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Abstract—Protecting large-scale networks, especially Software-
Defined Networks (SDNs), against distributed attacks in a cost-
effective manner plays a prominent role in cybersecurity. One
of the pervasive approaches to plug security holes and prevent
vulnerabilities from being exploited is Moving Target Defense
(MTD), which can be efficiently implemented in SDN as it needs
comprehensive and proactive network monitoring. The critical
key in MTD is to shuffle the least number of hosts with an
acceptable security impact and keep the shuffling frequency low.
In this paper, we have proposed an SDN-oriented Cost-effective
Edge-based MTD Approach (SCEMA) to mitigate Distributed
Denial of Service (DDoS) attacks at a lower cost by shuffling an
optimized set of hosts that have the highest number of connections
to the critical servers. These connections are named edges from a
graph-theoretical point of view. We have proposed a three-layer
mathematical model for the network that can easily calculate the
attack cost. We have also designed a system based on SCEMA and
simulated it in Mininet. The results show that SCEMA has lower
complexity than the previous related MTD field with acceptable
performance.

Index Terms—Software-defined networking (SDN), Moving
Target Defense (MTD), Distributed Denial of Service (DDoS),
Cost-effective, Edge-based Shuffling, Low complexity.

I. INTRODUCTION

SOFTWARE Defined Networks (SDNs) are an evolving
trend in computer network technology that effectively

improves many network services such as management and
monitoring, virtualization, distribution and integration. In
SDNs, controlling the network traffic is assigned to a logically
centralized component called a controller. The controller can
create appropriate policies and set related rules on the switches
to forward network traffic [1, 2]. However, SDNs are facing
different security challenges, among which are Distributed De-
nial of Service (DDoS) attacks. DDoS attacks are sophisticated
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and deleterious cyber threats categorized as powerful large-
scale distributed attacks [3]. They are becoming bigger and
more common for extortion and malicious activities. AWS [4]
reported that a DDoS attack was observed in 2020, which
was 44% larger than the previously detected ones. Akamai
[5] also reported that more than 3000 distinct DDoS attacks
were observed only in the gaming industry in a year. These
threat reports emphasize an essential need to perform security
countermeasures against DDoS attacks.

Moving Target Defense (MTD) is one of the strategies to
protect valuable assets from being compromised by DDoS.
MTD intends to confuse the adversary by changing the attack
space (e.g. by shuffling network addresses) and aims to inval-
idate the information gathered during network reconnaissance
[6]. The advantages of MTD compared to other security
mechanisms are (1) their scalability, (2) almost removing the
need for threat detection, and (3) frustrating the adversary.
Developing a network that can change its configuration and
implement MTD methods is challenging. However, as SDN
provides a dynamic manageable framework, it is a deserving
environment for implementing dynamic security mechanisms
[7] such as MTD approaches.

There is a trade-off between implementing a defensive
approach and its cost. In some cases, the cost of improving
security is too high, which dissuades the network admin from
implementing security strategies. An ideal MTD approach
keeps the number of reconfigurations and the algorithm com-
plexity low while bringing an acceptable security level [8].
To the best of our knowledge, the execution time of all the
previous MTD approaches grows as the network gets larger.
This shortcoming was a motivation for us to work on simpler
algorithms that can reduce both the number of reconfigurations
and the complexity.

We proposed an MTD shuffling algorithm that finds the
lowest-cost hosts to compromise and then shuffles them. The
feature that helps us find low-cost hosts is the number of
connections between the host and the critical servers. Since
the connections are modeled with edges in a graph, we call the
connections between the hosts and the servers edges. Shuffling
these important hosts takes lower cost and brings a higher
effect. Our proposed method is an SDN-oriented Cost-effective
Edge-based MTD Approach, and we call it SCEMA. We have
also designed a system that implements SCEMA. The main
contributions of this paper are as follows.

1) Introducing a revised model for the networks under
DDoS attacks. This model has three layers and uses
Petri nets better to show the different states of the
critical servers. It also contains mathematical relations
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for computing the attack’s cost. In this model, we can
effectively defend against the attacks considering the
lowest attack cost.

2) Proposing a low-complexity shuffling method, SCEMA,
considers the number of connections between the hosts
and the servers (i.e., edges) as the main feature of
importance. By shuffling the hosts with the highest
number of edges, we can reduce the shuffling frequency
while keeping the security level high.

3) Theoretically proving that SCEMA can achieve a higher
or equal level of security compared with related MTD
methods in specific networks.

4) Proposing a system that implements SCEMA and simu-
lating it using Mininet. Two types of scanning methods,
sequential and uniform random, are considered in the
simulations. We also present the experimental results
that show the effectiveness of SCEMA.

5) Presenting related metrics for measuring design goal
achievement and comparing SCEMA with the related
MTD approaches. The algorithm complexity is the met-
ric for measuring MTD cost, and the adversary’s success
rate and the rate of the compromised server are the
metrics for measuring security level.

The remainder of this paper is as follows. section II reviews
the previous works in the field of deploying MTD methods
in SDN. In section III the threat model, the adversary’s
behavior, and the goal of an MTD approach to preventing it are
presented. section IV is concerned with the network model and
its mathematical representation. section V explains the details
of the proposed method and section VI proposes a system
architecture that indicates how to implement our proposed
method in an SDN environment. section VII represents the
numerical results of simulating the proposed system. And,
finally, section VIII gives the conclusion.

II. RELATED WORK

In this section, we briefly describe the previous works about
using MTD methods in SDN to mitigate cybersecurity attacks.
The summary of these works is shown in Table I.

Rawski et al. [9] provided a platform for implementing
MTD methods in SDNs. Topology mutation is the MTD
technique used in this paper. Steinberger et al. [10] also
implemented MTD methods in a collaborative SDN environ-
ment that reduces the success rate of a DDoS attack. Luo
et al. [11] proposed a combined method of MTD and honeypot
to improve network security against DDoS attack. Dynamic
virtual IP addresses are assigned to the devices. Macwan and
Lung [12] also used virtual IP addresses to hide the real ones
through an MTD approach.

Aydeger et al. [13] introduced an optimal MTD strategy to
mitigate DDoS attacks. The MTD strategy is modeled as a
signaling game. Zhou et al. [14] also proposed a signaling
game for defending DDoS attacks in a cost-effective way.
Game theory is also used by Zhou et al. [15] and the MTD
approach is modeled as a trilateral game. To solve the trade-
off problem between MTD cost and its effectiveness, Markov
decision processes are employed for adopting the optimal

MTD algorithm, which is called TGCESA (Trilateral Game
Cost-Effective Shuffling Algorithm).

Narantuya et al. [16] used multiple controllers to improve
both the security and the performance of an MTD approach.
Each host has several random virtual IP addresses which are
altered over time. Karim et al. [17] proposed a random route
mutation method to distribute a flow between different paths
and make it complicated to find which hosts are in a specific
path. Liu et al. [18] proposed a hopping strategy in which
the switches change the ports of the packets to confuse the
adversary. Chowdhary et al. [19] also employed a port hopping
MTD strategy to mitigate multi-stage attacks. The ports of the
virtual machines with the highest level of vulnerabilities are
changed. Shi et al. [20] proposed a flexible MTD method in
which the obfuscation level is variable. Some decoy servers
are placed in the network to delay the attacks, and they are
all obfuscated using mutation. Debroy et al. [21] proposed
a frequency minimization MTD approach to defense cloud-
based applications in SDN against DDoS attacks.

Hyder and Ismail [22] used port and IP shuffling to improve
the security of SDN. Medina-López et al. [23] used MTD ap-
proaches, by which when the messages are exchanged between
hosts, their IP address is changed. So, the intermediary hosts
are unaware of the real address. Chang et al. [24] proposed a
cost-effective MTD method in SDN which randomizes the IP
addresses and synchronizes different MTD phases. Chowdhary
et al. [25] used an SDN controller to mitigate cloud network
attacks through network reconfiguration. The attack graph of
network vulnerabilities plays the main role in analyzing the
network security level.

A three-tier model called TAG is proposed by Yoon
et al. [26], which is used to reduce MTD cost in SDN
by finding an optimal set of hosts for shuffling. A greedy
Backward Attack Path (BAP) prediction algorithm is proposed
in this work to find optimal hosts to shuffle. In BAP, k
most vulnerable attack paths from the adversary to the critical
servers are selected, and the hosts in these paths are shuffled.
The vulnerability of each path is calculated using attack
graphs.

Only a few works have considered both MTD cost and
DDoS attacks. These works have some limitations, such as
being appropriate for only cloud networks with virtual ma-
chines and high complexity in game theory and hash-based
approaches that may cause delay and processing overhead on
the controller. So, we decided to improve one of the mentioned
cost-effective works that do not consider DDoS attacks but is
capable of being extended and improved. The algorithm and
network model proposed by Yoon et al. [26] (BAP and TAG)
can potentially be improved for mitigating DDoS attacks with
an optimal MTD approach.

III. THREAT MODEL

In a general computer network, there are multiple hosts and
critical servers, and the hosts communicate with the servers
to use their services. We have considered that the adversary’s
target is running a DDoS attack on all the critical servers,
which are more than one. Our defined threat model assumes
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TABLE I
THE SUMMARY OF RELATED WORK

Reference Main Contribution Controller Evaluation Metrics Cost DDoS
[9] Implementing MTD in SDN FloodLight Not mentioned ✗ ✗
[10] Proposing a low-cost MTD method in SDN ONOS Attack success rate ✗ ✓
[11] Combining MTD and honeypots RYU Delay ✗ ✓
[12] Showing the performance of MTD in SDN RYU Not mentioned ✗ ✗
[13] Modeling MTD as a signaling game FloodLight Cost, packet loss ✓ ✓
[14] Defending DDoS attacks with a signaling game Ryu Survival rate, packet loss, delay ✓ ✓

TGCESA [15] Modeling MTD as a novel trilateral game OpenDayLight Delay, packet loss, controller load ✓ ✓
[16] Using multiple controllers to improve MTD ONOS Delay, attack probability ✗ ✗
[17] Proposing a new path-changing MTD method Not mentioned Not mentioned ✗ ✗
[18] Synchronizing hopping policies POX Response time, service rate ✗ ✓
[19] Implementing MTD on a real world SDN OpenDayLight Threat score, risk value ✓ ✗
[20] Combining MTD and decoys in SDN FloodLight Delay, information disclosure ✗ ✗
[21] Minimizing MTD shuffling frequencies in SDN POX Packet loss, attack success rate ✓ ✓
[22] Using shadow controllers to protect SDN ONOS Defender’s success rate ✓ ✗
[23] Detecting Malicious nodes by MTD RYU Detection probability ✓ ✗
[24] Synchronizing MTD phases Not mentioned Latency, cost ✓ ✓
[25] Using attack graph to for reconfiguration OpenDayLight Attack graph cost ✓ ✗

BAP [26] Proposing an attack graph model to reduce MTD cost ONOS Delay, complexity, attack success rate ✓ ✗
SCEMA Proposing a low-cost MTD method considering the

number of connections
POX Complexity, attack success rate,

compromised servers
✓ ✓

that the adversary is an active internal or external intruder,
who can probe the hosts and compromise them in order to
create an army that launches a DDoS attack against all the
critical servers under his/her command.

As it is shown in Figure 5, an insider adversary is located
on one of the hosts and connects to the other hosts through
the internal connections in the network. This happens when
a malicious user is illegally authorized as one of the network
members and has complete access to one of the hosts. An
external adversary connects to the hosts from outside of the
network. This type of adversary can only communicate with
the hosts that are permitted to connect to external nodes or the
Internet. However, in our threat model, we have considered
that all the hosts have Internet access.

The adversary first scans the network to probe the vul-
nerable hosts and then utilizes various intrusion tools to
exploit their vulnerabilities and obtain special privileges to
send traffic. When the adversary gains the related privilege in
a host, that host becomes compromised and follows his/her
commands. After the scanning/probing phase, the adversary’s
army is created, and he/she can send them an attack command
as well as the address of the critical servers that must be
targeted.

Before compromising the targets, the adversary scans the
network to recognize network topology and to find vulnerable
hosts. This is the reconnaissance phase and can be performed
in two main methods [7]. Sequential Scanning and Uniform
Random Scanning are different methods commonly used by
the adversary to scan the network. In the sequential scanning
method, the adversary probes the hosts sequentially in a linear
way. All the addresses in the address space are probed one
after the other. But in the random scanning method, the hosts
are randomly probed. Random addresses within the address
space are selected and probed. In the defined threat model,
the adversary can perform both sequential and uniform random
scanning techniques.

It is worth noting that all the hosts are not directly connected

to all the servers in a network. Each server has a specific
access list that controls who can communicate with them. On
the other hand, the vulnerability levels of the hosts are not
the same, and some of them are hard to be compromised.
As a result, the adversary attempts to compromise an optimal
set of hosts, compromising which is not resource consuming,
and moreover, they are in the access list of the target servers.
For an MTD approach deployed to prevent this threat, the
question is ”shuffling which hosts, based on their different
features, causes the greatest impact on decreasing the number
of critical servers that have become unavailable”.

IV. NETWORK MODEL

We have modified TAG model to design a new network
model which is more suitable for the networks under DDoS
attacks. Our model consists of three layers. The first layer is an
undirected graph that shows the connections between different
nodes of the network. The second layer is a weighted Directed
Acyclic Graph (DAG) which shows the vulnerabilities of the
hosts and their exploiting cost. This layer is the combination of
the second and third tiers of TAG. The key difference between
our model and TAG is in the third layer. The third layer of our
model consists of Petri nets for each critical server. Petri net is
a principal modeling concept for studying distributed events.
It is a directed bipartite graph with two types called places
and transitions. All the edges in Petri nets are directed from
places to transitions and vice versa. Each place contains zero
or more tokens and different system states can be explained as
different distributions of tokens among the places. A transition
in a Petri net can be fired only if its input places contain a
specific number of tokens. By firing a transition, the specified
tokens are removed from input places and added to output
places. Using Petri nets helps us modeling different states of
the critical servers facing DDoS attacks, including safe and
dangerous conditions.

According to our model, a network can be modeled as N =
({C}, {V,H}, {S}), where C represents the first layer as an
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adjacency matrix of the network, V and H construct the second
layer and indicate the adjacency matrix of vulnerabilities and
the set of typical hosts, respectively, and S is the set of critical
servers as the third layer. We assume that we have H typical
hosts and S critical servers. So, H = {h1, h2, ..., hH} and
S = {s1, s2, ..., sS}. hi indicates the ith host and si indicates
the ith critical server in the network.

A. First Layer

C is a symmetric square matrix of size (H+S+1) and the
element in its ith row and jth column is indicated by ci,j . In
general, ci,j is one when ci and cj are connected and otherwise
it is zero. The explanation of ci is shown in Equation 1

ci =


The adversary if i = 1

hi−1 if 1 < i ≤ H + 1

si−H−1 otherwise
(1)

For example, if c1,2 is 1, it means that the adversary is directly
connected to the first host in the network. It is worth noting
that based on our defined threat model (section III), the value
of c1,i for 1 < i ≤ H + 1 is always 1, meaning that the
adversary can establish a connection with all of the hosts.

B. Second Layer

We assume that there are V vulnerabilities in the network.
Some of them are called remote, and they can be exploited
directly by the adversary. Some others are the local vulnerabil-
ities, and they can perform DDoS attack to the critical servers
when exploited. The other vulnerabilities are intermediary, and
they are exploited by remote vulnerabilities to exploit the local
ones. All types of vulnerabilities are modeled as a weighted
DAG and the edge weights are the cost of successfully
exploiting them. If the probability of exploiting a vulnerability
is p, we assumed that its exploiting cost is 1−p. The exploiting
cost is fixed for each vulnerability, and can be calculated by
Common Vulnerability Scoring System (CVSS) [27].

The logical structure of V is similar to C. It is a square
matrix of size (V +2), and the element in its ith row and jth

column is named vi,j . The value of vi,j is defined in different
cases as follows:

• In the case that i = 1 and 1 < j ≤ V + 1, vi,j
is the probability that the adversary can exploit the
(j − 1)th vulnerability (vj−1) directly without exploiting
other vulnerabilities. Hence, if it is zero, it means that the
adversary has to first exploit other vulnerabilities. As an
example, if v1,2 is 0.5, the adversary can directly exploit
v1 without exploiting any other vulnerabilities with a
probability of 0.5.

• In the case that 1 < i ≤ V + 1 and 1 < j ≤ V +
1, vi,j is the probability of successfully exploiting the
(j − 1)th vulnerability (vj−1) provided that the (i− 1)th

vulnerability (vi−1) is currently exploited.
• In the case that 1 < i ≤ V + 1 and j = V + 2, vi,j is

the probability of successfully launching a DDoS attack
against the critical servers, provided that the (i − 1)th

vulnerability (vi−1) is currently exploited. For example,

if v2,V+2 is zero, the adversary cannot launch a DDoS
attack only by exploiting v1.

• In other cases, the value of vi,j is zero, because it
indicates an impossible event. For example, the value of
v1,V+2 is 0, because the adversary is unable to directly
launch a DDoS attack without exploiting any of the
vulnerabilities.

V is not a symmetric matrix, and therefore, the values of vi,j
and vj,i are not always equal. We have certainly assumed that
if a vulnerability can perform a DDoS attack to a specific
server, it can also attack the other servers.

Each host, hi, can be shown as hi = {vi1, vi2, ..., viVi
}, where

vij is the index of the jth vulnerability that exists in hi, and
1 ≤ vij ≤ V . For example, if h1 = {1, 3}, the first host in the
network suffers from v1 and v3 as the security vulnerabilities.

C. Third Layer

The servers are modeled as Petri nets. Each server has
three states. Safe, Warning, and Dangerous. When less than
µ neighbor hosts of a server are compromised, the server is
in a Safe state. If more than µ hosts and less than µ + ρ
neighbor hosts are compromised, the server is in a Warning
state. If more than µ + ρ neighbor hosts are compromised,
the server is in a Dangerous state. According to these states,
we have assumed that µ < ρ. These states are equivalent as
three places in a Petri net. So, each server, si, can be shown
as si = (P, T ,Mi) where P = {P, P ′, P ′′} is the set of
three places of the Petri net, T = {T, T ′, T ′′} is the set of
three transitions, and Mi is the initial marking of si. P , P ′,
and P ′′ are the places in which, the server is in Safe state,
Warning state, and Dangerous state, respectively. T is the
transition from P to P ′ and fires when µ neighbor hosts are
compromised. The transition from P ′ to P is T ′ and it fires
when the compromised hosts are recovered by performing a
shuffling procedure. T ′′ is the transition from P and P ′ to P ′′

and fires when µ+ρ neighbor hosts are compromised and can
cause a DDoS attack.

For each server i, the initial marking Mi indicates the
number of tokens in each place at the initial state. As all the
hosts are initially uncompromised, all of them are in P . So,
we have Mi = (ni, 0, 0), where ni is the number of hosts
which are directly connected to si and are considered as its
neighbors. ni can be calculated as ni =

∑H+1
j=2 ci+H+1,j .

Each Petri net has an incidence matrix, D. Its rows are
associated with the transitions and its columns are associated
with the places of the Petri net. The element in the ith row
and the jth column shows the number of tokens that are added
to the jth place after the ith transition firing. As the value of
µ and ρ are considered to be the same for all the servers, D
is similar for the servers and is shown in Equation 2.

D =

 −µ +1 0
+µ −1 0
−ρ −1 1

 (2)

A sample server modeled with a Petri net is shown in
Figure 1. Three different states for this server are illustrated,
and the value of µ and ρ are 5 and 2, respectively.
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Fig. 1. A sample server shown as the proposed Petri net model. (a) In safe mode. (b) In warning mode. (c) In dangerous mode.

D. Cost Calculations

In a DDoS attack, the adversary selects one or more targets
in the network and commands his army to perform the attack
against them. The cost of performing a DDoS attack, which
we call Attack Cost (AC), includes managing the attack and
compromising the army. The cost of compromising the army
is the cost of exploiting related vulnerabilities of the hosts.
Compromising Cost (CC) is a metric that can guide the
defensive method to find the most desirable targets for the
adversary’s army. We also call the cost of exploiting the
vulnerabilities of a host an Exploiting Cost (EC).

Using an MTD strategy is costly, and the cost of shuffle-
based approaches includes Implementation Cost (IC) and
Shuffling Cost (SC). IC consists of the complexity of executing
the defensive strategies. For example, implementing an MTD
mechanism in SDN brings IC for the controller and the extra
time consumption for the SDN controller is considered as IC.
SC is the cost relating to the reconfiguration of the hosts,
and it has a direct relation to the number of shuffled hosts.
Shuffling the network leads to several configuration changes,
and these changes are considered as a cost. While IC and EC
are important for evaluating an MTD approach, there is not
general rule to theoretically calculate IC and EC. They are
commonly measured based on the simulation results or real
testbed reports. We have also calculated the complexity order
of the proposed method in subsection VI-C. In this section,
we focus on theoretically calculating EC, CC, and AC.

We define the EC value of a vulnerability, as the mini-
mum cost that the adversary must pay to exploit that. The
costs which are presented in V are not always the exact
EC of a vulnerability. Some vulnerabilities have prerequisites
vulnerabilities. So, the adversary must first pay the cost for
the prerequisites ones and then exploit that vulnerability.
The set of prerequisites vulnerabilities indices for the jth

vulnerability in the ith host (vvi
j
) is shown as pr(i, j). For

example, if pr(1, 1) = {v12 , v13}, the adversary must exploit
one of v2 or v3 to exploit v1 in the first host. vik is in
pr(i, j) if and only if vvi

k+1,vi
j+1 ̸= 0. There may be several

ways to exploit a vulnerability, but the adversary tries to use
the way with the lowest EC. We define coEC(i, j) as the
lowest EC of the jth vulnerability of the ith host (vij) to
be exploited, and it can be calculated by Equation 3, where
α(i, j) = min(

⋃
vi
k∈pr(i,j){coEC(i, k)+(1−vvi

k+1,vi
j+1)} and

β(i, j) = min({1− v1,vi
j+1, α(i, j)}).

coEC(i, j) =


∞, if v1,vi

j+1 = 0 and pr(i, j) = ϕ

α(i, j), if v1,vi
j+1 = 0 and pr(i, j) ̸= ϕ

β(i, j) otherwise

(3)

Now the CC of a host can easily be calculated as the
minimum cost of the local vulnerabilities of that host. We
name the set of local vulnerability indices of hi as lo(hi).
For example, if lo(h1) = {2, 3}, the local vulnerabilities
of the first host are v2 and v3. vij is in lo(hi) if and only
if vvi

j+1,V+2 is not zero. The cost of compromising hi,
coCC(hi), can be calculated as Equation 4, where γ(i) =
min(

⋃
vi
j∈lo(hi)

{coEC(i, j) + (1− vvi
j+1,V+2)}.

coCC(hi) =

{
∞ if lo(hi) = ϕ

γ(i) otherwise
(4)

Now we can calculate the cost of firing T ′′ to find out the
attack cost (AC). The AC value of a DDoS attack to si is equal
to the cost of firing T ′′ in our model. A transition cost can be
calculated as the sum of the total cost of its previous transitions
and the total cost of its input tokens. T ′′ can be fired only if
T is fired. The cost of T is equal to its input tokens which is
compromising µ hosts connected to a single server. In addition
to firing T , T ′′ needs another ρ host to be compromised. So,
if the adversary selects a set of µ + ρ hosts, Ai, which are
connected to si, the cost of his attack that is firing T ′′ is
shown by coAC(Ai). The adversary’s goal is attacking to all
the servers, and the final attack cost is coAC(A). We have
coAC(Ai) =

∑
a∈Ai

coCC(a), and coAC(A) can be calculated
as Equation 5.

coAC(A) = coAC(

S⋃
i=1

Ai) (5)

V. PROPOSED METHOD (SCEMA)

The main problem which we aim to propose a solution for is
how to optimally shuffle the hosts to reduce SC while keeping
the security level high. In this section, we present the main
idea of this research and a numerical example of that. We also
explain the proof of its superiority over the previous works.
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Fig. 2. Comparing the effectiveness of SCEMA and BAP in a sample
network. (a) BAP solution: shuffling the hosts regarding their compromising
cost (CC). (b) SCEMA solution: shuffling the hosts regarding the number of
their connections to the servers.

A. SCEMA Approach

In distributed attacks, such as DDoS, the adversary creates
an army of compromised hosts and then sends a command to
that army to make all of them perform an attack on a specific
target within a specific time interval. Since the adversary tries
to perform the attack with the possible lowest AC, he/she
searches for the minimal set of hosts which can join his army
and which is enough to run the attack. We name the set of
selected hosts by the adversary as A. We should find out a
metric that can lead to the lowest cost A. Other MTD solutions,
such as BAP [26], believe that this metric is the CC value of
the host. It is assumed in BAP that the adversary wishes to fill
A with the hosts that have the lowest cost of compromising.
Hence, they shuffled the hosts with the lowest CC to bring
security to the network. The process of finding these hosts is
time-consuming and can be more complex in larger networks.

We introduce another metric that can be measured in lower
complexity and get acceptable or even better results in many
cases. The adversary’s willingness to find the minimal army
and the behavior of distributed attacks motivate us to design
a low-complexity MTD method that shuffles only the hosts
which have a higher number of connections to the critical
servers. In other words, we believe that the metric which can
attract the adversary’s attention in many cases is the number of
neighbor servers (edges) for each host. In distributed attacks,
the group of hosts are more important than the individual ones.
Therefore, we should concentrate on the connections between
the hosts and the critical servers (i.e., the edges) instead of
the CC value of each host. The hosts which are connected
to more critical servers are the best targets for the adversary’s
army. Compromising a host which is connected to three critical
servers is much easier than compromising three hosts which
are connected to only one server.

Figure 2 shows an example that compares SCEMA and
BAP. The cost of compromising each host and performing
DDoS attack on each critical server is shown in the nodes.
In BAP, the CC value of each host is important, but in
SCEMA the number of connections is important. This example
illustrates that performing a DDoS attack on all the servers

m m

Hosts

x1

xd

s2

s1mm M

M

Hosts

Hosts

M

xD

xS

MsS

Hosts

Servers

Fig. 3. The general schema of bipartite networks.

using our defensive method is impossible. However, using
BAP can cause an attack.

We define a shuffling degree for each host. This degree is
related to the number of servers that are directly connected to
that host. The number of neighbor servers for hi (i.e., its edges)
is shown as ne(hi), and we have ne(hi) =

∑H+S+1
j=2+H ci+1,j .

The shuffling degree of hi (di) is calculated as Equation 6.
We can say that di is the normalized value of ne(hi).

di =
ne(hi)∑H
j=1 ne(hj)

(6)

B. Proof

In this section, we present a theoretical proof of a theorem
that says SCEMA achieves a higher or equal security level
compared with BAP. For simplicity in this section, we change
the name of ABAP and ASCEMA into A1 and A2, respec-
tively, and also use co() instead of coAC .

In homogeneous networks, the hosts are similar and their
vulnerabilities are nearly identical. Most of the time, some
hosts are more critical, and the network administrator performs
security mechanisms to protect them and improve their safety.
As a result, these hosts are more connected to the servers
and can be used for serious tasks. On the other hand, the
remained hosts are more vulnerable and treated as public hosts.
We define these types of networks in Definition 1 and call them
bipartite networks.

Definition 1. A network, N , is bipartite if all its hosts, H, can
be partitioned into two sets, x and X , where all the following
conditions are satisfied

1) H = x ∪X
2) x ∩X = ϕ
3) ∃m > 0 : ∀i ∈ x : coCC(hi) = m
4) ∃M > 0 : ∀i ∈ X : coCC(hi) = M
5) 0 < m < M
6) ∃d > 0 : ∀i ∈ x : 1 ≤ ne(hi) ≤ d
7) ∃D > 0 : ∀i ∈ X : D ≤ ne(hi) ≤ S
8) 0 < d < D ≤ S

According to Definition 1, we can write x as
⋃d

i=1 xi, where
xi is the set of hosts, such as h, that ne(h) = i. We can also
write X as

⋃S
i=D XS , where Xi is the set of hosts, such as

h, that ne(h) = i. The general schema of bipartite networks
is shown in Figure 3.
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The adversary tries to find the optimal set of host,
Aadversary , that has the lowest attack cost and also has µ+ ρ
connections to each server. BAP and SCEMA algorithms try to
find Aadversary by their own mechanisms. The sets which are
selected by BAP and SCEMA can be defined as Definition 2
and Definition 3, respectively.

Definition 2. A set, A1, is BAP selected, if all of the following
conditions are satisfied.

1) A1 ⊆ x ∪X
2) ∄i < d : xi ∩A1 ̸= ϕ ∧ xi+1 ⊈ A1

3) ∄i < S : Xi ∩A1 ̸= ϕ ∧Xi+1 ⊈ A1

4) ∄i ≤ S : Xi ∩A1 ̸= ϕ ∧ x ⊈ A1

Definition 3. A set, A2, has SCEMA selected if all of the
following conditions are satisfied.

1) A2 ⊆ x ∪X
2) ∄i < S : Xi ∩A2 ̸= ϕ ∧Xi+1 ⊈ A2

3) ∄i < d : xi ∩A2 ̸= ϕ ∧ xi+1 ⊈ A2

4) ∄i ≤ d : xi ∩A2 ̸= ϕ ∧X ⊈ A2

We have considered two assumptions mentioned in Assump-
tion 1 and Assumption 2.

Assumption 1. We assume that m
M ≥ d

D , or in other words,
mD ≥ Md.

Assumption 2. We assume that the sum of ne() for all the
hosts in A1 and A2 are exactly S(µ+ ρ). In other words, we
assume that ne(A1) = ne(A2).

The number of connections to each server from hosts in
Aadversary is greater than or equal to µ+ρ. By Assumption 2,
we have assumed that all the servers are connected to exactly
µ + ρ hosts in both A1 and A2. There are S servers in the
network. So, the value of ne(A1) and ne(A2) is S(µ+ ρ).

Both BAP and SCEMA claim that their selected sets are the
optimal set which is selected by the adversary (Aadversary).
The number of connections to the servers for A1 and A2 is
satisfied as mentioned in Assumption 2. But the attack cost
is not checked yet. In Theorem 1 we define a theorem that
says in bipartite networks, SCEMA is more precise in finding
Aadversary than BAP.

Theorem 1. In all bipartite networks under Assumption 1 and
Assumption 2, the attack cost of each possible BAP selected
set is greater than or equal to each possible SCEMA selected
set. In other words, co(A1) ≥ co(A2).

To prove Theorem 1, first we define a lemma (Lemma 1)
and prove it.

Lemma 1. If p ≤ q ≤ r and p′ ≤ q′ ≤ r′ then m
r

∑q
i=p i|xi|−

M
p′

∑r′

i=q′ i|Xi| ≤ m
∑q

i=p |xi| −M
∑r′

i=q′ |Xi|.
Proof. As r is greater than or equal to all the numbers from
p to q, we can say that for all i between p and q, i ≤ r.
By multiplying a positive number, such as |xi|, the inequality
remains valid. So, we have i|xi| ≤ r|xi| for all i between p
and q, and we can say that

∑q
i=p i|xi| ≤

∑q
i=p r|xi|. Since

r is fixed and independent from the values of i, we can say

that
∑q

i=p i|xi| ≤ r
∑q

i=p |xi|. Now multiply both sides of
this inequality by a positive number, m

r , leads to Equation 7.

m

r

q∑
i=p

i|xi| ≤ m

q∑
i=p

|xi| (7)

On the other hand, p′ is smaller than or equal to all the
numbers from q′ to r′. So, we can say that for all i between q′

and r′, p′ ≤ i. By multiplying a positive number, such as |Xi|,
the inequality remains valid. So, we have p′|Xi| ≤ i|Xi| for
all i between q′ and r′, and we can say that

∑r′

i=q′ p
′|Xi| ≤∑r′

i=q′ i|Xi|. As p′ is fixed and independent from the values of

i, we obtain p′
∑r′

i=q′ |Xi| ≤
∑r′

i=q′ i|Xi|. Now we multiply
both sides of this inequality by a negative number, −M

p′ , and
change the sign to get Equation 8.

−M

p′

r′∑
i=q′

i|Xi| ≤ −M

r′∑
i=q′

|Xi| (8)

Using Equation 7 together with Equation 8, we can eas-
ily reach m

r

∑q
i=p i|xi| − M

p′

∑r′

i=q′ i|Xi| ≤ m
∑q

i=p |xi| −
M

∑r′

i=q′ |Xi|.
We also suggest Remark 1 and Remark 2 to better show the

steps of the proof. To find co(Aadversary) we need to find the
number of hosts from x that are in Aadversary and multiply it
by m. Then we have to find the number of hosts from X that
are in Aadversary and multiply it by M . Finally, by adding
up the obtained values, we can reach co(Aadversary). If yi
and Yi are xi ∩Aadversary and Xi ∩Aadversary , respectively,
the total number of hosts from x and X are

∑d
i=1 |yi| and∑S

i=D |Yi|, respectively. So, the attack cost of Aadversary can
be calculated as Remark 1.

Remark 1. If yi = xi∩Aadversary and Yi = Xi∩Aadversary ,
then we have co(Aadversary) = m

∑d
i=1 |yi|+M

∑S
i=D |Yi|.

The value of ne(Aadversary) is the sum of ne(h) for all
the hosts in Aadversary . So, if zi is the set of all the hosts
in Aadversary that have i connections to the servers, we can
say that ne(Aadversary) =

∑D
i=1 i|zi|. Now, we can calculate

ne(Aadversary) as Remark 2.

Remark 2. If yi = xi∩Aadversary and Yi = Xi∩Aadversary ,
then we have ne(Aadversary) =

∑d
i=1 i|yi|+

∑S
i=D i|Yi|.

Now we start proving Theorem 1. We consider all possible
cases for BAP and SCEMA selected sets, A1 and A2, and
prove Theorem 1 for each case. If in all possible cases the
theorem is proved, we can say that it is completely proved.
According to Definition 1, we have only four possible cases
as follows.

Case 1. We have A1 = x′
a ∪ ⋃d

i=a+1 xi and A2 = X ′′
b ∪⋃S

i=b+1 Xi where 1 ≤ a ≤ d, x′
a ̸= ϕ, x′

a ⊆ xa, D ≤ b ≤ S,
X ′′

b ̸= ϕ, and X ′′
b ⊆ Xb.

Case 2. We have A1 = x′
a ∪

⋃d
i=a+1 xi and A2 = X ∪ x′′

b ∪⋃d
i=b+1 xi where 1 ≤ a ≤ d, x′

a ̸= ϕ, x′
a ⊆ xa, 1 ≤ b ≤ d,

x′′
b ̸= ϕ, and x′′

b ⊆ xb.
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Fig. 4. Possible cases of BAP and SCEMA selected sets in a bipartite network.

Case 3. We have A1 = x ∪ X ′
a ∪ ⋃S

i=a+1 Xi and A2 =

X ′′
b ∪ ⋃S

i=b+1 Xi where D ≤ a ≤ S, X ′
a ̸= ϕ, X ′

a ⊆ Xa,
D ≤ b ≤ S, X ′′

b ̸= ϕ, and X ′′
b ⊆ Xb.

Case 4. We have A1 = x ∪ X ′
a ∪ ⋃S

i=a+1 Xi and A2 =

X ∪ x′′
b ∪⋃d

i=b+1 xi where D ≤ a ≤ S, X ′
a ̸= ϕ, X ′

a ⊆ Xa,
1 ≤ b ≤ d, x′′

b ̸= ϕ, and x′′
b ⊆ xb.

The four possible cases are shown Figure 4. We have
proved Theorem 1 for all these cases, but only the proof for
Case 1 is presented in this section. The other cases are proved
in a similar way, and a sketch of their proof is presented
in section IX. These proofs demonstrate that SCEMA has
a higher or equal security level compared with BAP in all
bipartite networks.

Now let us start the proof of Case 1. We have Equation 9
in consequence of Remark 2 and Assumption 2.

ne(A1) = a|x′
a|+

d∑
i=a+1

i|xi|, ne(A2) = b|X ′′
b |+

S∑
i=b+1

i|Xi|

⇒ a|x′
a|+

d∑
i=a+1

i|xi| = b|X ′′
b |+

S∑
i=b+1

i|Xi| ⇒

m

d

d∑
i=a+1

i|xi| =
mb

d
|X ′′

b | −
ma

d
|x′

a|+
m

d

S∑
i=b+1

i|Xi|

(9)

Recalling Remark 1, the attack cost of A1 and A2 can be
calculated as Equation 10.

co(A1) = m(|x′
a|+

d∑
i=a+1

|xi|), co(A2) = M(|X ′′
b |+

S∑
i=b+1

|Xi|)

(10)

Now let α = co(A1) − co(A2). If α ≥ 0, we can say
that co(A1) ≥ co(A2). So, we compare the cost of A1 and

A2 by subtracting co(A2) from co(A1). This subtraction uses
Equation 10 and results in Equation 11.

α = m(|x′
a|+

d∑
i=a+1

|xi|)−M(|X ′′
b |+

S∑
i=b+1

|Xi|) ⇒

α = m|x′
a|+m

d∑
i=a+1

|xi| −M |X ′′
b | −M

S∑
i=b+1

|Xi|
(11)

From Lemma 1, we obtain m
d

∑d
i=a+1 i|xi| −

M
D

∑S
i=b+1 i|Xi| ≤ m

∑d
i=a+1 |xi| − M

∑S
i=b+1 |Xi|.

Now together with Equation 11 we have Equation 12.

α ≥ m|x′
a| −M |X ′′

b |+
m

d

d∑
i=a+1

i|xi| −
M

D

S∑
i=b+1

i|Xi|

(12)

Now we can replace the value of m
d

∑d
i=a+1 i|xi| in Equa-

tion 12 with its value in Equation 9 to obtain Equation 13.

α ≥ m|x′
a|+

mb

d
|X ′′

b | −
ma

d
|x′

a|+
m

d

S∑
i=b+1

i|Xi| −M |X ′′
b |+

−M
D

S∑
i=b+1

i|Xi| ⇒

α ≥ md−ma

d
|x′

a|+
mb−Md

d
|X ′′

b |+
mD −Md

dD

S∑
i=b+1

i|Xi|

(13)

We know that a ≤ d. So, ma ≤ md and ma−md ≥ 0. So,
we obtain Equation 14.

md−ma ≥ 0

d > 0

|x′
a| ≥ 0

 ⇒ md−ma

d
|x′

a| ≥ 0 (14)

We also know that b ≥ D. So, mb ≥ mD. From Assumption 1
we have mD ≥ Md. Hence, mb ≥ Md and mb −Md ≥ 0.
Now we obtain Equation 15.

mb−Md ≥ 0

d > 0

|X ′′
b | ≥ 0

 ⇒ mb−Md

d
|X ′′

b | ≥ 0 (15)

According to Assumption 1, mD ≥ Md and mD−Md ≥ 0.
We also know that both d and D are positive and all the values
of |Xi| are non-negative. So, we reach Equation 16.

mD −Md ≥ 0

dD > 0
S∑

i=b+1

i|Xi| ≥ 0

 ⇒ mD −Md

dD

S∑
i=b+1

i|Xi| ≥ 0 (16)

At last, according to Equation 14, Equation 15, and Equa-
tion 16, we find out that the right-hand side of Equation 13 is
non-negative. So, we obtain Equation 17.

md−ma

d
|x′

a|+
mb−Md

d
|X ′′

b |+
mD −Md

dD

S∑
i=b+1

i|Xi| ≥ 0

⇒ α ≥ 0⇒ co(A1)− co(A2) ≥ 0⇒ co(A1) ≥ co(A2)
(17)
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Fig. 5. NE topology with two critical servers and six typical hosts.
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Fig. 6. Proposed model for the numerical example (NE ).

C. Numerical Example

In this section, we consider a sample software-defined
network, NE , and present the numerical model for it. The
network topology of NE is shown in Figure 5 and its schematic
diagram regarding our model is shown in Figure 6. Note that
the connection between the hosts is not shown in Figure 6 for
simplicity. But the details are in model numeric representation.

Network NE has two servers as S = {s1, s2}. The first
server is s1 = (P, T ,M1), where M1 = (5, 0, 0) and the
second server is s2 = (P, T ,M2), where M2 = (4, 0, 0). C
and the relation between the vulnerabilities and their EC is

specified in Equation 18 and Equation 19.

C =



0 1 1 1 1 1 1 0 0
1 0 1 0 0 1 0 1 0
1 1 0 0 0 0 1 1 0
1 0 0 0 0 0 0 1 1
1 0 0 0 0 1 0 1 1
1 1 0 0 1 0 0 1 1
1 0 1 0 0 0 0 0 1
0 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0


(18)

V =



0 .4 .1 0 0 .2 .5 0 0 0
0 0 0 0 .3 .5 0 0 0 0
0 0 0 .3 .1 0 0 0 0 0
0 0 0 0 0 0 0 .7 0 0
0 0 0 0 0 0 0 0 .4 0
0 0 0 0 .3 0 0 0 .1 0
0 0 0 0 0 0 0 0 .3 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 .6
0 0 0 0 0 0 0 0 0 0


(19)

There are six hosts in NE and we have H =
{h1, h2, h3, h4, h5, h6}. The numerical representation of each
host is shown in Equation 20.

h1 = {1, 2, 3, 7}, h2 = {2, 4, 8}, h3 = {1, 5, 6, 8},
h4 = {1, 4, 6, 8}, h5 = {5, 8}, h6 = {2, 4, 5, 8} (20)

We consider that µ = 2 and ρ = 1. So, according to
Equation 2, D is specified as Equation 21.

D =

 −2 +1 0
+2 −1 0
−1 −1 1

 (21)

Using Equation 4 we can calculate the CC value of each host.
These costs are shown in Equation 22.

coCC(h1) = ∞, coCC(h2) = 1.2, coCC(h3) = 0.9,

coCC(h4) = 1.4, coCC(h5) = 0.9, coCC(h6) = 0.9
(22)

The shuffling degrees of the hosts are calculated according to
Equation 6 and are shown in Equation 23.

d1 =
1

9
, d2 =

1

9
, d3 =

2

9
, d4 =

2

9
, d5 =

2

9
, d6 =

1

9
(23)

BAP suggests selecting the hosts for shuffling among the most
vulnerable ones to prevent the attack. So, h3, h5, and h6

are selected. But s1 has still three unblocked connections.
So, another host which is connected to s1 must be shuffled.
As h2 has the lowest cost, it will be selected. Now the
set of hosts for shuffling is ABAP = {h2, h3, h5, h6}. But
SCEMA selects the hosts with the highest shuffling degree.
So, we have ASCEMA = {h3, h4, h5} and the hosts in this
set can prevent the attack (s1 and s2 have less than three
unblocked connections). The cost of these two sets, regarding
to Equation 5 are shown in Equation 24.

co(ABAP ) = 1.2 + 0.9 + 0.9 + 0.9 = 3.9,

co(ASCEMA) = 0.9 + 1.4 + 0.9 = 3.2
(24)

We can see that SCEMA finds a lower-cost set of hosts.
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Fig. 7. Proposed system architecture.

VI. SYSTEM ARCHITECTURE

We have designed a system in SDN that implements
SCEMA. This system, which is shown in Figure 7, con-
tains four main components. Critical servers, typical hosts,
network devices, and an SDN controller. Critical servers are
the valuable assets in the network and the network admin
tries to prevent DDoS attacks against them. The typical hosts
are the vulnerable nodes in the network that the adversary
attempts to compromise to create his army for performing a
DDoS attack. The hosts and the servers are connected through
network devices, which are OpenFlow switches in our case.
The forwarding rules and management messages are sent to
the network devices by an SDN controller. The controller uses
five modules to implement SCEMA and manage the network.
NTD, SDC, IAS, SID, and FEG. The modules are described
as follows.

A. Network Topology Discoverer (NTD)

NTD module uses OpenFlow Discovery Protocol (OFDP) to
figure out the current state of the network and its topology. The
different network nodes and their connections are found and C
can be generated. The network admin also provides the vulner-
abilities and their relations and also the list of critical servers.
Finally, the NTD module generates the network model, N ,
and passes this model to the SDC module. This module is
triggered by network startup. Then the network topology is
discovered and passed to the SDC module.

B. Shuffling Degree Calculator (SDC)

The SDC module is responsible for finding the shuffling
degree of each host in the network. This module gets the
network model from the NTD module and generates the
shuffling degrees of each host. di for every i is calculated
in this module using the information about the connection
provided in C. The algorithm performed by shuffling degree

h2h2h2 h3h3h3 h5h5h5 h3h3h3 h4h4h4 h3h3h3 h4h4h4 h5h5h5 h4h4h4 h2h2h2 h3h3h3 h5h5h5 h6h6h6 h3h3h3 h4h4h4 h5h5h5
Start Continue

Hard Interval Soft Interval

000 σσσ 2σ2σ2σ 3σ3σ3σ 4σ4σ4σ 5σ5σ5σ 6σ6σ6σ

Fig. 8. Shuffled hosts in continuous intervals of SCEMA for NE with δ = 3.

calculator module is shown in Algorithm 1. The list of
shuffling degrees is then passed to the SID module.

Algorithm 1 SDC module procedure
ne← a list of H zeros ▷ A list storing ne(hi) for each host
sum← 0 ▷ A variable storing the sum of all the members in ne
for i← 1 to H do ▷ A loop on all the hosts to calculate ne(hi)

for j ← 1 to S do
if ci+1,j+H+1 = 1 then ▷ If there is a connection

ne[i]← ne[i] + 1
sum← sum+ 1

d← a list of H zeros ▷ A list storing di for each host
for i← 1 to H do ▷ A loop on all the hosts to calculate di

d[i]← ne[i]/sum

C. Shuffling Interval Detector (SID)

SID finds the hosts that must be shuffled, according to
SCEMA. The required information is received from the SDC
module. All the reconfigurations and shuffling processes are
performed at the beginning of a shuffling interval. Each
shuffling interval in our system is a fixed period of time and
lasts σ seconds. We have proposed two types of shuffling
intervals. Soft intervals and Hard intervals. In Soft intervals,
each host has a probability of being shuffled which is its
shuffling degree. So, hi is shuffled with a probability of di. In
Hard intervals, all the first µ + ρ hosts that have the highest
value of di are shuffled. So, we make sure that all the important
hosts are shuffled. Each Hard interval comes after δ − 1 Soft
intervals. By changing the value of δ, we can change the level
of security. Figure 8 shows the first six intervals of the sample
network mentioned in subsection V-C and the shuffled hosts
in each interval are illustrated. The value of δ is three in this
example. In Hard intervals, three hosts with the highest degree
are always shuffled. But in Soft intervals, the hosts are with
the probability of their shuffling degree. For example, h2 is
shuffled in the first interval but not in the second interval.

A flow entry timeout notifies the SID module about shuffling
interval shifting. Hence, IDS checks the type of current interval
and generates the set of hosts that have to be shuffled in
that interval. We name this set as λ. λ is then passed to
the FEG module for setting the related flow entries. The
OpenFlow message that indicates flow entry timeout is called
OFPT FLOW REMOVED. The algorithm of the SID module
is shown in Algorithm 2.
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Algorithm 2 SID module procedure
top← an empty list ▷ A list storing µ+ ρ highest degree hosts
while top has less member than µ+ ρ do ▷ A loop to create top

max← −1
for i← 1 to H do ▷ Finding host with highest degree

if i is not in top then
if max = −1 or d[i] > d[max] then

max← i
add max to top

ints← 0 ▷ A variable storing the number of intervals
for each shuffling interval do

ints← ints+ 1
λ← an empty list ▷ A list storing hosts for shuffling
if ints mod δ = 0 then ▷ Hard interval

for h ∈ top do ▷ Adding all the hosts in top to λ
add h to λ

else ▷ Soft interval
for i← 1 to H do

r ← a random number between 0 and 1
if r < d[i] then ▷ The hosts with di probability

add i to λ

As long as the network configuration has not changed, the
shuffling degrees are fixed, and hence, there is no need for
repeating Algorithm 1. This is the same for the first part
of Algorithm 2, where the hosts are sorted based on their
shuffling degree. The second part of Algorithm 2, where the
hosts to be shuffled are selected, is repeated during time
intervals. So, there are two parts to the whole procedure of
the proposed method. The first fixed part is of O(S × H),
and the second repeated part is of O(H). The procedure of
most of the MTD methods can be also divided into the same
parts, where the second part is of O(H). In the fixed part,
the degrees/scores of the hosts are calculated, and then in the
second part, which is repeated in each interval, the hosts to
be shuffled are selected. By this division, we can compare
the computational complexity of different MTD methods by
focusing on the first part. We can say that the IC of SCEMA
is O(S × H). The fixed part of BAP (i.e., its IC) is of
O(S × k × o), where o is the complexity of finding the
vulnerable attack path from the critical server to one of the
hosts in the network. The value of o is completely dependent
on the network topology and the attack path length. The worst
case for BAP is when all the hosts are connected to all the
other hosts (i.e., a mesh topology). Since, in this case, for
each hop in the attack path, all the hosts are considered, o is
H2, and the total complexity of BAP is O(S × k ×H2). In
the best case for BAP, the length of the attack path is one,
and we have o = H . As a result, the best complexity of BAP
is O(S × k × H), and it is higher than the complexity of
SCEMA in any case. Moreover, the complexity of SCEMA is
independent of the attack path, k.

D. IP Address Selector (IAS)
IAS module keeps a pool of IP addresses in the network

address range. Each address in the pool has a flag that avoids
conflicts between the used addresses. When a shuffling process
is performed and the hosts need another IP address, the IAS
module selects a random address among the addresses in its
pool and its flag is not set. The random addresses are passed
to the FEG module, and their flag is set.

E. Flow Entry Generator (FEG)

When a shuffling interval is detected by the SID module, the
FEG module gets the host information from the SID module
and then requests new IP addresses equal to the number of
hosts in λ, from the IAS module. Finally, the FEG module
generates appropriate flow rules according to the information
received from SID and IAS and sets them on network switches.

VII. EVALUATION RESULTS

We have compared SCEMA with BAP [26] and TGCESA
[15] as they are comparable with SCEMA. But our main focus
is on comparing SCEMA with BAP.

A. Evaluation Metrics

Our design goals are reducing the defense cost and retaining
network security. So, we need to measure appropriate metrics
to clarify high-goal achievement. The selected metrics are
described in the following.

1) Algorithm complexity: To measure our algorithm com-
plexity, we have calculated the time required for finding the
important hosts. Time complexity and space complexity can
be used to measure this metric, such as the IC.

2) End-to-end delay: An efficient security mechanism is
one which does not significantly increase the end-to-end delay
between the hosts. We have considered end-to-end delay as a
metric that can show the SC. Since shuffling a host changes
the forwarding paths of the network packets, we expect an
extra end-to-end delay when an MTD approach is deployed.

3) Adversary’s success rate: The adversary’s success rate
is the ratio of the number of experiments in which the
adversary reaches his goal to the total number of experiments.
A lower rate for the adversary’s success shows a better security
performance in SCEMA.

4) Compromised servers rate: Even though the adversary’s
success is reached only when all the servers in the network
are compromised, the number of compromised servers is also
important in measuring the security level of the network. The
compromised servers rate can be calculated as the ratio of the
number of compromised servers to the total number of servers.

B. Simulation Environment

We have simulated our system, implementing SCEMA, with
different network scenarios in Mininet. The hosts are con-
nected through OpenVSwitches and the switches are controlled
by a single POX controller. We have used Ubuntu 18.04
operation system, and the simulation machine has 16 G RAM,
and an Intel i7 processor running at 3.2 GHz.

We have defined multiple different network topologies, in
all of which, the adversary’s node is directly connected to all
the host nodes. Three of these networks are shown in Figure 9.

The vulnerabilities of the hosts in the first network are
shown in Equation 25.

h1 = {1, 2, 3}, h2 = {2, 3}, h3 = {2, 4, 5}, h4 = {1, 2, 4},
h5 = {2, 3, 4}, h6 = {4, 6}, h7 = {4, 5, 6}, h8 = {1, 2}

(25)
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Fig. 9. Three of the simulated networks topologies. (a) A network with a
single server. (b) A network with two servers. (c) A network with four servers.

The first eight hosts in the second simulated network are the
same as what is mentioned in Equation 25, and its other hosts
are represented in Equation 26.

h9 = {3, 5, 6}, h10 = {2, 6}, h11 = {3, 4, 6}, h12 = {1, 4, 6}
(26)

The first 12 hosts in the third network are similar to the second
network. The other hosts are mentioned in Equation 27.

h13 = {1, 2, 3}, h14 = {2, 5}, h15 = {1, 4, 5}, h16 = {1, 2, 4},
h17 = {2, 3, 4}, h18 = {3, 6}, h19 = {4, 5, 6}, h20 = {2, 4},
h21 = {1, 5, 6}, h22 = {2, 6}, h23 = {3, 4, 6}, h24 = {2, 4, 6},
h25 = {1}

(27)

The value of V for all the simulated networks is the same, and it is
shown in Equation 28.

V =



0 0.8 0.6 0 0.7 0.6 0 0
0 0 0 0 0 0 0 0.8
0 0 0 0.7 0.4 0 0.8 0.6
0 0 0 0 0 0 0 0.6
0 0 0 0 0 0 0.3 0.7
0 0 0 0 0 0 0 0.5
0 0 0 0 0 0 0 0.9
0 0 0 0 0 0 0 0


(28)

In the simulation scenarios, if one-third of the hosts con-
nected to a critical server is compromised, the adversary can
perform a successful DDoS attack against that server. It means
that the values of µ and ρ are different in each scenario. The
adversary probes five hosts in each scan, and the scanning
interval is 15 seconds on average. To prepare a fair condition
for comparing different methods with SCEMA, we have
considered a fixed number of shuffles in each interval of all the
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Fig. 10. Comparing SCEMA with BAP regarding their complexity. (a) Time
complexity. (b) Space complexity.
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Fig. 11. Comparing the complexity of SCEMA, BAP, and TGCESA. (a) Time
complexity. (b) Space complexity.

simulation scenarios. We have considered both sequential and
uniform random scanning methods in our simulations, based
on the defined threat model in section III, to find out how
our solution can protect the network against different types of
scanning strategies.

C. Simulation Results

The obtained results of each metric mentioned in subsec-
tion VII-A are presented in this section.

1) Algorithm complexity: The time and space complexity
of executing BAP and SCEMA are shown in Figure 10. In
all the cases, the complexity of our proposed algorithm is less
than BAP. k is the number of hosts that are shuffled in an
interval. The diagram indicates that the time complexity of
BAP is markedly increased as both k and network size are
increased. But our proposed algorithm is almost independent
of the network size. For comparing the complexity of SCEMA,
BAP, and TGCESA, all together, we have executed them on
different networks. Since the complexity of BAP grows as k
gets higher, we have only presented the results for BAP with
k = 1. TGCESA focuses on shuffling the servers instead of the
hosts. So, its complexity gets higher as the number of servers
grows. The time and space complexity are shown in Figure 11.
We can see that the complexity of BAP and TGCESA grows
as the number of servers increases. BAP and TGCESA also
become more complex when the number of hosts is increased.
The hosts which are connected to the shuffled server must be
migrated to another server in TGCESA. So, the growth in
TGCESA complexity is reasonable in the case the hosts are
growing. The space complexity of SCEMA is not growing
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Fig. 12. Comparing the average end-to-end delay in the simulated network
deploying no MTD approaches (Normal), SCEMA and BAP.

heavily. Because only a simple array of size H + S can
handle its implementation. The time complexity of SCEMA
has almost a linear growth.

2) End-to-end delay: The average values of end-to-end
delay in all scenarios are shown in Figure 12. As the graph
illustrates, when an MTD approach is not deployed, the
end-to-end delay is lower than in the cases with shuffling
scenarios. However, the point is to consider the trade-off
between the end-to-end delay and the security level. BAP and
SCEMA cause extra delay, however, the security they bring
is acceptable. Moreover, we can see that there is only a small
difference between the average delay in BAP and SCEMA
scenarios, which indicates that SCEMA does not produce extra
delay compared with BAP, and the SC of the proposed method
is acceptable.

3) Adversary’s success rate: Figure 13 illustrates the ad-
versary’s success rate in different scenarios. In the simulated
scenarios, the results of which are presented in Figure 13a, the
number of shuffled hosts is not the same, and it grows as the
number of hosts increases. We have shuffled one-third of the
hosts in these scenarios to make some changes in the scale of
MTD and the network. So, in the networks with 9 and 48 hosts,
the number of shuffled ones is 3 and 16, respectively. We have
considered this situation to make the results independent from
the shuffled set size. However, the adversary’s resources are
fixed in the simulation scenarios. Hence, its impact on large-
scale networks is low. In other words, in both networks with
h and h′ hosts, where h < h′, the adversary can only probe
H hosts. As a result, the army sizes in different networks are
almost the same, and in large-scale networks, the army size
is too small compared with the network size and has not had
enough power to reach the goal. This is why a descending
graph in Figure 13a. About the general results, we can say
that it is obvious that in a defenseless network, which we call
Normal, the adversary’s success rate is higher than the cases
utilize a defensive method. Moreover, in all the scenarios, the
adversary is more successful when he/she probes a network
that deploys BAP compared with SCEMA. This demonstrates
that SCEMA is effective in reducing the adversary’s success
rate.

Another point to mention is that the adversary who uses a
sequential scanning method may experience higher success

in the presence of an MTD mechanism. When a random
scanning method is adopted, the adversary is scanning both
valid and invalid hosts, and the valid ones are shuffled before
the adversary can create a collaborated army.

4) Compromised servers rate: The compromised servers
rate is shown in Figure 14. Again, we see that a Normal
network (i.e., without any defensive methods) has a higher
number of compromised servers compared with the other
cases. In addition, even though our goal is not to reduce the
number of compromised servers, we can see that this metric
also has a lower amount in SCEMA against BAP.

VIII. CONCLUSION

This paper proposed an SDN-oriented Cost-effective Edge-
based MTD Approach, SCEMA, to efficiently mitigate DDoS
attacks. SCEMA finds an optimal set of hosts for shuffling to
reduce the cost of implementing MTD with acceptable perfor-
mance. The main idea of SCEMA is to shuffle the hosts with
more connections to the critical servers. We propose a three-
layer network model to present different security states of the
network using Petri nets. We also provide a system architecture
that implements SCEMA and simulates this system in Mininet.
We observe that SCEMA has lower complexity than previous
related MTD methods, and its complexity is independent of
the attack path. Thus, it is a cost-effective solution and can
easily develop large-scale networks. The results also show
that with our approach, the security level is kept high with
a low shuffling cost. We plan to extend SCEMA in virtual
networks [28]. Virtualization can split the network into small
parts and reduce the cost of implementing the MTD approach.
Furthermore, virtualization has the potential to confuse the
attacker. Hence, implementing SCEMA in a virtual network
may lead to gaining a higher security level. Moreover, we
have planned to improve SCEMA’s performance by focusing
on the shuffling intervals in our future research. We can
utilize machine learning models in order to find the optimal
shuffling intervals. In other words, we planned to answer these
two questions in future works on SCEMA using learning
approaches: (1) how frequent the hosts must be shuffled, and
(2) when the shuffling process must be started.

IX. APPENDIX

The steps of proving Theorem 1 for Case 1 are explained
in subsection V-B. Proving this theorem for the other cases
follows similar steps, and we present a sketch of these proofs
in this section. We partition these cases into multiple covering
subcases and then prove the theorem for all of these possible
cases. Hereafter in this section, α is co(A1)− co(A2).

A. The proof for Case 2 when a = b

In this case, we have α = m
a

∑S
i=D i|Xi| −M

∑S
i=D |Xi|, and

based on Assumption 2, we conclude |x′
a| − |x′′

a | = 1
a

∑S
i=D i|Xi|.

Hence, we have Equation 29.

α ≥ mD −Ma

aD

S∑
i=D

i|Xi| (29)

Since α is greater than a non-negative number, it is not negative, and
we conclude that co(A1) ≥ co(A2).
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Fig. 13. The evaluation results regarding the adversary’s success rate. (a) All scenarios. (b) Sequential scanning. (c) Random scanning.
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Fig. 14. The evaluation results regarding the rate of the compromised server. (a) All scenarios. (b) Sequential scanning. (c) Random scanning.

B. The proof for Case 2 when a < b

There exists a positive number where b = a + k. Now, we have
two conditions: k = 1 and k > 1. Now we prove the theorem for
both conditions.

When k = 1, we have α = m(|x′
a| − |x′′

a+1| +
|xa+1|)−M

∑S
i=D |Xi|, and based on Assumption 2, we conclude∑S

i=D i|Xi| = a|x′
a| + (a + 1)|xa+1| − (a + 1)|x′′

a+1|. Hence, we
reach Equation 30.

α ≥ m(|x′
a| − |x′′

a+1|+ |xa+1|)−
M

D

S∑
i=D

i|Xi| (30)

Moreover, we know that x′′
a+1 ⊆ xa+1. So, |xa+1| − |x′′

a+1| ≥ 0,
and we obtain Equation 31.

mD −M(a+ 1)

D
(|xa+1| − |x′′

a+1|) ≥ 0 (31)

The summation of two non-negative numbers is not negative. Hence,
we have α > 0, and we conclude that co(A1) ≥ co(A2).

When k > 1, there exists a positive number, q, where k = q +
1, and so, b = a + q + 1. We have α = m|x′

a| − m|x′′
a+q+1| +

m
∑a+q+1

i=a+1 |xi| −M
∑S

i=D |Xi|, and based on Assumption 2, we
have

∑S
i=D i|Xi| = a|x′

a|+
∑a+q+1

i=a+1 i|xi| − (a+ q + 1)|x′′
a+q+1|.

Hence, we obtain Equation 32.

α ≥ mD −Ma

D
|x′

a|+
mD −Md

dD

a+q∑
i=a+1

i|xi|+

mD −M(a+ q + 1)

D
(|xa+q+1| − |x′′

a+q+1|)

(32)

We know that x′′
a+q+1 ⊆ xa+q+1 and then, |x′′

a+q+1| ≤ |xa+q+1|.
So, we obtain Equation 33.

mD −M(a+ q + 1)

D
(|xa+q+1| − |x′′

a+q+1|) ≥ 0 (33)

Finally, according to the summation of non-negative numbers, we
have α ≥ 0, and hence, co(A1) ≥ co(A2).

C. The proof for Case 2 when a > b

We prove that a > b is impossible by contradiction. Assume for
contradiction that a > b is a possible subcase. If a > b, there exists
a positive number, k, that a = b + k. Based on Assumption 2,
we get (b + k)|x′

b+k| =
∑S

i=D i|Xi| +
∑b+k

i=b+1 i|xi| + b|X ′′
b |.

As x′
b+k ⊆ xb+k, we conclude |x′

b+k| ≤ |xb+k| and so, (b +
k)|x′

b+k| ≤ (b + k)|xb+k|. As a result
∑b+k

i=b+1 i|xi|, that contains
(b+ k)|xb+k|, is greater than or equal to (b+ k)|x′

b+k|. That means
(b + k)|x′

b+k| ≤
∑b+k

i=b+1 i|xi|. Since
∑S

i=D i|Xi| is non-negative,
we conclude Equation 34.

S∑
i=D

i|Xi| ≥ 0⇒ b|X ′′
b | ≤ 0 (34)

But we know that b > 0 and |X ′′
b | > 0, because |X ′′

b | = 0 means
that X ′′

b = ϕ which is a contradiction to the condition of Case 2).
So, b|X ′′

b | > 0, which gives a contradiction to Equation 34.

D. The proof for Case 3 when a = b

According to Assumption 2, we have
∑d

i=1 i|xi| = a(|X ′′
a | −

|X ′
a|), and moreover, α is m

∑d
i=1 |xi|+M(|X ′

a| −M |X ′′
a |). As a

result, we conclude Equation 35.

α ≥ ma−Md

d
(|X ′′

a | − |X ′
a|) (35)

Again, based on Assumption 2, a(|X ′′
a | − |X ′

a|) is not negative.
Consequently, we have α ≥ 0, and hence, co(A1) ≥ co(A2).

E. The proof for Case 3 when a > b

There exists a positive number, k, that a = b + k. So, we have
two conditions: k = 1 and k > 1. Their proof is as follows.

When k = 1, Assumption 2 leads to
∑d

i=1 i|xi| = b|X ′′
b | +

(b + 1)|Xb+1| − (b + 1)|X ′
b+1|. On the other hand, the value of



15

α is m
∑d

i=1 |xi|+M |X ′
b+1| −M |X ′′

b | −M |Xb+1|. So, we obtain
Equation 36.

α ≥ mb−Md

d
|X ′′

b |+
m(b+ 1)−Md

d
(|Xb+1| − |X ′

b+1|) (36)

Since Xb+1 ⊆ X ′
b+1, we have |Xb+1| ≥ |X ′

b+1|. So, we conclude
that α is non-negative, and co(A1) ≥ co(A2).

When k > 1, a positive number, say q, exists that k = q + 1.
We have α = m

∑d
i=1 |xi| − M

∑b+q
i=b+1 |Xi| − M |Xb+q+1| +

M |X ′
b+q+1| − M |X ′′

b |, and based on Assumption 2, we have∑d
i=1 i|xi| = b|X ′′

b | − (b + q + 1)|X ′
b+q+1| +

∑b+q+1
i=b+1 i|Xi|.

Combining these two statements, we obtain Equation 37.

α ≥ mb−Md

d
|X ′′

b |+
mD −Md

dD

b+q∑
i=b+1

i|Xi|+

m(b+ q + 1)−Md

d
(|Xb+q+1| − |X ′

b+q+1|)

(37)

We know that X ′
b+q+1 ⊆ Xb+q+1, and so, |Xb+q+1|−|X ′

b+q+1| ≥ 0.
Consequently, α is the summation of three non-negative numbers, and
hence co(A1) ≥ co(A2).

F. The proof for Case 3 when a < b

We prove that a < b is impossible. Assume for contradiction that
a < b is a possible subcase. So, there exists a positive number, k,
where b = a+k. Based on Assumption 2, we have (a+k)|X ′′

a+k| =∑d
i=1 i|xi|+ a|X ′

a|+
∑a+k

i=a+1 i|Xi|. As X ′′
a+k ⊆ Xa+k, we obtain

(a+k)|X ′′
a+k| ≤ (a+k)|Xa+k|. As a result, (a+k)|X ′′

a+k| is smaller
than or equal to

∑a+k
i=a+1 i|Xi| which contains (a+k)|Xa+k|. Hence,

we have (a+k)|X ′′
a+k| ≤

∑a+k
i=a+1 i|Xi|. Again from Assumption 2,

we obtain
∑d

i=1 i|xi|+a|X ′
a| ≤ 0. Since

∑d
i=1 i|xi| is non-negative,

we reach Equation 38.

d∑
i=1

i|xi| ≥ 0⇒ a|X ′
a| ≤ 0 (38)

But since X ′
a ̸= ϕ according to Case 3, a|X ′

a| > 0, and it gives a
contradiction to Equation 38.

G. The proof for Case 4 when a = D and b = 1

According to Assumption 2, we have |x1| − |x′′
1 | = D(|XD| −

|X ′
D|). Moreover, α is (mD−M)(|XD|−|X ′

D|). Now, since X ′
D ⊆

XD , α is the multiplication of two non-negative numbers, and hence,
co(A1) ≥ co(A2).

H. The proof for Case 4 when a = D and b > 1

There exists a positive number, k, where b = k+1. We have also
α = m

∑k
i=1 |xi|− M

D

∑k
i=1 i|xi|+ mD−M(k+1)

D
(|xk+1|− |x′′

k+1|).
Considering Assumption 2, we have |XD|−|X ′

D| = 1
D

∑k+1
i=1 i|xi|−

k+1
D
|x′′

k+1|. Consequently, we obtain Equation 39.

α ≥ mD −Md

dD

k∑
i=1

i|xi|+
mD −M(k + 1)

D
(|xk+1| − |x′′

k+1|)

(39)

Since, x′′
k+1 ⊆ xk+1, α is the summation of non-negative numbers,

and so, co(A1) ≥ co(A2).

I. The proof for Case 4 when a > D and b = 1

We can find a positive number, say k, where a = D + k. The
value of α is m

∑D+k−1
i=D i|Xi| −M

∑D+k−1
i=D |Xi|+(m(D+ k)−

M)|XD+k|+(M−m(D+k))|X ′
D+k|. On the other hand, based on

Assumption 2, we have |x1|−|x′′
1 | =

∑D+k
i=D i|Xi|−(D+k)|X ′

D+k|.
As a result, we can conclude Equation 40.

α ≥ mD −M

D

D+k−1∑
i=D

i|Xi|+
m(D + k)−M

D
(|XD+k −X ′′

D+k|)

(40)

Since X ′′
D+k ⊆ XD+k, the value of α is not negative, and conse-

quently co(A1) ≥ co(A2).

J. The proof for Case 4 when a > D and b > 1

We can find a positive number, such as k, where a = D + k. On
the other hand, since b > 1, there exists a positive number, say q,
where b = q + 1. Due to Assumption 2, we have

∑D+k−1
i=D i|Xi| =∑q+1

i=1 i|xi| − (q + 1)|x′′
q+1|+ (D+ k)(|X ′

D+k| − |XD+k|). On the
other hand, the value of α in this case is α = M |X ′

D+k|−m|x′′
q+1|+

m|xq+1|−M |XD+k|+m
∑q

i=1 |xi|−M
∑D+k−1

i=D |Xi|. Therefore,
we can obtain Equation 41.

α ≥ mD −M(q + 1)

D
(|xq+1| − |x′′

q+1|)

+
Mk

D
(|XD+k| − |X ′

D+k|) +
mD −Md

dD

q∑
i=1

i|xi|
(41)

We know that x′′
q+1 ⊆ xq+1 and X ′

D+k ⊆ XD+k. Hence, α is the
summation of positive values, and consequently, co(A1) ≥ co(A2).
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