
Toward Using Reinforcement Learning for Trigger
Selection in Network Slice Mobility

Rami Akrem Addad1, Diego Leonel Cadette Dutra2, Tarik Taleb1,4,5 and Hannu Flinck3
1 Aalto University, Espoo, Finland

2 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
3 Nokia Bell Labs, Espoo, Finland

4 Centre for Wireless Communications (CWC), University of Oulu, Oulu, Finland
5Computer and Information Security Department, Sejong University, Seoul, South Korea

Abstract—Recent 5G trials have demonstrated the usefulness
of the Network Slicing concept that delivers customizable services
to new and under-serviced industry sectors. However, user
mobility’s impact on the optimal resource allocation within
and between slices deserves more attention. Slices and their
dedicated resources should be offered where the services are to be
consumed to minimize network latency and associated overheads
and costs. Different mobility patterns lead to different resource
re-allocation triggers, leading eventually to slice mobility when
enough resources are to be migrated. The selection of the proper
triggers for resource re-allocation and related slice mobility pat-
terns is challenging due to triggers’ multiplicity and overlapping
nature. In this paper, we investigate the applicability of two
Deep Reinforcement Learning based algorithms for allowing a
fine-grained selection of mobility triggers that may instantiate
slice and resource mobility actions. While the first proposed
algorithm relies on a value-based learning method, the second
one exploits a hybrid approach to optimize the action selection
process. We present an enhanced ETSI Network Function
Virtualization edge computing architecture that incorporates the
studied mechanisms to implement service and slice migration.
We evaluate the proposed methods’ efficiency in a simulated
environment and compare their performance in terms of training
stability, learning time, and scalability. Finally, we identify and
quantify the applicability aspects of the respective approaches.

Index Terms—5G, Network Slicing, Multi-access Edge Com-
puting, Network Softwarisation, Deep Reinforcement Learning,
Agent-based Resource Orchestration.

I. INTRODUCTION

Being re-architected from the ground up in comparison
to the previous mobile network generations, 5G will unlock
new business models linked to new vertical industries, e.g.,
automotive, e-health, public safety, and smart grids, while
imposing unique requirements regarding flexibility, scalability,
and availability [1]. 5G networks adopted the principles of
Network Softwarization and Programmability through the use
of Network Function Virtualization (NFV) and Software-
Defined Networking (SDN) paradigms to cope with these
stringent requirements, thus logically separating the Net-
work Functions (NFs) from its physical infrastructure [2],
[3]. Recent 5G industrial trials have validated the overall
architecture by demonstrating considerable improvements in
network capabilities, ultra-low latency, ultra-high bandwidth,
and massive connectivity [4]–[6].

Sharing of the same underlying infrastructure among the
isolated and self-contained networks as well as the availability
of edge computing, such as Multi-access Edge Computing
(MEC), that provides powerful service delivery with minimal
delay for latency-sensitive services in the vicinity of users,
has led to the concept of Network Slicing (NS) [7]–[9] that
is one of the key features of 5G networks. NS is a logical
network with independent control and management and pro-
vides flexibility to meet on-demand Service Level Agreements
(SLA) of a specific service [10]–[12]. As a central emerging
technology for next-generation networking, NS has earned
attention from different Standards Development Organizations
(SDOs), such as the European Telecommunications Standards
Institute (ETSI) and the Third Generation Partnership Project
(3GPP) [13], [14].

NSs are provisioned with dedicated resources for a certain
purpose to meet the required SLAs. However, such slice spe-
cific resources are not likely to be available everywhere in the
network but require careful resource allocation policies and
control [15]–[17]. Therefore, there is a strong need to extend
the notion of mobility that is traditionally considering user
devices or services only without much concern of combined
resource consumption needed for NS [18], [19]. For this
purpose, the authors of [20] have introduced the notion of
Network Slice Mobility (NSM) that considers not only the
user mobility and service migration but combines them with
the mobility of network resources of a slice. The authors argue
that to ensure service continuity, all these three elements need
to be taken into account when migrating a slice from a service
area to another. An NSM action or pattern may be triggered
by user mobility, service mobility, or a network connectivity
event, e.g., network coverage issues. Thus, the authors in [20]
designed and presented different NSM patterns with their cor-
responding grouping methods and relevant mobility triggers.
NSM is implemented by a collection of methods that ensure
service continuity to the end-users of a slice. These methods
should also consider that after a successful NSM pattern,
the slice can be scaled up and down, i.e., slice breathing,
in case of sudden resource saturation or resource conflicts.
NSM extends MEC through the coordinated Virtual Network
Functions (VNF) live migration capability [21]. Furthermore,
the authors categorized NSM patterns based on the mobility



of end-users, resource availability, service consumption, and
security concerns. Hence, the classification of NSM patterns
into three principal categories: i) full slice mobility; ii) partial
slice mobility, which includes slice breathing, slice splitting,
and slice merging; and iii) slice mobility optimizer, which
contains slice shrinking pattern.

The dynamicity of these networks establishes the triggers as
the main catalyst for NSM scenarios in real-life environments.
Thus, the definition of six tightly coupled mobility triggers,
by authors in [20], as enablers for allowing smooth NSM
patterns. The six triggers defined in [20] broadly relate to
users’ mobility, the availability of physical and network re-
sources, resource efficiency utilization, service reliability, and
security. Nevertheless, since triggers are non-orthogonal and
can overlap, the mobility action selection process becomes
complex and unambiguous. Meanwhile, Artificial Intelligence
(AI) techniques have been introduced to optimize the use of
system resources, e.g., latency, bandwidth, RAM, processor,
disk, and I/O in [22]–[25] based on given polices. The increase
in the availability of affordable hardware resources [26] for
data processing paves the way for extensive use of Machine
Learning (ML) techniques in both Clouds and MEC [27]–
[29]. Besides, standardization communities, e.g., ETSI, and
3GPP, expect that AI will be the inherent path of smart and
responsive next-generation networks [30], [31]. Hence our
interest in applying AI and the use of Deep Reinforcement
Learning (DRL) algorithms to automate the selection of
triggers responsible for service and resource migration and
NSM action selection. The main contributions are as follows:
• Introduce a DRL-based agent capable of selecting the

best actions and triggers to refine system resources
consumption in NSM patterns;

• Design and implement an agent-based on two different
DRL algorithms; the first solution relies on a value-based
method, while the second solution is a hybrid approach;

• Present extensive simulations and accuracy results as-
sessments for permitting a fine-grained trigger selection
pattern within the 5G network.

The remainder of this paper is structured as follows. Sec-
tion II reviews relevant work in the literature. Section III
details the envisioned architecture, the system model, and
the developed agent responsible for action/trigger selection in
NSM patterns. In Section IV, we present the detailed design,
operating principles, and parameters of our proposed agent’s
neural networks. Section V shows the experimental environ-
ment and evaluation results. Finally, Section VI concludes
the paper and introduces future research directions. Table I
summarizes the abbreviations used in the manuscript.

II. RELATED WORK

Farahnakian et al. [32] introduced a predictive approach
based on CPU load variation to enable reliable and optimized
inter-data-centers live migration operations. The authors used
a Linear Regression technique, a supervised ML method, to

achieve their proposal. The authors use the CPU usage history
in each host to approximate the short-time future CPU utiliza-
tion, therefore detecting both over-utilized and under-utilized
hosts. Using the current CPU load, they designed a method
that forecasts the expected CPU usage for the next period. This
approach allowed the authors to schedule Virtual Machines
(VMs) migrations and determine optimal decisions within
a data-center environment. The authors of [33] proposed a
predictive anti-correlated VM placement algorithm to reduce
resource consumption in cloud computing domains. The au-
thors started by monitoring each cloud host, then predicting
the appropriate VMs to be migrated, and finally placing
them on the adequate target hosts. The authors used a multi-
layer perceptron model, an ML technique, based on CPU
consumption features to select VMs. When evaluated based on
real workload traces, the proposed approach reduced energy
consumption and SLA violations. Although both approaches
minimize the energy cost and SLA violation rate more effi-
ciently than previous proposed solutions and techniques, both
works avert cases where the internal workload of VMs is
irregular, i.e., either high or low resource variations. Thus,
actions such as scaling up or down various inner resource
types, e.g., CPU, RAM, and DISK, are neglected. Indeed,
these approaches may cause performance degradation for 5G
applications with dynamic workloads.

Ravi and Hamead [34] developed an energy-efficient solu-
tion for Green Computing. The proposed approach leverages
live migration of the VMs to reduce energy consumption.
The authors utilized Q-Learning, a Reinforcement Learning
(RL) method, to optimize decision-making in green cloud
environments [35]. Their approach delivers a cost-efficient
service provisioning by refining the trigger engine’s decisions,
i.e., responsible for starting live migrations. They designed
and implemented an agent that learns optimal policies to
follow and incorporates the trigger engine changes in pre-
processing data storage. The authors of [36] proposed an
approach based on both live migration and ML techniques to
handle virtual network relocation problems. The authors used
an RL agent, ML method, to dynamically select non-critical
virtual networks’ resources and migrate them while satisfying
Quality of Service (QoS) requirements. The obtained test
results show the proposed approach’s efficiency compared
to static decision-making approaches or randomized ones.
Duggan et al. [37] presented a procedure to dynamically select
the best VMs susceptible to reduce energy consumption within
a cloud data-center domain when shifted away, i.e., migrated.
The authors leveraged on a single agent RL approach to
autonomously refine energy efficiency. Moreover, the authors
exploited over-utilized hosts for choosing VMs to reduce
the number of migrations while preserving fair energy usage
through the usage of Q-learning. Considering that the CPU
utilization is proportional to power usage, the authors built
their RL modeling entirely based on the CPUs’ variations
across different hosts. The CloudSim framework [38] was
used for practical tests, demonstrating the feasibility of the
preliminary results’ approach and analysis. Because of the



TABLE I: List of abbreviations used in the manuscript.
Abbreviation Description Abbreviation Description
NFV Network Function Virtualization SDN Software Defined Networking
NFs Network Functions MEC Multi-access Edge Computing
NS Network Slicing SLA Service Level Agreements
SDO Standards Development Organizations ETSI European Telecommunications Standards Institute
3GPP Third Generation Partnership Project NSM Network Slice Mobility
AI Artificial Intelligence ML Machine Learning
DRL Deep Reinforcement Learning RL Reinforcement Learning
VMs Virtual Machines QoS Quality of Service
DNN Deep Neural Networks DFQL Dynamic Fuzzy Q-learning
MEP Mobile Edge Platform MEC app MEC applications
VIM Virtualized Infrastructure Manager NFVI NFV Infrastructures
VNFM Virtual Network Function Manager MEPM-V Mobile Edge Platform Management
EM Element Management NFVO NFV Orchestrator
MEAO Mobile Edge Application Orchestrator SMDM Slice Mobility Decision Maker
RM Request Manager LE Learning and Exploration module
TSE Trigger Selector and Exploitation DAC DRL Algorithms Comparator
OSS Operation Support Systems BSS Business Support Systems
MC Metric Collector RAT Resource Availability Trigger
SCT Service Consumption Trigger ROT Request Overload Trigger
SLT Service Load Triggers DQN Deep Q-Network
A2C Advantage Actor-Critic C-SMDM Core-Slice Mobility Decision Maker
ReLU Rectified Linear Unit DDPG Deep Deterministic Policy Gradient

complexity and large-scale networks of the 5G ecosystem,
the application of Q-Learning algorithms may be infeasible
in practice [39]. Indeed, those methods have scalability issues
representing the input/output features of advanced scenarios.
Besides, only VM migration decisions were taken into con-
sideration, while scaling methods were overlooked.

Masoumzadeh and Hlavacs [40] introduced a procedure
to detect overloading and underused hosts in a cloud-based
environment for ensuring low energy consumption using a
threshold-based algorithm. Their algorithm employed an RL
technique combined with Dynamic Fuzzy logic and Deep
Neural Networks (DNN), resulting in a Dynamic Fuzzy Q-
learning (DFQL) method for intelligently computing hosts’
upper and lower limits. They deployed their proposal using a
set of minions, i.e., hosts, and an orchestrator. The orchestrator
acts as a global manager, collecting input data from hosts
and regarding these data as experiments gained through a
learning procedure by interacting with the environment. They
use the obtained model to improve the CPU utilization thresh-
old forecast, thus allowing an efficient service migration.
Notwithstanding the usage of efficient methods for handling
large state/action spaces in the proposed approach, the authors
omitted the usage of crucial information, such as hosts’ RAM
or Disk overload, that may deliver fine-grained results. The
authors did not consider using scaling operations to reduce the
network overhead as migration is a costly operation in highly
dynamic networks such as new generation architectures and
5G systems.

Compared to the previously cited works, in this work,
we develop an AI-based decision-making system able to au-

tonomously triggering service migration/slice mobility, scal-
ing up/down operations, and remaining static if no changes are
required. The proposed approach acts without prior explicit
knowledge about 5G environments and the availability of
known public data-sets.

III. ENVISIONED ARCHITECTURE & SYSTEM MODEL

A. Envisioned Architecture

Fig. 1 depicts an overview of the envisioned architecture,
incorporating an agent capable of autonomously selecting trig-
gers and actions for allowing various NSM patterns. The envi-
sioned architecture is built to target numerous use cases that go
beyond what the current device-centric mobility approaches
can support. Autonomous moving equipment, e.g., drones,
robotic vehicles, or a fast-moving train carrying mobile users
enjoying infotainment services, are prime examples defined
in [20]. The use case related to drones defines the perfect
example for predictable paths and high mobility, showcasing
a new mobility pattern, i.e., full slice mobility, not perceived
before in the previous generations. While the use case related
to fast-moving trains illustrates the need for partial slice
mobility patterns, i.e., slice splitting and slice merging, to
reduce the bottleneck in high-speed streaming services.

The envisioned architecture, introduced in Fig. 1, is divided
into two separate layers to efficiently enable the defined
and upcoming use-cases, mainly the Orchestration and MEC



Fig. 1: Architecture for Smart Triggers Selection in Network Slice Mobility.

layers. This layering model helps manage applications by cast-
ing MEC in NFV paradigms, hence complying with ESTI’s
MEC and NFV standards [41]. Considering the MEC-NFV
standards, both the Mobile Edge Platform (MEP) and MEC
applications (MEC app) are VNFs. Therefore, elements of the
NFV domain hosted in the MEC layer, i.e., the Virtualized
Infrastructure Manager (VIM), NFV Infrastructures (NFVI),
and VNF Manager (VNFM), manage their life-cycle. The
Mobile Edge Platform Management (MEPM - V) acts as
Element Management (EM) in the NFV architecture, thus
providing application management features to the MEP. The
NFV Orchestrator (NFVO) and the Mobile Edge Application
Orchestrator (MEAO), in the Orchestration layer, share service
application information and the network service information
in the MEC-NFV domain to provide a reliable orchestration
system. It is worth noticing that we omitted the reference
points details between MEC and NFV components for clarity.

The Slice Mobility Decision Maker (SMDM) agent is an
additional plugin to MEAO [42]. The main components of
SMDM are the Request Manager (RM), the Learning and Ex-
ploration (LE) module, the Trigger Selector and Exploitation
(TSE) module, and the DRL Algorithms Comparator (DAC)
module. The SMDM agent interacts with the MEC layer,
i.e., environment, through the RM module, retrieves states,
selects decisions such as scaling up/down diverse types of
resources, e.g., RAMs, CPUs, and disks, or migrating MEC
apps, and receives rewards for its decisions. Sections III-C
and III-D further explain the states, actions, and rewards
properties. In accordance with ETSI-MEC-NFV directives,
the SMDM agent communicates with the Operation/Business
Support Systems (OSS/BSS) for executing administrative and
billing instructions. It also leverages the NFVO to com-

mand all migrations and scaling operations between MEC
hosts/nodes. In our proposed architecture, the information
between the SMDM agent and the environment, i.e., MEC
hosts, transits via the standardized interfaces of MEAO and
MEPM elements.

To ensure a reliable system, we designed both a testing
environment within the LE module and a real-world frame-
work used for production through the TSE module. The
testing environment simulates the impact of actions on the
real production environment, implementing shared features to
represent both states and actions. We deployed our testing
environment following the principles and the conventions of
OpenAI Gym [43]. In our setup, a set of simulated MEC hosts
is created, then for each MEC host, a random number of sim-
ulated MEC apps is instantiated. Meanwhile, the production
environment follows a master/slave architecture and depends
on real working implementations using hypervisors and con-
tainers, i.e., LXC [44], for virtualization and ONOS as an
SDN networking component for connectivity purposes [45].
The slaves, MEC hosts in the MEC layer, collect the local
data using a MEC service dubbed Metric Collector (MC) in
the MEP. Each MC service sends the collected data to its
respective MEPM-V, which in turn shares its content with the
MEAO. Finally, the master through the SMDM agent retrieves
and processes the received data from the MEAO, i.e., Fig. 1.
Alternatively, as long as the SMDM agent is not adept, the
RM module will be forwarding the received requests to the
testing environment in the LE module. With this, we can
avoid network disasters and users’ dissatisfaction resulting
from sub-optimal action selection during the learning process,
i.e., this part will be further elaborated in section IV. In the
following subsection, we will provide detailed information on



the collected data and features.

B. Environment Description and Type of Collected Data

We ensure that the type of data and features collected
from the real and simulated environment are comparable,
thus allowing us to use the testing environment results for
the production environment. On the other hand, based on
[20], we know that the triggers are non-orthogonal and
overlapping, thus complicating the decision process; however,
related triggers can be grouped. Resource Availability Trigger
(RAT), Service Consumption Trigger (SCT), and Request
Overload Trigger (ROT) introduced in the aforementioned
work can be used as components of an aggregated trigger
dubbed “Service Load Triggers (SLT)”, as they are all related
to system resources. By refining and combining the triggers,
the proposed agent, i.e., SMDM, can form optimized policies
regarding trigger selection for NSM. Therefore, as SLT is a set
or a combination of tightly related triggers, i.e., RAT, SCT, and
ROT, follow data needs to be collected from the underlying
MEC system to the SLT trigger based on its sub-components:

1) Resource Availability Trigger (RAT): The RAT trigger
deals with the aggregate system-level resources related to the
under-laying nodes, i.e., MEC hosts, hosting virtualization
instances, i.e., container-based MEC apps in our case. Thus,
each node, i.e., MEC host, is sending information of CPU,
Memory, and Disk contained locally to the SMDM agent for
processing. The details provided by the RAT trigger are the
CPU, RAM, and DISK capacities of the MEC host as well
as their current consumption. Upon receiving the information
from all the MEC hosts constituting the environment, the
SMDM agent in the orchestration layer computes the per-
centage of the used resources in each MEC host. Moreover,
all computation operations are done within the orchestration
layer to free the MEC hosts of any additional overhead.

2) Service Consumption Trigger (SCT) & Request Over-
load Trigger (ROT): Compared to the RAT trigger, the SCT
and ROT triggers cope with the performance of a single
service, i.e., internal resource consumptions of the MEC
app. The main idea behind developing these triggers is to
monitor the services themselves instead of watching only the
MEC hosts, allowing bigger flexibility and exploring a more
comprehensive range of new actions such as scale-up/down
operations. The details of the triggers, i.e., SCT and ROT, are
the CPU and RAM of each container-based MEC app and
their current consumption. Moreover, we can expand these
details to cover different parameters such as the number of
requests/MEC app, while the disk details are missing because
container-based virtualization uses the notion of file-system
instead of volumes. Identically as the previous trigger, each
MEC host sends those local data to the orchestration layer
for computation to reduce as much as possible computation
overhead.

Based on the updates and preliminary exploitable mod-
els conceived leveraging the LE module, the TSE module
will enable fine-grained trigger selection depending on the

encountered situation for NSM. To corroborate the obtained
model, both the LE and TSE modules utilize the DAC
module instructed to apply and select formal DRL algorithms.
This module can select which DRL algorithm is suitable for
accurate decisions and trigger selection through a verification
and comparison method based on the generations of scenarios.
Furthermore, in sections IV-A and V, we detail and analyze
the proposed verification method of the SMDM agent.

C. Primer on Reinforcement Learning

In this section, we present a brief introduction to the RL
techniques due to their importance for the rest of the work.
Unlike supervised and unsupervised ML algorithms, RL tech-
niques are independent of prior data [46]. RL algorithms or
RL-based agents learn to perform complex tasks and effective
decisions through interaction with the environment based on
trial and error processes. We define the interaction in terms
of specific states/observations, actions, and rewards. Precisely,
an RL agent interacts periodically with an environment “E”,
observes the current state st, then executes an action at.
Subsequently, the agent will observe a new state st+1 and
receives a corresponding reward rt+1 [47]. This process
keeps repeating while adjusting the policy π(st, at) until the
convergence phase, i.e., optimal policy [48]. A policy π has
for objective to map states to actions, i.e., π : S → A,
by maximizing the discounted reward over the discrete-time
steps. The cumulative discounted reward Gt at each given
time t is defined by:

Gt =

∞∑
m=0

γmrt+m+1 (1)

Where γ is the discount factor defined between [0-1].
Considering a concrete mapping of the RL components with

our envisioned architecture introduced in Fig. 1:
1) The agent is the smart constituent of the architecture. It

implements various modules to handle communication
and decision making. Besides, the agent manages both
training and exploitation/production phases, i.e., LE and
TSE modules, by perceiving states and learning to
perform optimal actions through time. The conformal
mapping of the agent, in this case, is the SMDM agent.

2) The environment provides the target for the optimization
problem. It also delivers new observations based on the
agent’s actions. The MEC layer, with its set of MEC
hosts, Fig. 1, is the environment in the defined problem.

3) The states, actions, and rewards are the main char-
acteristics allowing the agent to solve complex tasks
without having dedicated programs. Those elements
will be presented in detail in the following subsection,
i.e., III-D.

D. System Model

Based on the elements introduced in III-C, we need to
select and define various components such as the state space,



action space/generation, and the adequate reward function to
establish a proper RL system.

1) State Space: Following the reception of information
from all MEC hosts and their respective MEC apps, i.e.,
container-based MEC app [49], from the MEAO, the SMDM
agent aggregates them to form the input state to be fed into
a function approximator [50], [51], i.e., DNN in our case.

Our environment is a widely distributed system made up of
a set of N MEC hosts. Each MEC host n ∈ N is hosting a
given number of MEC apps, i.e., containers, c ∈ C. We define
the following variable to introduce the MEC app to MEC host
mapping:
∀c ∈ C,∀n ∈ N :

Xc,n =

 1 if a container-based MEC app c is running on
top of the MEC host n.

0 Otherwise

Our representation of the state space consists of taking into
account the system resources of each MEC host. Each MEC
host consists of an ordered list, whereby each element in
that list describes the percentage of used resources on that
node, such as CPU, Memory, and Disk for the RAT trigger
while considering Memory and CPU percentages usage of the
container-based MEC apps to cover SCT and ROT triggers.

Using the percentage-based representation, we get a hun-
dred levels of variations for each selected feature. Therefore,
we represent each MEC host by 100Fn , with Fn being the
number of selected features. We derive the number of features
as follows:

∀n ∈ N,Fn = fn +
∑
∀c∈C

fc ×Xc,n (2)

Where fn and fc denote the number of features in MEC hosts
and their container-based MEC apps, respectively.

By aggregating MEC host entries, the number of states
obtained will be equal to:

S =
∏
∀n∈N

100Fn (3)

In Fig. 2, we introduce a detailed state-space formation
and representation along with their relationship to triggers.
We omitted both the integrated ETSI-MEC-NFV model and
the SMDM agent presented in Fig. 1 to concentrate on states’
formation. Our example consists of two MEC hosts, i.e., MEC
Host 1 in red and MEC Host 2 in blue, each one of them
is hosting a container-based MEC app [49], i.e., MEC app
(VNF) in green, delivering services to end-users. We assume
that fn and fc features are CPU and RAM; thus, both fn and
fc are equal to two. Knowing that each MEC host has one
MEC app, we deduct that Fn for each MEC host is equal to
four, producing an ordered list of length four to represent the
SLT trigger.

Our state handling passes through four distinct steps to
implement equation 3. The first two steps, i.e., steps 1 and

2, are executed in the MEC layer, i.e., within MEC hosts.
The remaining steps, i.e., steps 3 and 4, are done at the
orchestration layer level. In step 1, each MC in a MEC host
collects the data related to the MEC host and the MEC app.
Step 2 splits and organizes the collected data into two separate
ordered lists following the RAT and SCT/ROT definitions. It
also shares the data with the SMDM agent, i.e., explained
in detail in III-B. Being executed at the orchestration level,
step 3 computes the percentage of the used resources in each
MEC host then forms an ordered list based on the obtained
Fn, i.e., four in this example. Finally, in the last step, i.e.,
step 4, our SMDM agent constitutes the state to be used
in the DAC module by aggregating each SLT component
together. Note that the RAT components are always at first
positions as each SLT length, i.e., 4 in this case, may vary
due to the increasing/decreasing number of container-based
MEC apps or migration operations. By doing so, we guarantee
that our representation of state-space will not be dependent on
variations of MEC apps.

2) Action space: The state-space defined above allows us
to obtain a state at each time-step. We need to define an action
space to be able to transit from one state to another. In our
model, the action space is represented by:
• no-action, i.e., conserves the current resources distribu-

tion.
• migrate from a given source MEC host to a given target

MEC host.
• scale up/down various resource types such as CPU and

RAM.
The SMDM agent explores various potential states and

their respective rewards using these actions. The number of
available actions within the proposed model can be expressed
as follows:

A =
∑
∀n∈N

∑
∀c∈C

Xc,n × (N + Φ(c)Rc) (4)

In which Φ(c) is a function that returns the number of
authorized operations for a container-based MEC app c ∈ C
except for migration actions. Migration actions and no-actions
are equal to the number of available MEC hosts “N”, i.e.,
when the destination MEC host is equal to the source MEC
host, it is a no-action; the remaining are all migration actions.
For instance, Φ(c) may return the value “two” to express
scale up and scale down operations. Rc, a scalar value,
denotes the number of resource types used for each authorized
operation returned by the function Φ(c). For instance, scaling
up operations may be applied to CPU and RAM; thus, Rc

will be equal to two.
3) Reward Function: The reward function combines in-

formation related to system resources and operation time. We
start by measuring the operation time, i.e., time for completing
an action, e.g., migration or scaling up/down RAM, from the
agent. In the simulation environment, the times for scaling-
up and scaling-down operations are static. The scaling-down
operation is slower as this action in practical implementation



Fig. 2: States space representation and formation using the proposed modeling.

requires waiting time before execution. The migration time
in the simulation environment depends on the current disk
size. These values can be directly measured in a production
environment. We then reverse it to obtain a progressive
reward. The reward is inversely proportional to the operation
time; the longer the operation time is, the lower the reward
will be. Regarding the system resources, we know that when
the percentage of exploitation increases, the performances
decrease. Thus, we follow the same logic as the operation
time, and we invert the sum of all system resources, e.g.,
CPU and RAM of MEC hosts. With this, we come to the
following reward function R:

R = 1/T +
∑
∀n∈N

∑
∀j∈K

1/g(n, j) +
∑
∀c∈C

∑
∀j∈K

1/g(c, j) (5)

Where T represents the operation time and g(x, j) is a
function that returns the percentage of a given resource j in
the set of resources K belonging to MEC hosts or MEC apps,
i.e., x ∈ N or x ∈ C.

Finally, we added coefficients to time and resource usage
to make one parameter more influential than the other. In our
case, we consider the time as the main parameter.

R = α ∗ (1/T )+β ∗ (
∑

∀n∈N

∑
∀j∈K

1/g(n, j)+
∑
∀c∈C

∑
∀j∈K

1/g(c, j)) (6)

IV. DESIGN OF THE SLICE MOBILITY DECISION MAKER
AGENT

A. Operational Mechanisms

The following section presents the internal operational
mechanisms of the SMDM agent and the design of its adopted
RL algorithms.

Equation 3 demonstrates that the large number of states
generated by our problem formulation makes it intractable,
as noted in Section III-A. Moreover, Mnih et al. [39] have
shown that RL methods struggle to find an optimal policy
in a reasonable time when state space is considerably large.
Hence, in the SMDM agent, the DAC module integrates and
uses a DNN for approximating the state-space in the case
of value-based approaches. The combination of DNNs and
RL principles rendered scalable ML algorithms capable of
handling large state environments dubbed as DRL algorithms.
Precisely, our developed DAC module employs Deep Q-
Network (DQN), a DRL value-based technique, to obtain an
optimal policy regarding trigger selection for NS mobility
patterns [52].

However, equation 4 shows that the number of actions
is growing linearly with the number of MEC hosts and
MEC apps, thus producing a large action space in large-scale
networks [53]. Consequently, the hybrid DRL method, i.e., a
combination of both value-based and policy-based approaches,
called Advantage Actor-Critic (A2C), is adopted by our DAC
module [54]. In the A2C-based approach, we took advantage
of the DRL value-based method to measure the action’s
quality while optimizing the agent’s behavior, leveraging a
DRL policy-based method [55], i.e., determining the policy
function π without worrying about a value function. Albeit



hybrid methods can solve problems that value-based methods
cannot, they usually converge on a local maximum rather
than on the global optimum [56]. Therefore, we introduce
a verification function that makes a selection between DQN
and A2C in the DAC module. The main reason for comparing
and introducing value-based, i.e., DQN, and hybrid, i.e., A2C,
methods is to decide which type of algorithm family, i.e.,
value-based or hybrid, is suitable for trigger selection in
NSM as both types of algorithms present two distinctive and
divergent objectives. Once setting a clear winner, we can
extend the work to compare and benchmark other algorithms
within the winning category.

Before describing both the DQN and the A2C algorithms
and their hyper-parameters, we provide the pseudo-code de-
tailing the SMDM agent’s functionalities in Algorithm 1. The
proposed agent implements three main principles:

• A request-based control interface: The implemented al-
gorithm depends on requests to be either in the training
phase or in the exploitation phase of the models;

• The training phase: Begins with neural network initial-
ization then allows our agent to learn triggers and actions
for the optimal policy through time and requests;

• The exploitation phase: The agent selects actions and
triggers for the optimal policy to be deployed.

Algorithm 1, called Core-SMDM (C-SMDM), serves to
describe in detail the aforementioned principles. Initially, C-
SMDM is reactive to requests, which means that once a
request is received, the C-SMDM algorithm is executed. Each
request contains the “input state, i.e., S” and the “request
number, i.e., req n”. While the first parameter is fed into the
DQN and A2C algorithms or one of them depending on the
situation, the second parameter is used to track request num-
bers and for initialization purposes. Regarding the “req n”,
the first-ever request marks the beginning of the training
phase through the initialization of three variables “iteration”,
“drl type”, and “trained” in lines 1 to 5 respectively in C-
SMDM, i.e., algorithm 1.

As long as the variable “trained” is equal to “False”, the
input features, i.e., S, req n, will be fed to the training phase
directly, i.e., C-SMDM line 6. Each state “S” is routed to the
LE module through the RM module, i.e., C-SMDM line 7.
Then, the LE module will input the state “S” for both DQN
and A2C algorithms in the DAC module; this will ensure
the training of both algorithms. Note that the initialization
step of the two algorithms and their neural networks by the
DAC module is omitted from the C-SMDM for the sake of
clarity. After that, in line 10 of C-SMDM, we increment the
variable “iteration” by one for each request. If the number
of iteration/request is bigger than “M”, the DAC module
generates a set of scenarios and compare both the DQN and
the A2C algorithms. This step has for objective to determine
the best algorithm choice for selecting the right triggers to
the NSM patterns by updating the variable “drl type” with the
selected algorithm, i.e., lines 12 and 13. A complete evaluation
and validation process will be presented in section V to

emphasize the criticality of the verification and comparison
step used in the DAC module. It should be emphasized that
“M” is the number of iterations used during the training phase
and fixed to 10000 in the following section. Besides, we set
the variable “trained” to “True” for allowing our SMDM
agent to switch to the production phase, i.e., the exploitation
phase, starting from the next request, see C-SMDM line 14.

Algorithm 1: Core-Slice Mobility Decision Maker (C-
SMDM)

Input :
S: Input states/features.
req n: request number.

Output: decision: action to carry out (migrate, scale
up/down CPU/RAM/Disk).

1 if req n == 1 then
2 iteration ← 0;
3 drl type ← None;
4 trained← False;
5 end
6 if trained == False then
7 RM.route(LE);
8 LE.input(S, DQN, A2C);
9 DAC.train();

10 iteration ← iteration + 1;
11 if iteration ≥ M then
12 DAC.generate scenarios();
13 drl type ← DAC.compare(DQN, A2C);
14 trained← True;
15 end
16 end
17 else
18 RM.route(TSE);
19 TSE.input(S, drl type);
20 decision ← DAC.deliver();
21 end

Once the variable “trained” is equal to “True”, the
SMDM agent will use the RM module to route the requests
to the TSE module with the state “S” and the “drl type” as
parameters. Finally, the TSE module contacts the DAC module
by requesting only the winning algorithm. This last step will
deliver accurate decisions regarding trigger selection in the
context of NSM, i.e., lines 17 and 21 in C-SMDM. Further-
more, we precede each function/method with the module’s
name that executes it to improve the understanding of the
core features of the proposed SMDM agent.

The subsequent descriptions detail the functioning of DQN
and A2C algorithms used by the DAC module during both
the training and the exploitation phases.

1) Deep Q-Networks: The proposed DQN uses experience
replay to break the correlation between subsequent time-steps
and allowing a stable learning curve [57]. In each batch size,
DQN calculates the Temporal Difference (TD) error by taking



the difference between Q-targets (maximum possible value
from the next states st+1) and the predicted Q-values [58].
Thus, allowing the agent to reduce/minimize the training
errors while updating various network weights and learning
an optimal policy [59].

2) Advantage Actor-Critic: To cope with the previously
mentioned constraint related to the growth of action space, we
propose using a continuous/pseudo-continuous action space
aware algorithm, namely A2C. The A2C has two main
networks, mainly the Actor and the Critic networks. Using
the current weights of the network, the Actor observes the
environment “E”, then selects a given action by outputting a
probability distribution across the action space. After that, the
Critic evaluates the quality of the selected action regarding
both the current state st and the next state st+1. Finally, at
each time-step, the A2C algorithm computes the loss of Critic
and Actor and updates network parameters [54].

B. Design of Neural Networks

We build our DNN with the following specifications to
realize the proposed states to actions mapping:

1) DQN hyper-parameters: We use two neural networks,
mainly the Q-network and the target Q-network, to predict the
current Q-values and the next Q-values, respectively. We adopt
the “ε-Greedy” policy to allow fair exploration/exploitation
repartition. For both Q-Networks, we adopted Adam optimizer
for adjusting the parameters of the network [60]. The learning
rate is identical for both Q-Networks, i.e., 2 ·10−5, while the
discount factor γ is 0.99. We update the main Q-Network
after every 32 iterations, i.e., the batch size is 32, while
we alter target Q-Network weights every four episodes. We
use two fully-connected hidden layers, each of which has 64
Rectified Linear Unit (ReLU) activation function [61]. The
ReLU activation function, denoted by equation 7, is linear for
all positive values and zero for all negative values. Therefore,
it offers computational simplicity and better convergence
features compared to other activation functions. The input
and output layers depend on the number of used features and
their generated actions, i.e., both introduced in equations 3
and 4. Since we are using the DQN algorithm, the selection
of actions in the output layer depends on finding the maximal
action value.

ReLU(z) =

{
z if z > 0
0 if z ≤ 0 (7)

2) A2C hyper-parameters: A2C uses two neural networks:
one network is used by the Actor and the Critic to determine
the probability to select a given action and its evaluation, while
the second network is used only by the Critic to evaluate the
next action. For both networks, we adopt the Adam optimizer
for adjusting the networks’ parameters while we use the value
2 ·10−5 as a learning rate, with a discount factor γ of 0.98.
We use a similar representation of hidden layers for both
networks; mainly, we use two fully-connected hidden layers
in which the number of units, i.e., activation functions, is 64

and 256, respectively. For the hidden layers, we adopt the
ReLU activation functions, introduced in equation 7. For the
output layer, given the fact that the Actor is building an action
classifier, we use Softmax as an activation function [62]; see
equation 8. In this case, the output layer has a length equal to
the number of actions A defined in equation 4. The highest
value of σ(ai) is selected from the set of action values. It is
worth noticing that Critic networks have a unique output used
to evaluate actions at various states.

σ(ai) =
exp(ai)∑A
j=1 exp(aj)

(8)

V. EXPERIMENTAL EVALUATION

We developed a simulator using Python to evaluate our pro-
posed agent for trigger selection in NSM patterns. We use Py-
torch [63] to define our DNN models, weights computations,
i.e., forward/back propagations, and optimization operations.
The proposed approach is studied in active learning, where
the SMDM agent directly interacts with the environment
without prior explicit knowledge and the availability of known
public or private data-sets. Thus, in the evaluation, data is
generated by the simulation setup that is composed of discrete
events. Each event represents an iteration in the learning
process where the SMDM agent observes the current states,
executes actions on the environment, and receives a reward
depending on the newly observed state. We generate MEC
hosts and MEC apps, along with their system requirements,
i.e., CPU, RAM, and DISK, through a random process. The
requirements of each MEC app and MEC host in terms of
different resources follow a discrete uniform distribution over
a dynamic interval indicated in the implementation files. Table
II details the environmental simulation specifications used in
the training process. In the following evaluations, we compare
these two DRL-methods and analyze their performance to
validate our model. It shall be noted that in our current
experiments, we consider an SMDM variant that only uses
DQN and another SMDM variant that only uses A2C to
properly and separately evaluate each algorithm.

TABLE II: Environmental simulation specifications.
Parameter Value
MEC hosts 3 – 10

MEC applications 3 – 100
MEC hosts CPU 64 – 128 (cores)

MEC applications CPU 1 – 4 (cores)
MEC hosts RAM 64G – 128G

MEC applications RAM 1G – 4G
MEC hosts DISK 128G – 512G

MEC applications DISK 512M – 4G

We start with the evaluation of the SMDM agent using
the DQN based algorithm. In this experiment, 10000 episodes
are run, changing the resources randomly for MEC host and
MEC apps in the underlying layer. Fig. 3 presents the SMDM



Fig. 3: SMDM agent based on Deep-Q Learning algorithm.

DQN-based agent training leveraging on a non-linear Q-value
approximation based on DNN to express the state space. The
SMDM agent also uses the replay memory to store training
steps and reduce correlation. In Fig. 3, the Y-axis represents
the rewards, while the X-axis portrays the number of episodes
in the training process. We also plot the 100-episodes average
in the same figure, i.e., orange color. Even though the agent
can learn a useful policy behavior, we still observe a rapid
change in the rewards’ values during the training of our
simulated environment.

Fig. 4: SMDM agent based on Advantage-Actor-Critic algo-
rithm.

Next, we evaluate the SMDM agent based on an A2C
algorithm approach in our second experimental scenario.
Fig. 4 illustrates the episodic cumulative reward as well as the
same metric averaged over 100 episode iterations, i.e., orange
color. We draw the graph by considering applying our DRL
agent using Actor-Critic, i.e., A2C, based on TD(0) principle,
i.e., no need for waiting until the end of an episode to perform
updates, updating TD(0) in every time-step. We kept the same

representations as before for both axis, i.e., Y-axis and X-axis,
and we conserved the same number of training episodes, i.e.,
10000. As an initial reflection, the agent-based on A2C can
achieve a higher cumulative reward while delivering a stable
learning curve compared to the previous approach based on
DQN.

Fig. 5: Rewards comparison.

To have an accurate comparison of algorithms, we decided
to plot the respective rewards/average-rewards of both algo-
rithms together. Fig. 5 features the comparison between the
SMDM agent based on the DQN network and the one based
on the A2C network. The SMDM-DQN agent is represented
with the orange and the red colors for the rewards and the
average rewards, respectively. The rewards and the average
rewards of the SMDM-A2C agent are illustrated using the
blue and green colors. As Fig. 5 is the union of both previous
experiments, we kept the same axis representations. It is worth
noticing that we reduce the X-axis output to 4000 episodes
to show the main differences in their respective behavior. The
variations of the graphs after these 4000 episodes were almost
identical for both algorithms. Results in Fig. 5 shows the
efficiency of the A2C-based agent compared to the DQN-
based agent in terms of average/cumulative rewards and
learning stability.

Our previous experimental results showed that our proposed
approach based on the A2C agent achieves better perfor-
mances than the DQN-based solution. We decided to extend
the comparison further to determine and set a clear winner.
To this end, we compare the accuracy of DQN and A2C
based agents, in Fig. 6, for different MEC hosts, MEC app
deployments, and configurations, i.e., 3 MEC hosts and 30
MEC apps, 10 MEC hosts and 10 MEC apps, 10 MEC hosts
and 30 MEC apps. Due to the absence of the term accuracy in
the RL context, our DAC module, in its verification method,
starts by generating customized scenarios, i.e., lines 12 and 13
in C-SMDM. Then, it evaluates and compares both algorithms,
i.e., DQN and A2C, while trying to ensure “L” consecutive



Fig. 6: Accuracy comparison.

actions without failing, i.e., over-utilized or under-used MEC
hosts/MEC app, for “B” times consecutively. To carry out the
experiment, we set “L”, i.e., scaling up/down and migration
operations, equal to “30” and “B” equal to “10”. In Fig. 6,
we show the agent using the DQN algorithm with a slashed
red bar and use the standard blue bar to the agent exploiting
the A2C algorithm. The X-axis represents the types of DRL
algorithms used and the employed characteristics, while the
Y-axis represents the percentage accuracy. For each agent, we
also plotted the 95% confidence interval of the mean. We find
a mean accuracy of 98.8%, with a 95% confidence interval of
0.07% for the 3MEC-30MECapps configuration concerning
the DQN agent case. For the A2C based agent, we obtained a
mean accuracy of 99.7% with 0.03% as a 95% confidence
interval. Regarding the configuration 10MEC-10MECapps,
we achieved an accuracy of 86.53% and 100%, respectively,
for both DQN and A2C agents. Finally, on the subject of the
10MEC-30MECapps scenario, the mean accuracy is 71.05%
for the DQN-based agent with a 95% confidence interval of
0.28%, while these values are 100% and 0%, respectively, for
the agent leveraging A2C.

After selecting the A2C-based algorithm for the SMDM
agent, we explore and evaluate additional hyper-parameters
susceptible to improve the agent’s policy. Fig. 7 portrays
the effect of different learning rates, i.e., hyper-parameter, on
the convergence performance of the proposed agent to select
adequate triggers within NSM patterns scope. In Fig. 7, the
Y-axis represents the average reward values giving different
types of learning rates while the X-axis conserved the same
representation of the graph in Fig. 5. We study the impact
of six different learning rates values in Adam optimizer. We
notice the establishment of three distinct categories/classes.
By convention, we label the first class as “global-optimal”
and it includes learning rates 2 ·10−5 and 3 ·10−5 in blue
and orange colors, respectively. The second category is the
“near-optimal” one; it contains learning rates 1 ·10−5 in green
and 1.25 ·10−5 in red. Finally, the last class is composed of

Fig. 7: Learning rate variations comparison.

learning rates 1 ·10−4 and 5 ·10−5, i.e., in purple and brown
colors, respectively, and dubbed “local-optimum”. We derive
that either too small or too large learning rate values may
cause local convergence to the designed algorithm resulting
in inefficient learning. It is worth noticing that although this
graph is presented after comparison tests and graphs, i.e., in
Fig. 3, Fig. 4, and Fig. 5, we set the value of the learning rate
to 2 ·10−5 based on this experimentation to ensure suitable
hyper-parameter training features.

Fig. 8: Training Loss variations comparison.

To further explore the effect of learning rates in convergence
characteristics, we plot the training loss of the A2C network,
i.e., DNN. In Fig. 8, the blue curve denotes the loss variation
when the learning rate is equal to 2 ·10−5. The loss changes
shown in orange color represent the learning rate of 1 ·10−5,
while the loss of 1 ·10−4 is illustrated using the green color.
In other words, we selected one curve from each class defined
in Fig. 7 to ensure a fair comparison. The Y-axis portrays the
variation of the non-normalized computation rate while the X-
axis is similar to previous tests, i.e., Fig. 5 and Fig. 7. Based



on the obtained results in Fig. 8, we contest that the loss when
the learning rate is equal to 2 ·10−5, i.e., blue curve, gradually
decreases and stabilizes at a small value. Besides, the obtained
loss is smaller than the remaining ones as it was shadowed
from the final training episodes. However, as expected, the
loss of the big learning rate, i.e., 1 ·10−4, was oscillating and
not decreasing to learn an optimal behavior. It is noticed that
the loss changes of the learning rate equal to 1 ·10−5 were
acceptable with some variations and biases. This enhanced
experiment confirmed that the selection of a suitable learning
rate helps accelerate the training process, i.e., the blue curve
is faster than the orange curve and counter the local optimum
optimization trap [56].

A. Discussion

We can observe in Fig. 3, Fig. 4, and Fig. 5 that solution
using A2C achieves better cumulative reward while remaining
stable during the training phase. Nevertheless, the DQN
approach is unstable, with a reduced average reward value,
as Fig. 3 displays. Furthermore, the results in Fig. 6 show
that when we increase both the number of MEC hosts and
MEC apps, it reduces the accuracy of DQN. Meanwhile, A2C
results indicate that this ML technique has a lower sensibility
to the number of MEC hosts and MEC apps. Thus, the A2C
agent is learning a useful policy while satisfying users’ QoE
and preventing SLA violations.

Our results in Fig. 7 and Fig. 8 showed the effect of hyper-
parameters tuning and selection to the performance of an
RL algorithm in particular and an ML approach in general.
Besides, the learning rate selected for the evaluation directly
relates to the convergence of the defined reward function, i.e.,
in equation 6. Large and small learning rates represented by
the class called “local optimum” may either miss the global
optimum or drastically slow the learning speed.

Based on those observations and the obtained results, we
can assert that the A2C algorithm outperforms the DQN
approach when adapted to select efficient triggers for NSM
patterns.

VI. CONCLUSION AND FUTURE WORK

In this work, we designed, modeled, and evaluated two
DRL-based algorithms that allow fine-grained selection of
system based triggers regarding the NSM patterns. The work
constituted an effort toward making the triggers defined
in [20] intelligent while saving their original definition and
implementations. The proposed approaches have been fully
implemented in the MOSA!C Lab research group [64] and
are available as an open-source in Github [65]. We also
validated the proposed methods by implementing a simulated
environment and testbed. Our numerical results, established
by the simulated environment, showed the efficiency of the
A2C based approach compared to the DQN solution in terms
of training stability, learning time, and scalability.

Nonetheless, our A2C-based agent presented limitations
caused by the increase in the size of the action space. Thus, for

the authors, a future research direction would be to consider
the DRL based on the A2C algorithm approach as a baseline
solution and investigate extending the model to cover and
benchmark the Deep Deterministic Policy Gradient (DDPG)
based on Wolpertinger architecture [66], Trust Region Policy
Optimization (TRPO) [67], and Proximal Policy Optimization
(PPO) [68]. Besides, we plan to extend the deployment and
evaluation to real production environments and cover the
remaining triggers related to users’ mobility defined in [20].

ACKNOWLEDGMENT

This work is partially supported by the European Union’s
Horizon 2020 ICT Cloud Computing program under the
ACCORDION project with grant agreement No. 871793. The
work is also funded by the Academy of Finland Project CSN
under Grant Agreement 311654 and the 6Genesis project
under grant No. 318927, respectively.

REFERENCES

[1] 5G PPP, “White Paper: Validating 5G Technology Performance Assess-
ing 5G architecture and Application Scenarios,” Tech. Rep., June 2019.

[2] E. Datsika et al., “Software Defined Network Service Chaining for OTT
Service Providers in 5G Networks,” IEEE Communications Magazine,
vol. 55, no. 11, pp. 124–131, Nov. 2017.

[3] R. A. Addad et al., “MIRA!: An SDN-Based Framework for Cross-
Domain Fast Migration of Ultra-Low Latency 5G Services,” in 2018
IEEE Global Communications Conference, IEEE GLOBECOM, Abu
Dhabi, UAE, Dec. 2018.

[4] NTT DOCOMO, INC, “White Paper 5G Evolution and 6G,” Tech. Rep.,
Jan. 2020.

[5] M. Latva-aho and K. Leppänen, “Key Drivers and Research Challenges
for 6G Ubiquitous Wireless Intelligence,” Tech. Rep., Sep. 2019.

[6] University of Oulu, “6G-Waves Magazine,” Tech. Rep., Mar. 2020.
[7] T. Taleb et al., “On Multi-Access Edge Computing: A Survey of the

Emerging 5G Network Edge Cloud Architecture and Orchestration,”
IEEE Communications Surveys Tutorials, vol. 19, no. 3, pp. 1657–1681,
Thirdquarter 2017.

[8] I. Afolabi et al., “Network Slicing and Softwarization: A Survey on
Principles, Enabling Technologies, and Solutions,” IEEE Communica-
tions Surveys Tutorials, vol. 20, no. 3, pp. 2429–2453, Mar. 2018.

[9] A. Nakao et al., “End-to-end Network Slicing for 5G Mobile Networks,”
Journal of Information Processing, vol. 25, pp. 153–163, Feb. 2017.

[10] T. Taleb et al., “PERMIT: Network Slicing for Personalized 5G Mobile
Telecommunications,” IEEE Communications Magazine, vol. 55, no. 5,
pp. 88–93, May 2017.

[11] Z. Shu and T. Taleb, “A Novel QoS Framework for Network Slicing in
5G and Beyond Networks Based on SDN and NFV,” IEEE Network,
vol. 34, no. 3, pp. 256–263, Apr. 2020.

[12] I. Afolabi et al., “Network Slicing-Based Customization of 5G Mobile
Services,” IEEE Network, vol. 33, no. 5, pp. 134–141, Oct. 2019.

[13] European Telecommunications Standards Institute (ETSI), “Network
Functions Virtualisation (NFV) Release 3; Evolution and Ecosystem;
Report on Network Slicing Support with ETSI NFV Architecture
Framework,” Tech. Rep., Dec. 2017.

[14] 3GPP, “Study on Management and Orchestration of Network Slicing for
Next Generation Network,” 3rd Generation Partnership Project (3GPP),
Technical Report (TR) 28.801, Jan. 2018.

[15] J. Ordonez-Lucena et al., “Network Slicing for 5G with SDN/NFV:
Concepts, Architectures, and Challenges,” IEEE Communications Mag-
azine, vol. 55, no. 5, pp. 80–87, May 2017.

[16] I. Afolabi et al., “Dynamic Resource Provisioning of a Scalable E2E
Network Slicing Orchestration System,” IEEE Transactions on Mobile
Computing, vol. 19, no. 11, pp. 2594–2608, July 2020.

[17] T. Taleb, I. Afolabi, K. Samdanis, and F. Z. Yousaf, “On Multi-Domain
Network Slicing Orchestration Architecture and Federated Resource
Control,” IEEE Network, vol. 33, no. 5, pp. 242–252, July 2019.



[18] R. A. Addad et al., “Towards a Fast Service Migration in 5G,” in 2018
IEEE Conference on Standards for Communications and Networking,
IEEE CSCN, Paris, France, Oct. 2018.

[19] ——, “Fast Service Migration in 5G Trends and Scenarios,” IEEE
Network, vol. 34, no. 2, pp. 92–98, Apr. 2020.

[20] ——, “Network Slice Mobility in Next Generation Mobile Systems:
Challenges and Potential Solutions,” IEEE Network, vol. 34, no. 1, pp.
84–93, Jan. 2020.

[21] ——, “Towards studying Service Function Chain Migration Patterns
in 5G Networks and beyond,” in 2019 IEEE Global Communications
Conference, IEEE GLOBECOM, Waikoloa, HI, USA, Dec. 2019.

[22] T. K. Rodrigues et al., “Machine Learning Meets Computation and
Communication Control in Evolving Edge and Cloud: Challenges and
Future Perspective,” IEEE Communications Surveys Tutorials, vol. 22,
no. 1, pp. 38–67, Apr. 2020.

[23] D. M. Gutierrez-Estevez et al., “Artificial Intelligence for Elastic Man-
agement and Orchestration of 5G Networks,” IEEE Wireless Commu-
nications, vol. 26, no. 5, pp. 134–141, Oct. 2019.

[24] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless Network
Intelligence at the Edge,” Proceedings of the IEEE, vol. 107, no. 11,
pp. 2204–2239, Nov. 2019.

[25] N. C. Luong et al., “Applications of Deep Reinforcement Learning in
Communications and Networking: A Survey,” IEEE Communications
Surveys Tutorials, vol. 21, no. 4, pp. 3133–3174, Fourthquarter 2019.

[26] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor
Processing Unit,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture, ISCA ’17, Toronto, ON, Canada,
June 2017.

[27] M. Wang et al., “Machine Learning for Networking: Workflow, Ad-
vances and Opportunities,” IEEE Network, vol. 32, no. 2, pp. 92–99,
Mar. 2018.

[28] M. E. Morocho-Cayamcela et al., “Machine Learning for 5G/B5G Mo-
bile and Wireless Communications: Potential, Limitations, and Future
Directions,” IEEE Access, vol. 7, pp. 137 184–137 206, Sep. 2019.

[29] S. Dargan et al., “A Survey of Deep Learning and Its Applications:
A New Paradigm to Machine Learning,” Archives of Computational
Methods in Engineering, June 2019.

[30] European Telecommunications Standards Institute (ETSI), “Experiential
Networked Intelligence (ENI); ENI use cases,” Tech. Rep., Sep. 2019.

[31] 3rd Generation Partnership Project (3GPP), “System Architecture for
the 5G System; Stage 2,” Tech. Rep. TS. 23.501, Mar. 2018.

[32] F. Farahnakian et al., “LiRCUP: Linear Regression Based CPU Usage
Prediction Algorithm for Live Migration of Virtual Machines in Data
Centers,” in 2013 39th Euromicro Conference on Software Engineering
and Advanced Applications, Santander, Spain, Sep. 2013.

[33] R. Shaw, E. Howley, and E. Barrett, “A Predictive Anti-Correlated
Virtual Machine Placement Algorithm for Green Cloud Computing,” in
2018 IEEE/ACM 11th International Conference on Utility and Cloud
Computing (UCC), Zurich, Switzerland, Dec. 2018.

[34] V. Ravi and H. S. Hamead, “Reinforcement Learning Based Service Pro-
visioning for a Greener Cloud,” in 2014 3rd International Conference
on Eco-friendly Computing and Communication Systems, Mangalore,
India, Dec. 2014.

[35] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, Springer,
vol. 8, no. 3-4, pp. 279–292, May 1992.

[36] T. Miyazawa, V. P. Kafle, and H. Harai, “Reinforcement Learning
Based Dynamic Resource Migration for Virtual Networks,” in 2017
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), Lisbon, Portugal, May 2017.

[37] M. Duggan et al., “A Reinforcement Learning Approach for Dynamic
Selection of Virtual Machines in Cloud Data Centres,” in 2016 Sixth
International Conference on Innovative Computing Technology (IN-
TECH), Dublin, Ireland, Aug. 2016.

[38] R. N. Calheiros et al., “CloudSim: A Toolkit for Modeling and Simu-
lation of Cloud Computing Environments and Evaluation of Resource
Provisioning Algorithms,” Software—Practice & Experience, vol. 41,
no. 1, pp. 23–50, Jan. 2011.

[39] V. Mnih et al., “Playing Atari with Deep Reinforcement Learning,”
ArXiv, vol. abs/1312.5602, 2013.

[40] S. S. Masoumzadeh et al., “An Intelligent and Adaptive Threshold-
Based Schema for Energy and Performance Efficient Dynamic VM
Consolidation,” in Energy Efficiency in Large Scale Distributed Systems,
Vienna, Austria, Apr. 2013.

[41] European Telecommunications Standards Institute (ETSI), “Mobile
Edge Computing (MEC); Deployment of Mobile Edge Computing in
an NFV environment,” Tech. Rep., Feb. 2018.

[42] ——, “Developing Software for Multi-Access Edge Computing,” Tech.
Rep., Feb. 2019.

[43] G. Brockman et al., “OpenAI Gym,” ArXiv, vol. abs/1606.01540, 2016.
[44] D. Bernstein, “Containers and Cloud: From LXC to Docker to Kuber-

netes,” IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, Sep. 2014.
[45] P. Berde et al., “ONOS: Towards an Open, Distributed SDN OS,” in

Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, HotSDN ’14, Chicago, Illinois, USA, Aug. 2014.

[46] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[47] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
Learning: A Survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, May 1996.

[48] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep Reinforcement Learning: A Brief Survey,” IEEE Signal Process-
ing Magazine, vol. 34, pp. 26–38, Nov. 2017.

[49] European Telecommunications Standards Institute (ETSI), “Multi-
access Edge Computing (MEC); Study on MEC support for alternative
virtualization technologies,” Tech. Rep., Nov. 2019.

[50] Z. Zainuddin and O. Pauline, “Function Approximation Using Artificial
Neural Networks,” in Proceedings of the 12th WSEAS International
Conference on Applied Mathematics, MATH’07, Stevens Point, Wis-
consin, USA, Dec. 2007.

[51] K. Hornik, M. Stinchcombe, and H. White, “Multilayer Feedforward
Networks Are Universal Approximators,” Neural Networks, vol. 2,
no. 5, p. 359–366, July 1989.

[52] V. Mnih et al., “Human-level Control Through Deep Reinforcement
Learning,” Nature, vol. 518, pp. 529–33, Feb. 2015.

[53] ——, “Asynchronous Methods for Deep Reinforcement Learning,” in
Proceedings of the 33rd International Conference on International
Conference on Machine Learning, ICML’16, New York, NY, USA, June
2016.

[54] V. R. Konda and J. N. Tsitsiklis, “On Actor-Critic Algorithms,” SIAM
Journal on Control and Optimization, vol. 42, no. 4, p. 1143–1166, Apr.
2003.

[55] Z. Wang et al., “Sample Efficient Actor-Critic with Experience Replay,”
arXiv, vol. abs/1611.01224, Aug. 2016.

[56] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy Gradient
Methods for Reinforcement Learning with Function Approximation,” in
Advances in neural information processing systems, NIPS’99, Denver,
CO, Nov. 1999.

[57] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized Experience
Replay,” arXiv, vol. abs/1511.05952, 2015.

[58] R. S. Sutton, “Learning to Predict by the Methods of Temporal
Differences,” Machine Learning, vol. 3, no. 1, p. 9–44, Aug. 1988.

[59] W. P. Jones and J. Hoskins, “Back-Propagation,” BYTE, vol. 12, no. 11,
p. 155–162, Oct. 1987.

[60] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” arXiv, vol. abs/1412.6980, 2014.

[61] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities
Improve Neural Network Acoustic Models,” in Proc. icml, vol. 30, no. 1,
2013.

[62] G. E. Hinton and R. R. Salakhutdinov, “Replicated Softmax: an Undi-
rected Topic Model,” in Advances in Neural Information Processing
Systems, NIPS’09, Vancouver, British Columbia, Canada, Dec. 2009.

[63] A. Paszke and al, “PyTorch: An Imperative Style, High-Performance
Deep Learning Library,” in Advances in Neural Information Processing
Systems 32, NIPS’19, Vancouver, British Columbia, Canada, Dec. 2019.

[64] MOSA!C Lab research group , 2016. [Online]. Available: www.mosaic-
lab.org

[65] MOSA!C Lab Research Group , “Triggers Selection in Network Slice
Mobility Framework,” 2020. [Online]. Available: https://github.com/
MOSAIC-LAB-AALTO/drl based trigger selection

[66] G. Dulac-Arnold et al., “Deep Reinforcement Learning in Large Dis-
crete Action Spaces,” arXiv, vol. abs/1512.07679, 2015.

[67] J. Schulman et al., “Trust Region Policy Optimization,” arXiv, vol.
abs/1502.05477, 2017.

[68] ——, “Proximal Policy Optimization Algorithms,” arXiv, vol.
abs/1707.06347, 2017.

www.mosaic-lab.org
www.mosaic-lab.org
https://github.com/MOSAIC-LAB-AALTO/drl_based_trigger_selection
https://github.com/MOSAIC-LAB-AALTO/drl_based_trigger_selection

	Introduction
	Related Work
	Envisioned Architecture & System Model
	Envisioned Architecture
	Environment Description and Type of Collected Data
	Resource Availability Trigger (RAT)
	Service Consumption Trigger (SCT) & Request Overload Trigger (ROT)

	Primer on Reinforcement Learning
	System Model
	State Space
	Action space
	Reward Function


	Design of the Slice Mobility Decision Maker Agent
	Operational Mechanisms
	Deep Q-Networks
	Advantage Actor-Critic

	Design of Neural Networks
	DQN hyper-parameters
	A2C hyper-parameters


	Experimental evaluation
	Discussion

	Conclusion and future work
	References

