the literature do not consider position prediction.
In the following, we start with papers that do not consider
position prediction and then later present papers that use
position prediction in their service placement and migration
research.

A review of live migration can be found in [10]. The
authors start by explaining live migration; then, a review
of the literature on service migration in MEC is carried out.
The research work in [11] focused on service placement in
ITS. The authors focused on minimizing the delay in service
placement for network nodes with a specific amount of re-
sources. An optimization problem to minimize the delay was
formulated, and then the authors proposed a low-complexity
service placement algorithm to solve it. The performance
of the proposed algorithm is similar to that achieved by the
optimal solution of the optimization problem. The authors of
[12] and [13] proposed an algorithm for service placement.
The authors formulated an optimization problem to minimize
the total delay considering several causes of delay in the 5G
cellular network. The authors provided the optimal solution
and proposed a heuristic algorithm, which was compared to
the optimal integer linear programming solution; the run-

time of the heuristic algorithm is in seconds compared to
several hours for the case of the optimal solution. However,
service migration is not considered; only service placement
is considered. In [14], the authors formulated a resource
allocation multiconstraint minimization optimization prob-
lem by considering i) end-to-end latency and ii) limited
resources (e.g., CPU and RAM). Performance was evaluated
using computer simulations for several latency requirements.
Finally, the authors present the results in terms of number
of allocated resources, execution time, number of used edge
clouds, and average service per cloud. In [5], the authors
studied service migration in fog computing. Given that a
moving vehicle should trigger the need for service migration,
three schemes are discussed: no migration, migration based
on changing cell, or migration based on QoS (based on
the delay increase). The schemes were compared in terms
of frequency of migration, migration delay, and reliability.
Each of the schemes shows some advantages over the others,
that is, the first scheme is more suitable when there is
sufficient backhaul capacity to handle multiple hops and
when reliable communication is needed. The second scheme
is more suited for one-hop access and requires a lower
latency. The third scheme is a trade-off between the first
and second schemes. Therefore, the authors concluded that
each of the schemes is suitable for some cases depending
on the scenario and the desired performance metrics. The
authors of [15] surveyed the resources and resource issues of
MEC in the literature. It covers topics such as resource type,
request scheduling, migration, and service placement. In a
heterogeneous network non-CAV scenario, and for K (single
and several) edge nodes, the authors of [16] formulated an
optimization problem and then proposed an algorithm to
find the suitable location of edge nodes in the network with
minimized delay and energy consumption.

Regarding the papers that considered position prediction,
the authors in [6] utilized a Genetic Algorithm (GA) and
Convolutional Neural Network (CNN) algorithm in their
proposed solution to perform service placement and migra-
tion. The authors used a CNN to predict the future location
of self-driving vehicles for the next instance. Subsequently,
using this information, a GA is used to determine the
service placement for all vehicles in a region. The authors
assessed the performance of the proposed algorithm in the
case when both the CNN and GA were used versus when
only the CNN was used. The algorithms’ performance in
terms of rejection rate was 3.9% and 20.2%, respectively;
whereby the rejection rate indicates the percentage of ser-
vices violating the QoS requirements. The authors in [17]
performed migration utilizing a prediction method based on
Lyapunov optimization and a deep-learning algorithm. The
goal is to minimize migration latency and operational cost
(consuming bandwidth and energy). A mathematical analysis
to determine the theoretical bounds for the latency and
operational cost trade-off is presented. The authors showed
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that their algorithm achieved low operational cost, small
queue size, and low latency. For example, their algorithm
achieved up to 83% less latency compared to the case
when migration was not considered. It is worth noting that,
in this work, the core node is not considered as one of
the migration options, and the work is focused only on
MEC nodes. For MEC container migration, the authors of
[18] used a Recurrent Neural Network (RNN) to predict a
vehicle’s trajectory. Throughout consecutive time slots, the
RNN algorithm used the position information of the vehicle
(that is, longitude and latitude) for trajectory prediction. The
highest accuracy achieved was 97%. However, neither the
core nor unbalanced dataset problem was considered. In [19],
the authors performed service migration targeting to reduce
energy consumption. The authors made position predictions
based on the angle of arrival. Simulations were performed to
assess the overall performance of the migration and position
prediction schemes, and the achieved accuracy was found to
be 94%. However, the core node was not presented in the
model. In [20] on service migration, the authors formulated
an optimization problem to improve energy consumption
and reliability. The authors proposed a position prediction
algorithm that utilizes three neural networks applied to traffic
and driving data for prediction. Furthermore, the authors
calculated the dropping probabilities of users. The accuracy
of the position-prediction scheme was approximately 87%.
However, the core was not included in this analysis. In the
context of smart cities, the author of [21] propose an op-
timization problem that minimizes energy consumption and
latency. As part of their algorithm, they utilized Transformers
[22] and proposed a Transformer-based Mobility Prediction
(TMP) to predict the location of users in the near future.
The input of the model is the MEC placement historical
data, that is, the number of mobile devices per edge node
placement history. In [23] the authors formulated a Mixed-
Integer Programming problem to optimize MEC off-loading
and radio resource allocation. The authors considered the
users’ mobility and utilized the mobility context that allows
the prediction of the future location of the user based on the
speed and direction of the user.

To sum up, the state-of-the-art research does not consider
the effect of MEC resource calculation on delays. Moreover,
in the literature, either node prediction is not performed,
the core node is not included in the analysis, or several
cellular network-specific delay components are not included.
By node prediction, we mean that the vehicle’s position
is not predicted to identify the node to which the service
will migrate. In this paper, we use a prediction scheme and
illustrate its importance. We also include the core node in
our analysis for a more realistic scenario.

B. Motivations and contributions
The main goal of introducing MEC nodes is to reduce delay
by placing the services closer to the user. The amount of
MEC resources is critical for a seamless service experience.

In the literature, it is widely assumed that the availability
of MEC resources is always granted without identifying the
actual amount of required MEC resources. For illustrating
this aspect, let us assume that only a few MEC resources
are available in a given service area. If this area has many
users requesting service placement or migration, then limited
services will be placed on the MEC nodes, whereas most of
the services will run from the core node. In this case, the
average delay experienced will be high. Thus, one major gap
in the reported research is the lack of identification of the
amount of required MEC resources. Allocating too many
resources is a waste, whereas too few resources result in
longer delays. Therefore, to fill this gap in the literature, we
provide an analytical formulation to optimize the amount of
MEC resources and achieve the expected delay value and
the quality of service requirements.

Second, to reduce the migration delay, an Artificial Neural
Network (ANN)-based vehicle position prediction scheme is
proposed to help identify the future serving (i.e., target) MEC
node and start the migration process in advance to reduce the
delay. The prediction scheme is based solely on information
related to the vehicle, that is, its position and speed. Precise
positioning information is important for the implementation
of prediction schemes. We show that the accuracy of the
prediction decreases when precise positioning information
is not used, which leads to an increase in delay. Real-Time
Kinematic Global Navigation Satellite System (RTK-GNSS)
devices are used to obtain precise positioning data for the
ANN algorithm.

Third, to optimize the placement of the different services
in the MECs and core nodes, we consider various delay
components of the cellular systems and formulate an opti-
mization problem that is solved optimally by Integer Linear
Programming Solvers (ILPS). Then, we propose an algo-
rithm to perform service placement and migration to avoid
the long computation time stemming from the combinatorial
nature of the problem. It is worth noting that throughout
this paper, we assume, without loss of generality, that each
vehicle or user is requesting a unique service that requires
placement or migration and more resource usage.

Our novel contributions can be summarized as follows:

• We find the necessary amount of MEC resources to
achieve the desired expected delay value and QoS. The
analytical solution is obtained by modeling the service
placement problem using traffic theory. The proposed
model is verified by comparison with computer simu-
lations. After verifying the proposed model, the worst
observed error is less than 1%. Moreover, the model
is tested for different arrival rates, coverage distances,
user speeds, resource requirement distributions, and
departure rate cases.

• We propose a vehicle position prediction ANN scheme
based on lane information and precise vehicle position.
This scheme allows us to predict the future coarse
position of the vehicle, thus starting the migration
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process in advance. The accuracy of the prediction
scheme improves by 15% when precise positioning is
used in the one-lane scenario and by up to 20% when
lane information and precise positioning are used in the
multi-lane scenario.

• We developed an integrated RTK-GNSS testbed posi-
tioning terminal device. Integrating the RTK-GNSS into
the network has the advantage of securely exchanging
correction data through the dedicated protocol, Secure
User Plane Location (SUPL), which was not used
previously. The development includes the use of LPP to
RTCM converter to convert 3GPP’s LPP data to RTK-
GNSS’s RTCM.

• We collect an actual dataset of integrated RTK-GNSS
from a measurement campaign and use it to train the
ANN algorithm to predict the vehicle position in a one-
lane scenario. The imbalanced dataset is treated using
different resampling techniques. Finally, the achieved
accuracy of the future position prediction is 99.3%.

• We propose a service placement and migration algo-
rithm that uses vehicle position prediction. The pro-
posed algorithm achieves 29% shorter latency than a
benchmark prediction scheme.

Each of these contributions is part of a framework for re-
ducing delays. The migration algorithm migrates the service
to the node that reduces the delay; the prediction algorithm
predicts the candidate nodes in advance to reduce the delay
of the migration process itself; the RTK-GNSS accurate po-
sitioning provides the necessary data for position prediction;
finally, the resource calculation guarantees that the nodes
have sufficient resources to host the services; otherwise, all
the previous steps will have little to no effect on the delay
minimization and optimization, that is, it provides the lower
limit on the delay value.

Figure 1 shows the general paper structure while con-
necting it to the contributions. The proposed framework
consists of three components: MEC resource calculation,
position prediction, and the service placement and migration
algorithm. We begin by introducing and evaluating each
component separately, in its own section, and then integrate
them to complete the framework. The remainder of this paper
is organized as follows. Section II presents a mathematical
analysis model for the required MEC resources, and the
calculation of expected delays, followed by an evaluation
of the proposed model. Position prediction to reduce the
migration delay is presented in Section III. Additionally,
measurement camping to obtain the necessary real-world
dataset is presented, followed by an evaluation of the pro-
posed prediction scheme. In Section IV, the 5G network-
related delay components are presented, and an optimization
problem followed by an algorithm to minimize the service
placement and migration delay based on these components
is provided. The proposed framework is then completed
by integrating the MEC resource calculation and position
prediction parts (which are presented in Sections II, and III,

TABLE 1: Summary of notations.

Notation Definition

Ct The average crossing time of the MEC service
area.

Ctc Average crossing time of users leaving the
service area before terminating their services

Ctt Average service time of users terminating their
services before exiting the service area

Du
n The delay that user u experiences being served

by MEC node n

Du
c The delay user u experiences being served by

the core node

duth The delay threshold of user u

ER The vehicles’ entering rate to the service area
of the MEC

L Length of road segment [Km]

M Maximum amount of available MEC resources

MaR The maximum amount of resources a user can
request

miR The minimum amount of resources a user can
request

Ps The probability of having s users requesting
services within the service area

Put The probability that a user terminates his/her
service before leaving the service area

Puc The probability that a user crosses that service
area before the service is terminated

Re Variable indicating the number of requested
resources

Rn The available amount of resources in MEC
node n

SP The saturation probability

Tr The traffic within the service area

V vehicle travel speed [Km/s]

xu
n Binary placement variable for the service of

user u at MEC node n

xu
c Binary placement variable for the service of

user u at the core node c
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FIGURE 1: The general paper structure.

TABLE 2: Summary of Abbreviation.

Abbreviation

ANN Artificial Neural Network

CAV Connected Automated Vehicles

COG Course Over Ground

COGD COG Difference

GMLC Gateway Mobile Location Center

HTTP Hypertext Transfer Protocol

IDS Imbalanced Data Set

ILPS Integer Linear Programming Solvers

ITS Intelligent Transportation Systems

KPIs Key Performance Indicators

LB Lane Based position prediction scheme

LPP LTE Position Protocol

MEC Multi-access Edge Computing

MLP Mobile Location Protocol

NLG Network Location Gateway

OMA Open Mobile Alliance

PSPMA Proposed Service Placement and Migration Al-
gorithm

RTK-GNSS Real-Time Kinematic Global Navigation Satel-
lite System

SB Speed Based position prediction scheme

SLP SUPL Location Platform

SMOTE Synthetic Minority Over-sampling

SUPL Secure User Plane Location

SVMSMOTE Support Vector Machine SMOTE

respectively). Then, the evaluation results of the entire frame
with and without the use of the MEC resource calculation
(Section II) are presented. Finally, conclusions, limitations,
and future work are presented in Section V. The main
notations used in this article are listed in Table 1 and the
list of abbreviations is reported in Table 2.

II. Analysis of expected delay and MEC resources
It can be assumed that the delay experienced by a user when
its service is placed in a MEC node is shorter than when
the service is placed in the core node [24], [25]. Therefore,
to reduce the delay, a delay-sensitive service should not
be placed in the core node unless there are not enough
resources (e.g., storage, CPU, or memory) at nearby MEC
nodes. Two of the main factors that determine whether a
service will be placed in the MEC or the core node are the
amount of available resources in the MEC and the number
of users requesting services within the service area. Because
the resources in the MEC are limited and several users
are requesting the service, as long as they are within its
service area, it may happen that some of these users will not
find enough resources. This behavior can be modeled using
traffic theory to calculate the probability that MEC resources
become saturated. We define the saturation probability as
the probability that all resources are used. Once the MEC
resources are saturated, the user service is placed in the core
node rather than in the MEC. This section will allow us to
calculate i) the amount of MEC resources to serve a certain
area, and ii) the expected delay for users within the area.

First, we describe the envisioned scenario. Let us assume
that there is a MEC serving a given segment of a road
or highway of length L[Km]. Once a vehicle travel with
a speed of V [Km/s] within the range of the MEC, the
service/application instance should be placed in it. Once the
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FIGURE 2: The change in the number of served users in
the service area can be represented as a transition between
states in a process, where each state represents the number
of served users at a given instance. Each circle represents a
state of the service area (s means there are s served users
in the service area). From a given state s, the number of
users increases with a rate of ER and decreases with a rate
of s/CT, where ER is the entering rate and CT is the average
crossing time.

vehicle exits the service area, that is, after traveling a distance
L, at time t = L/V [s], the service is no longer needed and
should be de-associated from the MEC, and the allocated
resources are accordingly released. Because the speed of the
vehicles is random, with a given mean, the crossing time
is also random. Thus, we use the average crossing time Ct
rather than t. We assume that the vehicles requesting the
service enter the service area at a rate ER[s−1]. Moreover,
considering other traffic-based systems, we assume that the
entry process follows a Poisson process, similar to [26].
We choose a Markovian blocking system to model our
system. The details of choosing this system can be found
in Appendix A in the supplementary material/media.

We denote the number of users that request a service
in the MEC within its service area as traffic, and use the
conventional traffic equation [27], the traffic Tr within the
service area can be written as

Tr = ER · Ct , (1)

We denote the probability of having s users requesting
the service within the service area as Ps. While the entering
rate ER does not depend on the number of users within the
service area, the leaving rate should depend on the number
of users within the service area s in addition to the average
crossing time Ct . In other words, if the crossing time is short
and the number of users is high, the leaving rate is high. In
Figure 2, we define the state of the system as an instance in
which a specific number of served users exist in the service
area. The flow represents the transition probability between
the states, that is, the probabilities of moving from one state
to the other. Assuming stationary conditions, the flow should
be balanced: by making a cut between two states, the flow
going into the cut is equal to the flow coming out of the
cut. Therefore, we can write a balance equation between the

entering and leaving rates as follows:

ER · Ps−1 =
s

Ct
Ps. (2)

Given that the maximum number of available MEC re-
sources M is limited, not all users are served by the MEC.
Once the resources are saturated, some users get served by
the core node. To calculate the expected delay and required
MEC resources, we need to write the saturation probability.

The saturation probability SP is determined from the case
wherein the system is full, that is, the number of occupied
resources is M [27], in other words s = M , then the SP
can be calculated as (for interested readers the proof can be
found in Appendix B in the supplementary material/media):

SP =
(Tr)M

M !

1∑M
w=0

(Tr)w

w!

. (3)

Equation (3) is known as the Erlang B formula and there are
tables, recursive equations, and algorithms for this formula
that can be used to calculate the SP given M or M given
SP . The saturation probability indicates the percentage of
users served by the core node (SP ) and the percentage of
users served by the MEC (1 − SP ). Therefore, for a given
area, the expected delay is calculated as:

Expected delay = Core delay × SP + MEC delay × (1− SP) (4)

The use of this result is two-fold:

• The required amount of MEC resources can be calcu-
lated according to the desired SP and expected delay
from (3) and (4). Thus, by using these equations, we can
determine the amount of MEC resources to be deployed
in a given area to achieve a certain QoS.

• For any service area and given amount of resources, the
expected delay value can be calculated using (4).

It is worth noting that in Section IV, we present the
necessary delay components for calculating the Core delay
and MEC delay. Furthermore, it is worth mentioning the
following points:

• Since services can consume different types of resources,
we use the term ”resource unit” to represent any type
of resource. For example, (3) should be used with each
type of resource to perform the necessary resource
calculations for that specific type of resource, as will
be illustrated later.

• Another aspect is the CPU resource; the CPU can be
shared among services to accommodate a large number
of services; that is, the total requested resources are
greater than the capacity of the CPU resources. How-
ever, this approach leads to extra delay and possible
blocking of services [20]. Therefore, we conjecture that
services with stringent delay requirements, such as the
CAV studied herein, should have dedicated and sched-
uled resources. Therefore, in our model, each service is
guaranteed CPU resources and is scheduled to ensure
deterministic behavior. Note that similar approaches are
adopted in real-time operating systems (RTOS) [28].
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TABLE 3: Traffic model parameters’ values

Traffic model parameters
L[Km] 0.5, 1, 2, 5

V [Km/h] Normal distribution with
mean: 60, 80, 100

ER[s−1] 1:10

M 350, 750

Number of vehicles cross-
ing the coverage area

110,000

Put 0.1, 0.5, 0.8

MaR 5,10,15

miR 1

NStd (std of normal distri-
bution)

0.5, 1, 2.5, MaR−miR
2

NMean (mean of normal
distribution)

MaR−miR
2

• In (4), Core delay and MEC delay are the average
delay values the service will experience when placed in
the core node and the MEC node, respectively. These
values include cellular network delay components, such
as transmission and processing delays. The delay com-
ponents details are presented in Section IV. As for the
case when there are different services with different
delays, the Core delay and MEC delay will have to be
calculated considering the probabilities of the services.
For example, the MEC delay can be calculated as:

MEC delay = Pser1Delser1 + Pser2Delser2 + ...

where Pser1 is the probability of service 1 (where the
probability of service 1 is the likelihood of having
services 1 in the service area) and Delser1 is the
delay that service 1 experiences as per the calculations
presented in Section IV.

A. Model verification
We made several assumptions to model the system and obtain
(3), such as the Poisson arrivals one. To verify our results,
we perform computer simulations in which vehicles travel
at a random speed, crossing a service area of a MEC node,
and requesting a service. We then count the number of
requests that are denied/blocked and use it to calculate the
saturation probability. Simulations do not use nor depend on
the proposed model or (3). The simulation is performed for
different values of available resources, and the corresponding
saturation probability SP [%] is obtained. The saturation
probability is then calculated from (3) for different values of
available resources. The used parameters’ values are listed in
Table 3. The results of the simulation analysis and the model
are shown in Figure 3 to be compared with each other. We
can make the following remarks:

• The values on the X-axis represent the number of
resource units. We assume that each service requires

one unit of resources. Note that in the case of differ-
ent services with different resource requirements, each
service can require more than one resource unit, as we
will show later.

• Each line represents a different value of entering rate.
• The saturation probability value indicates the expected

percentage of services to be placed in the core node.
For example, in the first line from the left, deploying
a MEC with 50 resource units in a given area leads
to an approximately 20% saturation probability, which
means that 20% of the services will be placed in the
core node.

• The results of the simulation and the model almost
overlap.

The next step is to assess the performance of the model for
all parameters that affect the saturation probability SP [%],
and we compare different values of V , L, ERs and M . Table
4 shows the values for the difference in SP [%] between
the numerical results and the model. The difference is
calculated for random speeds with different average values
of V , different lengths L of the service area, and different
entrance rates ERs. For each of these parameters, SP [%] is
calculated and simulated for a range of maximum available
resources, M . Specifically, the values shown in Table 3,
that is, four coverage distances, three average velocities of
vehicles and ten different entrance rates, over the range M.
Then, the mean, Standard Deviation (STD), and median
error are calculated over this range of available resources.
Moreover, instead of having a table with more than 100
entries, we do not report all the means for all the ERs, L
and V ; rather we take only the worst (i.e., the maximum
mean of difference) among the ERs and report it in Table
4 for different V and L. Thus, these results show the worst
performance difference. By investigating the cases that are
reported in Table 4, it is observed that 75% of these cases
have an error (i.e., the maximum difference in SP between
the model and the simulation) of less than or equal to 0.5%,
and the maximum error is approximately 1%. Although the
perceived error is small, as can be seen from Table 4, a small
extra number of resources can be used as a guard margin.

Next, we verify the model for two additional scenarios.
The first is when users’ services can be terminated before
leaving the service area. We name this test case ”Within
coverage termination.” The second is when there are different
services, where each can require a different number of
resources; that is, users do not request just one resource unit;
rather, they request a random number of resources within a
range. We call this test case ”Different services requesting
different resources.” Before starting to analyze the test cases,
we note the following about Equation (3); the equation is
provided for an average arrival rate, average departure rate,
and normalized value of requested resources.

In the first test case (”Within coverage termination”),
users stop using or terminate the service before crossing the
service area. The point within the service area where the
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FIGURE 3: Saturation probability for different number of
maximum available resources for different values of en-
terance rate. The entrance rate values range from 1 to 10
vehicles per second. The x-axis represents the number of
available MEC resources.

TABLE 4: The difference in SP [%] between the simulation
and the model.

V [Km/h] L [Km]
Max Mean

of difference
Standard
Deviation

Max Median
of difference

60

0.5 0.3118 0.5577 0
1 0.8686 0.6847 0.9154
2 1.0735 0.6022 1.1051
5 0.8523 0.5578 0.8144

80

0.5 0.1525 0.7144 0
1 0.1622 0.3879 0.1133
2 0.5029 0.2713 0.5411
5 0.3734 0.2593 0.3499

100

0.5 0.1853 0.7225 0
1 0.1728 0.6780 0
2 0.1628 0.6484 0.2104
5 0.1671 0.1322 0.1427

user stops using the service is random, leading to a random
service time for these users. We denote the average service
time of these users as Ct t, and the average service time
for users who cross the service area before terminating their
service as Ctc. We calculate Ct as:

Ct = Ct tPut + CtcPuc, (5)

where Put is the probability that a user terminates his/her
service before leaving the service area and Puc is the
probability that a user crosses that service area before the
service is terminated, Puc = 1−Put. Equation (5) is used in
(1) and (3) to calculate the traffic and saturation probabilities,
respectively. To verify whether the traffic model is suitable
for this case, we repeat the same model verification steps
used to obtain the results in Table 4. The results are presented

TABLE 5: The difference in SP [%] between the simulation
and the model - Case: Within coverage termination.

60 [Km/h] 80 [Km/h] 100 [Km/h]

L [Km] = 0.5 0.30 0.15 0.18

L [Km] = 1 0.84 0.15 0.17

L [Km] = 2 1.08 0.49 0.16

L [Km] = 5 0.87 0.37 0.17

in Table 5. Note that the error is very small, similarly to Table
4. Therefore, the model can be used to predict well the MEC
resources in this scenario. This test is repeated for different
values of Put, as shown in Table 3. Regarding Ct t, the test is
performed for three scenarios: i) service termination occurs
at the start of the service area, ii) service termination occurs
in the middle of the service area, and iii) service termination
occurs at the end of the service area. The results are similar
to those reported in Table 5. The worst performance is found
to be 1.1%, which confirms that the model can be used to
predict MEC resources in this scenario. Note that in case of
two or more average arrival rates (e.g., when there is traffic
originating within the service area in addition to vehicular
traffic), the global arrival rate can be calculated in a similar
way to Ct in (5) given the probability of each arrival rate.

In the second test case (”Different services requesting
different resources”), the users’ resource requests follow a
random distribution. Two distributions are studied, uniform
and normal. First, we study the uniform distribution case, in
which the average number of requested resources per user
belongs to a uniform distribution. Assume that the minimum
number of resources a user can request is miR, and the
maximum number is MaR , while the variable Re indicates
the possible values of resources. A uniform distribution is
defined as follows:

f(Re) =

{
1

MaR−miR , if miR ≤ Re ≤ MaR,

0, otherwise.
(6)

The average value is MaR+miR
2 .

Because all the resource requests have the same weight
in the uniform distribution, the wider the range of resources
(that is, MaR−miR), the less relevant the average value in
the resource calculations. In this case, the selection of MEC
resources depends on the design goals. If Mobile Network
Operators (MNO) aim for high QoS, they should use the
maximum resources, that is, MaR resources. For a more
conservative approach, they can select an average value.

The second distribution is normally distributed. A trun-
cated version is used, i.e., between MaR and miR. The
standard deviation is denoted as NStd. The Performance is
affected by the variance and range.

The same model verification steps used to obtain the
results in Table 4 are repeated for the two distributions, the
uniform and normal. The results are presented in Table 6. It
can be seen from the table that Uniform distribution has
the worst performance for the reasons mentioned before.
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TABLE 6: The difference in SP [%] between the simulation
and the model - Case: Different services requesting different
resources.

V [Km/h] L [Km] Uniform distribution Normal distribution

60

0.5 2.65 0.39
1 3.91 0.36
2 4.83 0.50
5 5.34 0.72

80

0.5 2.81 0.68
1 3.87 0.74
2 4.90 0.80
5 5.64 0.95

100

0.5 2.61 0.88
1 3.72 1.00
2 4.80 1.0
5 5.56 1.06

TABLE 7: The difference in SP [%] between the simulation
and the model. Normal distribution - different values of MaR
and standard deviations.

Case SP [%] difference

NStd = 0.5, MaR = 10 0.9

NStd = 1, MaR = 10 1.47

NStd = 2.5, MaR = 10 5.5

NStd = MaR−miR
2

, MaR = 10 7.35

NStd = 0.5, MaR = 15 1.1

Moreover, when MaR is increased to ten, the maximum
error (i.e., the maximum difference in SP between the model
and the simulation) becomes 7.9%. On the other hand,
the Normal distribution results in error comparable to the
original same service case (i.e., Table 4). To investigate the
Normal distribution case further, the model verification steps
are repeated for different values of MaR and STD, and the
worst cases are reported in Table 7. It is clear that as the
STD increases, the error increases. In the case of a high
STD value, the Normal distribution approaches the Uniform
distribution; therefore, their performance are similar. In the
case of a low STD value, the Normal distribution approaches
the single/same service case and the error turns out to be
small.

B. Performance evaluation of the MEC resources
analysis
This section shows the importance of MEC resource cal-
culations. We use the simulation parameters described in
section A, and we set ER to 3 vehicles per second. Note that
changing ER does not affect the fundamental observations
obtained from the results. We simulate a range of available
MEC resources and show the results of three strategies:
i) MEC, ii) Core, and iii) Random. In the MEC strategy,
services are placed in the MEC nodes as long as there are

sufficient resources. In the Core strategy, the services are
placed in the Core nodes, and in the Random strategy, the
services are placed randomly in the core nodes or MEC
nodes, provided that the MEC has sufficient resources.

The performance of the three strategies is shown in
Figure 4. The investigation is conducted for two cases: the
first is when the amount of available MEC resources is small,
and the second is when the amount of MEC resources is
high. Both cases are presented in Figure 4, where the upper
zoomed-in part presents the results for a small number of
resource cases. We begin with a small number of resource
cases. Because the goal of deploying MEC nodes is to reduce
delay, the MEC strategy is expected to achieve the lowest
delay. However, from the upper zoomed part of Figure 4
(i.e., when a few number of resources are used), we can see
that the MEC strategy and the Random strategy achieve the
same performance. Moreover, the gain compared with the
Core strategy is negligible. These results imply that simply
deploying MEC nodes is not sufficient to reduce the delay,
and the necessary amount of MEC resources to serve the
traffic needs to be calculated.

A greater range of available resources is shown in Fig-
ure 4. We note the following: i) once the amount of MEC
resources increases, the gain of the MEC strategy over the
Core one becomes more evident; ii) for a large portion of the
curves, the Random and MEC strategies achieve the same
performance, and within this portion, the MEC strategy does
not achieve its full potential; iii) for the MEC strategy, at a
certain point, the average delay becomes constant, and the
amount of MEC resources at this point can be calculated
from (3). This observation shows the importance of finding
the optimal amount of MEC resources using (3), since using
any amount of resources larger than this optimal amount
will lead to waste of physical resources and high cost for
deployment.

Regarding the behaviour of the Random and MEC strate-
gies, the following observations are made:

1) In the MEC strategy, the services are placed in the core
node once there are insufficient resources in the MEC.
Similarly, also in the Random strategy, the services
are placed in the core node once there are insufficient
resources in the MEC.

• Thus, in the first part of Figure 4, that is, the
decreasing linear part, the results/behaviors of the
two strategies are identical.

2) The Random strategy is realized using a uniform ran-
dom variable that determines whether the service will
be placed in the MEC or core node. Asymptotically,
the probability of placing the service in the MEC node
is equal to the probability of placing the service in the
core node, which is equal to 50%.

• Thus, in the second part of Figure 4, that is,
the almost constant horizontal segment, as there
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are enough MEC resources, the almost constant
average delay of the Random strategy can be
calculated as

Average delay ≈ (7)
1

2
Average Core delay +

1

2
Average MEC delay

where the Average Core delay is the average de-
lay the user’s service will experience if it is placed
in the Core node, and the Average MEC delay
is the average delay if it is placed in the MEC
node. Without loss of generality, in this specific
simulation, their values are 28 ms and 11 ms,
respectively; hence, the almost constant value for
the Random strategy is ≈ 19.5 ms.

3) From point 2), it can be also understood that half of
the traffic is placed in the MEC, and the other half in
the core node.

• The optimal amount of resources for the MEC
strategy at a given ER can be calculated using (3)
to accommodate all the traffic. However, because
the traffic is halved for the Random strategy,
approximately half of this optimal amount is re-
quired, and any additional resources are simply
wasted.

From this section and the above results, we conclude that
if (3) is not used, either the delay is high or the resource
waste is high. Moreover, we illustrated that MNOs can
use a practical equation similar to those used in networks,
call centers, and servers to efficiently calculate the required
amount of MEC resources to optimize resources and reduce
delays.

III. Proposed vehicle position prediction based on
precise positioning
The migration process itself contributes to the delay. As
mentioned previously, one way to reduce the migration
process delay is to start the migration in advance; thus,
the migration destination should be predicted [29], [30].
Furthermore, one way of preparing and shortlisting candidate
nodes is to predict the future vehicle position. In this section,
we introduce a position prediction method based on the
position of the vehicle within the road, that is, the lane or the
position within the lane. Therefore, accurate positioning is
required to achieve this prediction. Therefore, RTK-GNSS
will be used as an enabler of this prediction method. The
RTK-GNSS is known to provide high-accuracy centimeter-
level positioning.

A. Prediction of the vehicle future position
As explained previously (Section I), predicting the vehicle
position plays an important role in delay reduction. However,
there is no need to predict the position of the vehicle with
high accuracy. It is sufficient to know which MEC nodes

FIGURE 4: Average delay for a range of available amount
of MEC resources. The x-axis represents the number of
available MEC resources.

will be close to the vehicle in the near future. Depending on
the scenario and road layout, this can sometimes be decided
in an easy manner. For example, in Figure 5, we can predict
the future nodes from the heading/course of the vehicle.

There are also more complex scenarios in which we need
to know whether the vehicle will turn or continue straight
ahead. For example, in Figure 6, assuming that services
for both the yellow (top car) and red (bottom car) cars are
placed in MEC 1, we need to know if the services should
be migrated to MEC 2 or to MEC 3. Assuming that the top
car did not change its speed or lane, it will continue ahead
with a high probability, and its service should be migrated to
MEC 2. However, because the bottom car is in the right lane,
given that the car is moving at a low speed or decelerating,
we can assume with a degree of confidence that the bottom
car will take the U-turn and will be served by MEC 3.

From these scenarios, we can conclude that the future
serving MEC node and location of the vehicle can be
predicted in a practical way. The main idea is to use
basic information, such as lane, speed, and acceleration.
Furthermore, maps and traffic information can be used.
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MEC 2MEC 1

MEC 3

MEC 4

FIGURE 5: Road scenario 1 - the vehicle’s trajectory is
known.

MEC 2MEC 1

MEC 3 MEC 4

FIGURE 6: Road scenario 2 - the vehicle will either turn or
continue straight.

B. Performance evaluation of the proposed position
prediction scheme
In this section we present the results for the proposed lane-
based positioning prediction scheme in which an ANN is
used. We begin by showing the simulation results for the
multi-lane scenario, followed by the results for the one-
lane scenario. Finally, we present the results obtained using
a dataset from trials using RTK-GNSS. The simulation
parameters are presented in Table 8. For interested readers,
the synthetic and the real datasets and a realization of the
ANN are uploaded to data repository1.

An ANN is developed using Python for the prediction
scheme. Three features are used as inputs for the ANN:
lane information, speed, and acceleration. K-fold Cross-
Validation (CV) [32] is used for validation and to reduce bias
(overfitting). For the dataset, we first present the results of a
synthetic dataset that contains random parts to exhibit real-

1https://doi.org/10.48726/zbapt-3hz53

TABLE 8: Simulation parameters.

ANN
Number of epochs 100

K-fold number of splits 10

Activation functions rectifier, sigmoid

Optimizer adam

Number of layers 3

Input layer neurons 5, 10, 25

Number of synthetic
dataset instances

1500

Number of real dataset in-
stances

1455

Loss function (cost func-
tion)

binary cross entropy

Service placement and migration parameters [31] [11]
TTI/sub-carrier spacing 1 [ms] / 15 [KHz]

Transmission time 8-83 [ms]

TABLE 9: Mean, Median, and standard deviation of the
accuracy for the turning and intersection scenarios.

Mean Median STD

Turning scenario 91.7 % 92 % 2.28 %

Intersection scenario 75.32 % 75.5 % 2.59 %

life behavior. We assess the performance of the prediction
scheme by obtaining its accuracy in two scenarios: i) a turn-
ing scenario and ii) an intersection scenario. In the turning
scenario, the goal is to predict whether a vehicle will turn
or continue traveling forward, as shown in Figure 6. In the
second scenario, there is a three-lane cross-leg intersection,
and the prediction scheme must predict whether the vehicle
will turn right, left, or move forward. The results for both
the scenarios are presented in Table 9. The accuracy for the
first scenario is 91.7 % and it decreases to 75.32 % for the
intersection scenario owing to higher uncertainty.

It is worth noting that the accuracy of the scheme depends
on the different actions the vehicle can take. For a straight
road, as shown in Figure 5, the vehicle can only move
forward; thus, there is no uncertainty and the accuracy is
the highest. For the turning scenario, as shown in Figure 6,
the vehicle can take two actions: moving forward or turning.
Thus, a degree of uncertainty is added, and the accuracy of
the scheme decreases. Finally, for the intersection scenario,
the vehicle can take more actions, that is, a right turn, a
left turn, or move forward. Thus, the accuracy is the lowest
compared with the other scenarios.

To demonstrate the importance of lane information, we
introduce another version of the position prediction scheme.
In this version, we drop lane information and use only speed
and acceleration information. We refer to this version as the
Speed Based (SB) scheme and the one with lane information
as the Lane Based (LB) scheme. We then compare the

VOLUME , 11



Osama Elgarhy, et al.: Towards Optimal Placement Runtime Migration of Time-Sensitive Services of Connected and Automated Vehicles

TABLE 10: Mean, Median, and standard deviation of the
accuracy for one-lane intersection scenario.

Mean Median STD

Expected RTK synthetic dataset 66.7 % 66.25 % 3.3 %

Speed only (SB) 51.45 % 52 % 3.45 %

performances of the two schemes. First, we compare the
two schemes on a high-speed road, for example, a highway.
The difference in the achieved accuracy between the two
schemes is approximately 3%. Second, we compare the two
schemes on a low-speed road, for example, a school zone.
The difference in the achieved accuracy between the two
schemes is approximately 20%, in favor of LB. It can be
concluded that the accuracy of the two schemes is affected
by the speed limit and range.

One lane intersection: If the road does not have multiple
lanes but only one lane, this becomes a limitation to the posi-
tion prediction scheme. To overcome this limitation, we use
RTK-GNSS. The centimeter-level accuracy of RTK-GNSS
allows the mimicking of multiple lanes within a single lane.
The conjecture is that the driver will drive their vehicle in
the lane according to the action they are planning to take; for
example, a driver making a right turn will move the vehicle
slightly to the right. We then compare this version of the
scheme with the SB scheme in the intersection scenario. The
results are presented in Table 10. It can be seen that there is
an expected decrease in accuracy compared to the multiple-
lane scenario, as presented in Table 9. Nonetheless, using
the RTK results in a gain of approximately 15% compared
to not using the RTK, i.e., using only speed information. It
is worth noting that the results are obtained using a synthetic
dataset mimicking RTK performance. However, in the next
subsection, a real dataset from the RTK measurements is
used.

C. RTK-GNSS measurements campaign
In this section, we assess the performance of the proposed
prediction scheme based on a real dataset acquired from
an RTK-GNSS measurement campaign. The measurement
campaign is conducted for the one-lane scenario. The RTK
device is mounted on a car moving within the Tallinn
University of Technology (TALTECH) campus and the
neighboring streets for several laps. For interested readers,
the collected real dataset are uploaded to data repository2.
The position, longitude and latitude, speed over ground,
and Course Over Ground (COG) are stored to create the
dataset. COG represents the direction (heading) of travel.
The COG Difference (COGD) is also calculated. COGD
represents the difference in the angle between the current
COG and the previous COG. A basic if-else algorithm
can successfully detect that a vehicle is turning once the
COGD reaches approximately 10°. We denote this Moment

2https://doi.org/10.48726/zbapt-3hz53

Of Detection, that is, the ten degrees COGD turning moment,
as MOD. The basic if-else algorithm cannot make a decision
based on smaller COGDs, such as 5°or less, because they
might result from a driving maneuver. For the field trials,
a rover and base station are used. The base station and its
antenna are placed on a roof for maximum exposure to the
GNSS signal. The rover is placed inside the vehicle and
connected to a laptop to store measurements. The antenna
of the rover is placed on top of the vehicle connected to
the rover. Several devices have been tested and used for the
measurement campaign, an example of a GNSS-RTK device
used as the rover and base station is shown in Figure 7a. The
used antenna is a Ublox Multi-band Active GNSS Antenna.
The GNSS-RTK device integrated with the cellular network
consists of three main components: Raspberry Pi 4 (RPi4),
5G HAT (includes Quectel 5G Standalone (SA) modem) and
Septentrio MosaicHAT (includes Mosaic-X5 RTK receiver)
with GNSS-RTK receiver 3. The three RPi4, 5G HAT, and
MosaicHAT can be considered as a single smart device with
5G network support and centimeter-accuracy GNSS receiver.
In Figure 7b, the received correction data are shown, and in
Figure 7c, the dashboard is presented, where it can be seen
that the accuracy is in the order of centimeters.

1) Results of the neural network
The measurements and the corresponding dataset are used
to train the same ANN used in Section B (Table 8). Because
the basic if-else algorithm can predict turning at MOD,
we calculate the accuracy of the ANN at MOD. The input
features of the ANN are the COG, COGD, and stored COGs
for the preceding four seconds. Finally, the dataset is used to
train the ANN, and the prediction accuracy of the ANN at
the MOD is found to be 95.94%. It is important to note that
the if-else algorithm cannot perform the prediction before
MOD. Thus, the real strength of the ANN is performing the
prediction seconds before reaching the MOD. Hence, the
accuracy of the ANN is calculated when the prediction is
performed 1 second, 2 seconds, and 3 seconds before the
MOD. We name these prediction moments as MOD − 1,
MOD−2, and MOD−3, respectively. However, we found
that the accuracy does not change with the changing of
the prediction moment, that is, the ANN achieved the same
accuracy of 95.94% for all of them.

To understand these results, we must describe the data
set. The dataset is a matrix whereby each row represents
an input features instance, and for each instance, there is
a corresponding output. The output indicates whether the
vehicle turns or not. Vehicle turning is represented by one
and not turning is represented by zero. Upon inspection, it
is observed that the output of the dataset is mostly zero.
This is because most of the time the vehicle is not turning,
but it is moving along the road. Note that this is the case

3Other setup/devices such as ArdusimpleRTK2B V3 equipment with a
Ublox ZED-F9P RTK-GNSS module, were tested/used as well
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(a) (b)

(c)

FIGURE 7: Integrated GNSS-RTK measurement campaign (a) GNSS-RTK device. (b) Incoming correction data. (c) The
dashboard shows the location, the accuracy, the connected satellites and quality indicators.

for any of the CAV environments, for example, highways
and urban. Furthermore, because the output of the dataset
is mostly zero, the ANN merely predicts zero, which means
that the true positive is zero, and the sensitivity is zero. The
true positive is the number of correctly predicted ones, and
sensitivity is equal to the true positive divided by the actual
number of ones. Therefore, this dataset can be described as
imbalanced.

2) Imbalanced dataset and treatment thereof
Some classification problems comprise a majority class and
a minority class, that is, one class is much more prevalent
than the other. In this case, the output of the corresponding
dataset is rarely the minority class. This type of dataset
is known as an Imbalanced Data Set (IDS). The problem
with an IDS is that the classifier output is only the majority
class. The solutions for IDS are mainly based on resampling

the dataset [33]–[35]. Resampling means upsampling the
minority class, that is, increasing the number of data points,
or downsampling the majority class. One of the most com-
mon resampling techniques is the Synthetic Minority Over-
sampling Technique (SMOTE), which uses the K-nearest
neighbor to create synthetic instances within the minority
class.

In the following, we present the results of the ANN after
resampling. First, upsampling is used on the dataset, and
then the ANN is trained in the same manner as in Sec-
tion III.C.1. The achieved accuracy, after Cross Validation
(CV), is 66.52%. To improve the performance, we include
additional features such as longitude, latitude, and speed.
The ANN achieves an accuracy of 98.82%. Furthermore, at
MOD− 1, MOD− 2, and MOD− 3, the accuracies were
96.38%, 93.55%, and 92.69%, respectively.

The predictions performed at MOD − sec can play
an important role in the migration process, where sec is
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TABLE 11: Achieved accuracy using different resampling
techniques to counter IDS. The best accuracy is achieved by
the Upsampler and is highlighted in the table.

Resampling technique Upsampling (P)
or undersampling
(D)

Accuracy

Upsampler p 98.82%

SMOTE p 92.94%

SVMSMOTE P 98.71%

BorderlineSMOTE P 98.64%

ADASYN P 98.18%

NeighbourhoodCleaningRule D 96.44%

TomekLinks D 96.41%

CondensedNearestNeighbour D 75.16%

NearMiss D 80.53%

a generic number of seconds before MOD, for example
MOD− 3. Because there is a possibility that not all MECs
will have sufficient resources for migration once the vehicle
reaches them, the early predictions at MOD − sec can be
used to reserve the resources for the service at the predicted
MEC node without actually starting the migration. Moreover,
if a service requires a long migration time, depending on
how important it is, migration can be initiated as early
as possible. A flow diagram of this operation is shown in
Figure 8. Depending on the service, a suitable sec is chosen
to perform the prediction, that is, at MOD−sec, and reserve
resources. Moreover, if the service has a high priority or a
long migration time, it is considered a special service. For
special services, rather than just reserving resources, live
migration can start because of the prediction at MOD−sec.

Next, we attempt other resampling methods to handle the
IDS. The imblearn package of MIT [36] is used and the
results are presented in Table 11. First, it is observed that
the upsampling methods achieve better performance than the
downsampling methods. For the upsampling methods, while
SMOTE achieves an accuracy of 92.94% and the accuracy of
Support Vector Machine SMOTE (SVMSMOTE) is 98.71%,
the best accuracy is 98.82% and is achieved by the upsam-
pler, which simply duplicates the minority class data points.

Finally, we determine the best parameters for the ANN
using the grid search function. Different numbers of epochs,
patch sizes, and optimizers are used to tune the ANN to
achieve the best accuracy. ANN tuning is performed on
the data modified by two resamplers: the upsampler and
SVMSMOTE. After using the Grid search optimization pa-
rameters given in Table 12, it is found that the best accuracy
is 99.3%, which is achieved by using the upsampler, batch
size = 25, number of epochs = 2000, and Adam optimize.
Note that in this case, the F1 score, which can be considered
an average of the sensitivity and the precision, is found to
be also 99.3%. Moreover, ANN is tuned for MOD − 1,

TABLE 12: Parameters used for optimization using Grid
Search.

Parameter Values

Batch size 5, 25, 30

Number of epochs 100, 200, 500, 800, 1000, 1500, 2000

Optimizer Adam, rmsprop, Adamax, SGD

TABLE 13: Results from MATLAB’s classification learner.
The best result is achieved by the Ensemble classifier and is
highlighted.

Classification family Best classifier Accuracy of best classifier

Tree Coarse tree 98.5%

Naive Bayes (NB) Kernel NB 95.2%

SVM Linear SVM 95.9%

KNN Weighted KNN 97.0%

Ensemble RUSBoosted Trees 98.8%

Neural Network (NN) Bilayered NN 96.2%

Kernel SVM Kernel 97.9%

MOD− 2, and MOD− 3. The prediction accuracies, after
tuning, are 97.67%, 96.3%, and 95.7% for MOD − 1,
MOD − 2, and MOD − 3, respectively.

To further assess the performance of our ANN, we use
MATLAB’s ”Classification Learner app”. We select all the
classifiers offered by MATLAB. The most important results
are listed in Table 13. The ensemble classifier achieves
the best performance. The ensemble classifier uses several
classifiers to achieve better performance than any one of
them. The ensemble classifier shown in the table is based on
a family of classifiers called ”Trees” classifiers. Moreover,
it uses the Random undersampling boosting (RUSBoost)
method to handle the IDS. In Table 13, we show only the
results of the best classifier for each classification family.

3) The hybrid 5G integrated RTK-GNSS positioning
architecture
For the sake of completeness of this RTK-GNSS part, in this
section, we propose how to integrate it into the 5G network.

To achieve the high positioning accuracy for 5G, hybrid
methods are one of the main enablers [38]. Hybrid methods
include combination of 3GPP and non-3GPP positioning
technologies, such as RTK-GNSS. As a prospect, the hybrid
RTK-GNSS should be integrated into the 5G network. Thus,
it can securely provide the necessary precise positioning
information over the 5G network. In this section, we propose
a hybrid 5G integrated RTK-GNSS positioning architecture.

Figure 9 shows the transmission of RTK-GNSS assistance
data via the 3GPP unicast, where the main data channel
is the User Plane (U-Plane). U-Plane protocols carry the
location messaging over the data connection to the user
equipment (NG-UE). The main component here is the Net-
work Location Gateway (NLG), which includes the Gateway

14 VOLUME ,



<Society logo(s) and publication title will appear here.>

UE expected to
switch nodes

Is there a turn
ahead?

Predict position at MOD-sec

Reserve resources at
predicted node

No

Yes

Special service?

Special service is either high
priority or takes long migration time

Start live migration to
the predicted node

Cancel
migration/resources

reservation

predict position at
MOD

correct prediction
 at MOD-sec?

Keep migrating/Migrate

END

YesNo

No

Yes

Migrate?

predict position at
MOD

correct prediction
 at MOD-sec?

Migrate at suitable
migration time

Start Migrating

No Yes

No

Yes

FIGURE 8: Flow diagram of utilizing MOD− sec. The prediction can be performed seconds before MOD. The accuracy
of the prediction algorithm is lower; however, the prediction algorithm can be utilized with high-priority services to reduce
the migration delay.

Mobile Location Center (GMLC) node. The GMLC offers
a standardized and secured interface (the Le interface) for
external location applications for example, Mobile Location
Protocol (MLP), this is denoted as Le:MLP, as seen in
Figure 9. MLP messages are typically transported with
Hypertext Transfer Protocol (HTTP) and SUPL Location
Platform (SLP) functionality, where SUPL stands for Secure
User Plane Location. MLP can be used to initiate the posi-
tioning request of users in the 5G network. The Open Mobile
Alliance (OMA) developed a SUPL standard to enable U-

Plane positioning in a secure way. The SUPL standard can
be used in 5G networks, with the ability to provide IP
connections. The location protocols are exchanged between
the SUPL client (SET) in the NG-UE and the SLP in the
network (referred to as SUPL Server). The RTK-GNSS
server sends GNSS assisted data to the SLP using the
RTCM v3 protocol over the NTRIP connection. SLP then
rebroadcasts assisted data via LTE Position Protocol (LPP)
protocol over a U-Plane using a SUPL 2.0 connection. LPP
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FIGURE 9: 5G integrated RTK-GNSS hybrid positioning system architecture. The architecture is partially developed from
[37].

is a point-to-point protocol that allows multiple connections
to different devices.

Note that the architecture in Figure 9 is not intended to
present how the services (i.e., the services to be placed or
migrated) are placed in the core or MEC nodes. This archi-
tecture is intended to show how RTK-GNSS is integrated
into a 5G network. In the figure, the UDM, NLG, AMF, and
UPF are the core network elements.

D. Position prediction benchmark
The benchmark is the last piece of information needed in
the position prediction section. Therefore, in this section,
we introduce the benchmark position prediction method that
will be used in the performance evaluation in Section IV.D.
This benchmark, used in [19], is named Markov Chain
(MC) method [39] and is based on the Markov progress
of the user’s movement. The main idea is that the next
serving node can be predicted based on the past visited
cells/MEC nodes. For example, knowing that a user has
visited specific k cells/nodes, the next node that the user
will visit is predictable. The probability that user u will visit
node n at time instant i is P (ni|ni−1, ni−2...ni−k). In [39],
k = 2 was chosen, whereas in [19] different values of k were
tested, and k = 2 was found to be the best. Therefore, we
use with k = 2. Given a dataset of the history of the nodes
visited by users in a given area, the transition probability can
be calculated as:

P (ni|ni−1, ni−2) =
Nn(ni−1, ni−2)

TN(ni−1, ni−2)
(8)

where Nn is the number of visits to node n given an interval
of time in the past. TN is the total number of visits to all
feasible nodes given the same interval of time. The MC can
be considered a road-specific average estimation, i.e., how

often, on average, vehicles take a specific turn on a specific
road.

IV. Service placement and migration delay minimization -
Optimization problem formulation and solution
In this section, we first introduce a general service place-
ment and migration optimization problem, and then include
position prediction and resource calculation. We start by
listing the different delay components in the MEC and core
nodes. Based on these components, an optimization problem
is formulated to determine the optimal service placement that
minimizes delay. We then explain how position prediction
and resource calculation affect this problem. A service
placement and migration algorithm that utilizes the position
prediction from Section III is proposed. Finally, we show i)
the simulation results for the algorithm, ii) the importance
of the resource calculations part from Section II, and iii) the
results that include the resource calculation.

A. Delay components
As reported in [12], there are three main components of
delay:

1) Radio delay, which includes

• Transmission delay (Transmission time): this de-
pends on the communication, that is, the packet
size or data, to be transmitted as part of the ser-
vice, and on the Transmission Time Interval (TTI).
TTI depends on Sub-Carrier Spacing (SCS). The
15KHz, 30 kHz, 60 kHz, and 120 kHz SCS
correspond to 1 ms, 0.5 ms, 0.25 ms, and 0.125
ms, respectively.

• Propagation delay: signal propagation in the chan-
nel.
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• Processing delay: channel estimation, encoding
and decoding time.

• Queuing delay: the total time until all packets
are transmitted (it depends on the number of
available resource blocks and number of users to
be scheduled).

• Hybrid Automatic Repeat Request (HARQ).
• Round-Trip Time (RTT).

2) Backhaul delay: Transmission time over the Xn inter-
face (backhaul between different gNBs) or NG (back-
haul between gNB and the core node or an aggregation
point) propagation time over the Xn or NG interfaces.

3) Service computational delay: The computational time
of the service, which depends on the computational
capabilities of the node.

The main reason for the difference between the core
node and MEC delays is the backhaul delay because of the
distance between the users and the core node. It is worth
noting that backhaul delay is often added to the processing
delay of the core node. With advances in CPU design, the
computational capabilities in the core and MEC node should
not cause a significant delay difference.

B. Delay optimization problem
Let us consider a scenario in which there are multiple users,
each requesting a unique service/application, and multiple
MEC nodes. We define Du

n as the delay that user u expe-
riences when served by MEC node n, and Du

c as the delay
that user u experiences when served by the the core node.
We define a binary placement variable xu

n, which is equal to
one if the service of user u is placed at node n, and zero
otherwise, and xu

c , which is equal to one if the service of
user u is placed at the core node c, and zero otherwise.

This problem can be viewed as an assignment problem
in which users are assigned to nodes. We can illustrate this
by presenting the cost assignment matrix. The goal is to
minimize the total cost, which is the delay in our problem.
It is worth noting that the rows represent the users, and the
columns represent the nodes:

1st node 2nd node . core node


1st user x1
1D

1
1 x1

2D
1
2 . x1

cD
1
c

2nd user x2
1D

2
1 x2

2D
2
2 . x2

cD
2
c

. . . . .
last user xl

1D
l
1 xl

2D
l
2 . xl

cD
l
c

The objective function is to minimize the sum delay
experienced by all users, that is,

min fd (x
u
n, x

u
c ) =

∑
n∈N

∑
u∈U

xu
nD

u
n +

∑
u∈U

xu
cD

u
c (9)

Subject to ∑
n∈N

xu
n + xu

c = 1,∀u ∈ U, (10)

∑
u∈U

xu
nQ

u ≤ Rn,∀n ∈ N, (11)

∑
n∈N

xu
nD

u
n + xu

cD
u
c ≤ duth,∀u ∈ U. (12)

The constraint (10) guarantees that the service of a user
can be placed at only one node at a time. Constraint (11)
indicates that the required resources Qu for all services
placed in node n must be less than the available resource
Rn of that node. The analogue

∑
u∈U xu

cQ
u ≤ Rc is not

required, assuming that the core node can accommodate
any number of requests. Finally, the delay constraint (12)
guarantees that the delay experienced by the user is less
than the delay threshold duth of the user. Note that, because
there is a unique service for each user, we can state that the
service of the user is placed in a node or just the user is
placed in a node.

To solve the optimization problem, we must first identify
certain characteristics. The objective function and constraints
of the problem are linear and the variables are binary. Thus,
this is a binary integer programming problem, which can
be solved by computer solvers, for example, MATLAB or
CPLEX, or by methods such as branch and bound [40].
Finally, the optimization problem is combinatorial because
of its binary nature, and is characterized by a long computa-
tional time in the case of a large number of users [11], [12].
For interested readers, the method for mapping the optimiza-
tion problem to MATLAB’s ILPS function intlinprog can be
found in Appendix C in the supplementary material/media.

Given that the service can request different types of
resources, for example, CPU, memory, and storage, the opti-
mization problem should be modified, by simply replicating
the resource constraint, (11), for each type of resources.
Otherwise, (11) can be rewritten as

∑
u∈U xu

nQ
u,rt ≤

Rrt
n ,∀n ∈ N, ∀rt ∈ RT, where rt is the resource type

index that belongs to the set of available resource types
RT . In case the position prediction from Section III is used,
the optimization problem should be reduced to only one
core node and one MEC node, in case the service area is
served by one MEC. Moreover, for each user, it reduces
to the problem of choosing between two nodes given their
delay. If the resource calculation step from Section II is
used, and the saturation probability, SP , was chosen to be
equal to zero, that is, the MEC node has sufficient resources
to host all the services, then the resource constraint, (11),
shall be removed. Next, we propose a service placement and
migration algorithm that utilizes the position prediction to
prepare a list of candidate nodes.

C. Proposed service placement and migration algorithm
In this section, we propose an algorithm to perform service
placement and migration by utilizing position prediction.
Figure 10 shows a flow chart of the service placement
algorithm. Once a user enters the network and requests a
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FIGURE 10: Flow chart of the proposed service placement and migration scheme. The migration algorithm utilizes the
position prediction scheme to prepare the candidate MEC node/s list.

service, that is, upon the initial placement for a service or
migration, we need to place the service in the most suitable
node. Candidate nodes are identified for the placement.
The propagation delays in the routes to the core node are
calculated, and the route with the shortest delay is selected.
Finally, the processing time for the core node is computed.
For the candidate MEC nodes, the available resources are
checked, and if there are insufficient resources to host
the user’s service, then the core node hosts the service.
Otherwise, the processing delay of the MEC is added and
the overall delay is calculated. Finally, the delay between the
MEC and core nodes is compared, and the service is placed
in that node accordingly. The candidate node list is obtained
by predicting the future vehicle position, as described in

Section III. The complexity analysis of the algorithm, and
other real-world considerations and challenges, can be found
in Appendix D in the supplementary material/media.

It is worth noting that to compare the delay experienced
by a user at different nodes, we should consider only the
delay terms relevant to the comparison. For example, the
radio delay term is the same in the case of the user-MEC
route or user-MEC-Core route; therefore, the propagation
term is not important for the comparison. Hence, we limit
the comparison between the core node and MEC to the
processing delay, including backhaul delay. The backhaul
propagation delay depends on the medium, either wired, such
as fiber, or wireless, for example, microwave or mmWave.

18 VOLUME ,



<Society logo(s) and publication title will appear here.>

Another aspect is the route to the core node. The user
can reach the core node through different access points in
the cellular network. In this case, only one route is selected,
which is the shortest route. For multiple available MECs,
there are two criteria: i) the MEC must have available
resources, and ii) the closest MEC, that is, the MEC with
the minimum propagation delay, should be chosen.

Although the MEC node should introduce a lower latency
than the Core node, the algorithm accounts for any cases in
which that might not be true. If the position prediction is not
available, the algorithm can still be used as an alternative to
the optimization problem to avoid long computational time
for a large number of users. However, the algorithm must
calculate the delay of all surrounding MEC nodes because
there is no predicted MEC node list.

D. Performance evaluation of the proposed service
placement algorithm
This Section presents the simulation results for the Proposed
Service Placement and Migration Algorithm (PSPMA). The
algorithm using the proposed prediction scheme LB is com-
pared to when the benchmark MC is used, as described
in Section III.B. Then, we show the impact of having the
optimal amount of resources, through (3) in Section II, on
the algorithm.

1) Proposed algorithm without the MEC resource calculation
First, we evaluate the performance of PSPMA when the
proposed prediction schemes are used (without the use of the
MEC resource calculations - Section II). Three algorithms
are compared. The first is Core placement, which means
that all the services will be placed in the core node. This
algorithm is denoted as ”C algorithm” in the figures. The
second is the benchmark algorithm, that is, the MC algo-
rithm. The last one is the LB algorithm, which is based
on the LB prediction. The aim of this section is: to show
the importance of the proposed position prediction (Section
III) by comparing it to a benchmark, to show the effect of
adding MEC nodes to the network, and to to demonstrate the
need to apply the MEC resource calculation Section II. All
simulations are performed for 1000 iterations. Finally, the
average delay is calculated. An incorrect prediction results
in more than one migration, which causes more delay, that
is, a penalty in the total delay.

In addition to the simulation parameters of Table 8, some
assumptions and parameters are applied exclusively to this
analysis (Figures 11 and 12) and are not used in the previous
or later analyses and results.

• We assume that a dedicated MEC is used, such as in
[41].

• We assume that all MEC nodes have the same com-
putational capabilities and serve the same service area,
that is, they are grouped.
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FIGURE 11: Average delay for different number of MECs.
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FIGURE 12: Average delay for different number of MECs,
with a reduced average transmission time.

• Number of users [5-35], number of MEC nodes [1-5],
and the number of CPU cores per MEC is 8.

• We did not perform the MEC resource calculation
(Section II). Hence, we do not know the required
amount of resources.

In Figures 11 and 12, the effect of adding more MECs can
be observed. As the number of available MECs increases, the
average delay decreases. As for the use of the MC and LB
and their impact on performance, the MC based placement
algorithm results in more errors than the LB algorithm.
More errors lead to migration to the incorrect node. For
example, considering Figure 6, if the algorithm incorrectly
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TABLE 14: Effect of resource calculation using (3) on the
average delay of the PSPMA for different ER values. The
reported average delay values are in milliseconds.

ER = 1 ER = 2 ER = 3 ER = 4 ER = 5

PSPMA
with (3)

11.0948 11.0955 11.0948 11.0956 11.0951

PSPMA
without (3)

12.2666 19.8237 22.5953 23.9554 24.7695

Random
without (3)

19.6892 20.3420 22.6789 23.9759 24.7864

starts migrating the service to MEC 2 rather than MEC 3,
then the service should be remigrated to MEC 3. This extra
migration increases the service migration delay, that is, it
incurs a penalty owing to the wrong decision. In addition
to the delay penalty, live migration is costly and consumes
additional network resources. In Figure 11, we can observe
that even though LB outperforms MC, there is no significant
difference between them. A key factor is the transmission
time, which is the largest delay component in this simulation
and overshadows the other delay components, including
the incorrect migration penalty. Once the transmission time
range is reduced, the difference between the two algorithms
becomes more apparent, as presented in Figure 12. The
MC’s latency can be up to 29% greater than that of the LB.
Nonetheless, these milliseconds of difference can be critical
in safety and automated mobility applications.

Some important information is obtained by observing the
case when one MEC is used, as presented in Figures 11 and
12. Even though the MEC is installed, the gain compared
with the core placement, that is, the ”C algorithm”, is not
that high. However, as we increase the number of MEC
nodes, that is, the number of available resources, the gain
increases. This highlights the strong need for the MEC
resource calculations (Section II).

2) Proposed algorithm with the MEC resource calculation
In this part, we use the MEC resource calculation (Section
II) (traffic analysis), and demonstrate its positive impact on
the performance of the PSPMA. As shown in Section II, not
calculating the correct number of resources affects the delay
significantly. In this part, we assess the PSPMA when the
MEC resource calculation, from Section II and equation (3),
is used. The PSPMA with (3) is compared to the PSPMA
without (3) and a Random placement strategy.

We use the simulation parameters provided in Table 3
and Table 8, the results are reported in Table 14. It can be
seen from the results in Table 14 that as the ER increases,
the performance of PSPMA with (3) is stable because the
resources are adapted to traffic. However, the performance of
PSPMA without (3) deteriorates until the difference between

it and the Random strategy becomes negligible. These results
further demonstrate that optimizing the service placement
without optimizing the number of resources is insufficient,
as anticipated in the contributions of this work with respect
to the approaches presented in the literature.

Finally, we note that even when the cellular network has
a very limited number of MEC nodes (even one node) to
cover hot or important areas, the results of this work are
still valid. In terms of resource calculations, it is essential
to perform MEC node resource calculations because of the
importance of the areas that need to be served by the MEC
node/s. For the service placement and prediction algorithm,
it is still necessary to decide whether the vehicle will be
served by this MEC node, so reducing the service migration
downtime.

V. Conclusions and future work
In this paper, we investigated service placement and mi-
gration delay and proposed different delay minimization
mechanisms. First, we modeled the problem using traffic
theory, which allowed us to determine the necessary amount
of MEC resources and to calculate the expected delay for a
given service area. We verified our model and found that the
worst error is mostly less than 1%.

Then, an ANN lane-based future vehicle coarse position-
ing algorithm was presented, demonstrating the advantage of
adding the lane in which the vehicle is traveling as one of
the main features for predicting vehicle mobility. Moreover,
we demonstrated that using such a feature improves the
accuracy. The ANN uses precise positioning information
from RTK-GNSS. Using computer simulations, we showed
that the accuracy of the prediction algorithm decreased by
approximately 15% if precise positioning information is
not used. Real RTK-GNSS positioning measurements were
obtained and used to train the ANN algorithm in a one-lane
scenario. The data acquired were imbalanced. Therefore,
we treated it using resampling techniques. The ANN was
optimized to improve the results and was validated using
cross-validation, achieving an accuracy up to 99.3%. Fur-
thermore, we compared our ANN with the classifiers offered
in MATLAB. In conclusion, the various results demonstrated
the advantages of using hybrid RTK-GNSS positioning.

Then we formulated an optimization problem considering
the different delay components for the MEC and core node,
and we demonstrated that the problem could be solved
optimally using the ILPS. Then, an algorithm for service
placement and migration utilizing position prediction was
presented. The algorithm uses the RTK-GNSS positioning,
and reduces latency by 29% over the benchmark. Finally,
we demonstrated the importance of performing the MEC
resources calculations. Future work will be conducted to
address the current limitations, in particular, investigating
the efficiency of the scheme in a dense urban environment
with additional features (e.g., lane changing), investigating
the migration delay and migration penalty, and including
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optimization goals in addition to delay minimization, such
as cost (because multiple migrations incur high costs).
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