
IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 4, AUGUST 2017 1019

Evaluating Performance of Containerized IoT
Services for Clustered Devices at the Network Edge

Roberto Morabito, Ivan Farris, Antonio Iera, Senior Member, IEEE, and Tarik Taleb, Senior Member, IEEE

Abstract—The constant and fast increase in the number of
heterogeneous Internet of Things (IoT) devices that populate
everyday life environments brings new challenges to the full
exploitation of the computation, memory, sensing, and actuation
resources associated to them. In this context, device virtualiza-
tion solutions and platforms may definitely play a key role in
enabling the desired tradeoff between flexibility and performance.
This paper focuses on lightweight virtualization technologies for
IoT devices, suitably thought to effectively deploy new integrated
applications and to create a novel distributed and virtualized
ecosystem. Two different frameworks for container-based IoT
service provisioning are compared, the one based on a direct
interaction between two cooperating devices and the other based
on the presence of a manager supervising the operations between
cooperating devices forming a cluster. In the latter case, account-
ing for the growing impetus to move intelligence toward the
edge of the network, management features are implemented at
the network access point to provide short latency responses.
We also introduce the outcomes of a thorough performance
evaluation campaign conducted via a real IoT testbed. The mea-
surements, performed by accounting for the constraints of typical
IoT nodes, shed light on the actual feasibility of container-based
IoT frameworks.

Index Terms—Container virtualization, Internet of Things
(IoT), multi-access edge computing, service orchestration.

I. INTRODUCTION

IN THE last years, the disruptive nature of the Internet of
Things (IoT) paradigm has revolutionized the smartness

of our surrounding environment [1]. The exponential growth
in IoT devices makes available plenty of resources for com-
putation, storage, sensing, and actuation. At the same time,
we are assisting to an increasing spread of relatively inex-
pensive general-purpose boards, such as Raspberry Pi [2],
which allow for easy deployments of a wide range of IoT
use cases. Hentschel et al. [3] described the early prototypal

Manuscript received January 9, 2017; revised May 9, 2017; accepted
June 1, 2017. Date of publication June 9, 2017; date of current ver-
sion August 9, 2017. This work was supported in part by the FP7 Marie
Curie Initial Training Network METRICS Project under Grant 607728.
(Corresponding author: Ivan Farris.)

R. Morabito is with Ericsson Research, 02420 Kirkkonummi, Finland
(e-mail: roberto.morabito@ericsson.com).

I. Farris is with the Department of Communications and Networking, School
of Electrical Engineering, Aalto University, 02150 Espoo, Finland, and also
with the DIIES Department, University “Mediterranea” of Reggio Calabria,
89100 Reggio Calabria, Italy (e-mail: ivan.farris@aalto.fi).

T. Taleb is with the Department of Communications and Networking,
School of Electrical Engineering, Aalto University, 02150 Espoo, Finland, and
also with Sejong University, Seoul, South Korea (e-mail: tarik.taleb@aalto.fi).

A. Iera is with the DIIES Department, University “Mediterranea” of Reggio
Calabria, 89100 Reggio Calabria, Italy (e-mail: antonio.iera@unirc.it).

Digital Object Identifier 10.1109/JIOT.2017.2714638

deployment of a campus-wide sensor network with advanced
features compared to traditional solutions, by using commodity
single-board devices.

The last few years have also witnessed a growing atten-
tion toward lightweight virtualization technologies, such as
Docker [4] and LXC [5] containers. These solutions allow for
an efficient deployment of virtualized services while requir-
ing a reduced overhead with respect to hypervisor-based
virtualization technologies [6]. Additionally, the opportunity
of exploiting containers for IoT resource-constrained devices
has been demonstrated in [7]. Container-based service pro-
visioning can provide several benefits to heterogeneous IoT
environments, allowing to deploy on-demand services accord-
ing to the nodes capabilities and to dynamically reconfigure
the operational behavior of devices. However, to fully exploit
the potential of IoT devices, new solutions are necessary to
simplify the management and provisioning of integrated IoT
applications.

In this paper, we aim at investigating container-oriented
operational frameworks for IoT. More specifically, we compre-
hensively investigate two different frameworks for container-
based IoT service provisioning: 1) pair-oriented, where two
cooperating devices can directly interact with each other and
2) edge-managed clustering, where a manager supervises the
operations among cooperating devices forming a cluster. In
this latter solution, the cluster manager is running on an
edge access point, thus providing both connectivity and fast
management response to the attached IoT devices.

Indeed, accounting for the momentum shown by multi-
access Edge computing [8] and Fog computing [9] paradigms,
which move intelligence toward the edge of the network, we
believe that management features implemented closer to the
end-user device is a key enabling feature for delay-sensitive
applications in smart IoT environments.

The main enquiry that underlies the research activity in this
paper is: How can lightweight virtualization and clustering
management features allow for fully exploiting the resources
offered by IoT devices in pervasive environments? Giving an
answer to this question implies to answer the following sub-
questions.

1) Which challenges must be tackled to effectively exploit
the resources offered by heterogeneous IoT devices?

2) Which control features should be implemented in the
involved devices?

3) Which management framework can better meet the man-
ifold requirements imposed by integrated and critical IoT
applications?

2327-4662 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1020 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 4, AUGUST 2017

Accordingly, in this paper, we thoroughly evaluate
container-based solutions in a real IoT environment. In par-
ticular, we adopt Docker containers to deploy heterogeneous
services on resource constrained IoT devices. Through the
setup of a real testbed, we assess the performance in terms of
power and resources consumption, with the aim of shedding
light on the actual feasibility of such emerging lightweight
virtualization approaches.

This paper is organized as follows. Section II browses the
related scientific literature to highlight the potential benefits
introduced by the use of container-based service provision-
ing. In Section III we provide a brief overview of enabling
virtualization technologies and point out the challenges
in resource-constrained IoT environments. The investigated
container-oriented solutions are introduced in Section IV.
Details on the implemented testbed and experimental results
are reported in Section V. Open research areas and conclusions
are drawn in Sections VI and VII, respectively.

II. RELATED WORK

The adoption of software-oriented solutions is one of the
most promising trends to address the challenges raised by
smart IoT environments. The majority of research activi-
ties have focused on improving IoT interconnectivity by
embracing software defined networking [10], [11]. The next
step is definitely the development of a virtualized ecosys-
tems for the provisioning of integrated applications over IoT
devices, so as to enable the so-called anything-as-a-service
paradigm [12].

To bridge the gap between the high-level requirements of
applications and the low-level hardware complexities of IoT
nodes, different middleware architectures have been proposed
over the last few years in WSN and IoT environments.
Research and industrial communities have particularly focused
on IoT middleware that not only guarantee a unified access to
data generated by IoT devices (such as sensing measurements)
but also give opportunities to easily reprogram the operational
behavior of IoT nodes. This increased level of flexibility can
enable novel IoT scenarios where: 1) on-demand service are
deployed according to the nodes capabilities; 2) information
exchange and task offloading among cooperating IoT nodes
is easily carried out to boost integrated IoT applications; and
3) distribution of IoT service instances is dynamically opti-
mized according to actual workload and IoT nodes capabilities.
Different solutions for resource constrained WSNs, leverag-
ing tiny virtual machines, have been developed [13]–[15], for
example, based on Java and Python execution environments,
to enable programming of sensor nodes and code mobil-
ity. However, these solutions are strictly dependent on the
underlying virtualization environment. Obviously, this aspect
limits the flexibility in application development and potentially
implies limiting code dependencies.

In this regard, lightweight virtualization solutions are gain-
ing great momentum as technological enablers of a dis-
tributed virtualization infrastructure supporting heterogeneous
IoT devices. Recent works have investigated the opportu-
nity to exploit nodes’ resources by implementing Docker

containers [7], [16]. Container-based service provisioning do
not show any strict dependence on a given technology, pro-
gramming language, or application domain, thus offering the
freedom of “develop once, deploy everywhere.” However, a
thorough analysis of methods for container-based application
provisioning, not only focusing on computation and storage
but also on sensing and actuation capabilities, is still miss-
ing. Furthermore, container-oriented management frameworks
have been designed by only referring to a Cloud data center
environment [17].

IoT platform-as-a-service (PaaS) [18] is emerging as a
paradigm complementary to distributed IoT middleware. An
exemplary IoT PaaS architecture, aiming at leveraging Cloud
models to enable efficient and scalable IoT service deliv-
ery, has been defined in [19]. Such a Cloud-based approach
may be limiting for nowadays applications, as IoT services
requirements are becoming very strict especially in terms
of latency and network traffic. To tackle these issues, next-
generation network architectures are increasingly considering
the multi-access Edge computing paradigm [8], [20] as a
means to extend Cloud computing processing capabilities
at the edge of the network, by introducing the concept of
Cloudlets. By distributing small data centers near to the
access points, such as femtocells, several benefits are pro-
vided in terms of reduced communication overheads, costs,
and latencies [21].

Closer to the IoT domain is Fog computing [9], a similar
paradigm intended to provide distributed Cloud environments
closer to physical devices and able to support delay-sensitive
IoT services such as real-time data analytics [22], [23].
Our container-based approach extends the current IoT PaaS
solutions toward the edge of the network. In particular, con-
tainer virtualization offers new potential benefits in terms
of cross-platform deployment, allowing a common execution
environment for Cloud, Edge/Fog nodes, and even constrained
devices. Indeed, the same container-virtualized instance can
efficiently run both at the Edge and in the Cloud. Furthermore,
containers can even run on devices characterized by limited
computational resources, such as Raspberry Pi. This fea-
ture guarantees a transversal interoperability that goes from
resource constrained devices up to Cloud architecture. A fur-
ther advantage introduced by containers is the possibility to
isolate, from the underlying system, all the processes run-
ning within a virtualized container. This feature promotes the
deployment of multitenant platforms, as the same hardware
can be shared among different tenants.

Indeed, the potential of emerging mobile Cloud comput-
ing (MCC) approaches [24], [25] cannot be underestimated.
According to MCC, nearby devices autonomously cooper-
ate to provide the desired services by mutually sharing their
resources.

Our envisaged clustering framework is complementary to
both Edge and Fog computing paradigms, since control
and management functions are implemented at the Cloud-
enhanced Edge nodes, whereas task execution is delegated
to IoT devices, whose distributed resources allow increas-
ing scalability. The idea of a resource coordinator elected
among the mobile nodes was proposed in [26] to manage the

MORABITO et al.: EVALUATING PERFORMANCE OF CONTAINERIZED IoT SERVICES FOR CLUSTERED DEVICES AT NETWORK EDGE 1021

matching between application requests and device resources.
Habak et al. [27] proposed the refactoring of the Cloudlet
into a controller, which is in charge of configuring nearby
devices to provide collaborative computational services.
However, these works do not specifically tackle the hetero-
geneity of IoT devices, and do not consider any IoT virtual-
ization platform to effectively enable IoT task offloading.

III. ENABLING TECHNOLOGIES

Container-based virtualization solutions have gained great
popularity in recent years. They leverage some features of the
operating system kernel, i.e., namespaces and control groups
(cgroups). Linux namespaces isolate processes (i.e., contain-
ers) from each other, whereas cgroups allow for reducing the
resources, such as CPU, memory, and block device I/O, allo-
cated to each container. Compared to full and para-virtualized
approaches, OS-level virtualization (i.e., container virtualiza-
tion) is directly done in the kernel, thus guaranteeing better
performance [6].

Lightweight virtualization technologies introduce interest-
ing features, which make them extremely attractive in IoT
environments, such as: 1) fast creation and initialization of
virtualized instances; 2) high density of applications, thanks
to the small container images; and 3) reduced overhead, while
enabling isolation between different instances running in the
same host [28], [29].

In this paper, we use application-oriented Docker containers
for executing heterogeneous IoT applications. Docker func-
tionalities are based on an underlying container engine, the so-
called Docker engine, which is a lightweight containerization
technology that includes all the software components devoted
to the management of Docker containers. Furthermore, it
provides a functional APIs that allows for easily building,
management, and removal of a virtualized application. With
respect to system-level containers, e.g., OpenVZ and LXC,
application-oriented containers better cope with the microser-
vice architecture, which is considered the next big revolution
for IoT service deployment [30].

Container orchestration systems represent a core element to
ease the deployment and management of multiple container-
ized applications across a number of physical or virtual hosts,
especially for data center environment [28]. The most pop-
ular solutions are Kubernetes [31], Docker Swarm [32], and
Apache Mesos [33]. In this paper, we focus on Docker Swarm,
since is natively integrated with Docker distributions.

A Docker Swarm is a cluster of running Docker engines,
which leverage the management features provided by the
SwarmKit. Specifically, two different logical entities are
defined: 1) the manager node, which performs the orches-
tration functions required to maintain the desired state of
the swarm and dispatches units of work called “tasks” and
2) the worker nodes, that receive and execute tasks scheduled
by the manager. By default, manager nodes are also worker
nodes, but it is possible to configure managers to be manager-
only nodes. The agent notifies the current state of its assigned
tasks to the manager node, so that the manager can continu-
ously monitor the state of the cluster. Each node in the swarm

enforces transport level security mutual authentication and
encryption to secure its communications with all other nodes.

The standard Docker API, or any tool that already com-
municates with a Docker engine, can be used to implement
swarm management procedures, such as adding and remov-
ing nodes, as well as deploying services to the swarm and
managing service orchestration. While legacy Docker engine
issues container commands, Docker Swarm mode orchestrates
“services”, which are the definitions of the tasks to be exe-
cuted on the worker nodes. Indeed, a central structure of the
swarm system is the service concept, whose definition speci-
fies the container image to use and the commands to execute
inside the relevant containers, when a service is created. In
the case of replicated services, the swarm manager distributes
a specific number of replica tasks among the clustered worker
nodes based on the desired application requirements.

Although some of the objectives discussed above are
common to classic data center environment, IoT introduces
additional challenges that deserve specific attention.

1) Resource Constraints: IoT devices are typically char-
acterized by extremely reduced capabilities, thus
lightweight solutions become essential. Indeed, even if
VMs can also enable image-based management, VMs
are neither portable nor lightweight as containers. This
feature limits the adoption of a virtualization approach.
Docker containers seem to guarantee the appropriate
tradeoff in terms of flexibility and performance.

2) Heterogeneity: To effectively deploy varied services in
different IoT devices, a common resource abstraction
is essential. Docker engine provides the virtualization
features to exploit nodes capabilities in terms of compu-
tation, storage, and networking. Notwithstanding, further
activities should address sensing and actuation opera-
tions through appropriate container configuration.

3) Wireless Environment: IoT devices are usually
interconnected by wireless networks with likely
reduced bandwidth and highly variable channel quality.
Therefore, management solutions must be designed so
to reduce the control traffic, while avoiding network
bottlenecks.

4) Service Management Complexity: IoT applications can
be highly integrated. This requires the deployment of
several computing, sensing, and actuation operations
over multiple nodes. Hiding such an underlying com-
plexity in service provisioning is an undoubted key
feature to boost IoT application deployment. The capa-
bilities of an IoT client can be, indeed, extremely low
and moving the service management burden to a third-
party controller may result strictly necessary. However,
the introduction of an external controller can introduce
new challenges impacting on both delay and resource
consumption.

IV. CONTAINER-BASED IOT SERVICE

PROVISIONING APPROACHES

This paper aims at tackling the challenges described in
the previous section by leveraging Docker-based service

1022 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 4, AUGUST 2017

Fig. 1. Workflow of the CPIS approach for clustered IoT environment.

provisioning in wireless resource-constrained IoT environ-
ments. In particular, to analyze and identify the impact of
Docker management, we consider two exemplary case stud-
ies, which are good representatives of a broad range of IoT
scenarios. In the first case, the client is a smart device able to
directly manage the activation of services by issuing control
commands to a collaborating IoT node. In the second scenario,
the client is extremely simple and fully relies on an exter-
nal manager node for service management operations, such as
activation/removal, status monitoring, etc. By taking as a refer-
ence these case studies, we have designed and developed two
different approaches to container-based IoT service provision-
ing: 1) pair-oriented mode, where two cooperating IoT devices
directly interact with each other and 2) edge-managed cluster-
ing mode, where a manager supervises the operations between
the cooperating devices forming a cluster. Both approaches are
based on Docker containers to deploy heterogeneous applica-
tions over IoT devices. In this paper, we assume that all nodes
belong to the same private user or public administration; this
allows to rely on a “trusted scenario” where services can be
safely offloaded to different nodes, according to application
criteria and devices‚ status. The found results can be easily
generalizable to a multiowner scenario by providing mecha-
nisms for trustworthiness and security control, which anyway
are out of the scope of this paper. The last, widely accept-
able, assumption is that all the involved nodes are under the
coverage of the same network access point, which can be rep-
resented by an Ethernet switch, a Wi-Fi access point, or a
cellular femtocell.

A. Container-Based Pair-Oriented IoT Service (CPIS)
Provisioning

According to this approach, management operations are
based on direct data exchanges between the involved devices.
To enable secure transmissions, all control data traffic is
exchanged over SSH communications. Indeed, in this paper,
we do not focus on scheduling algorithms to choose the best
candidate node for executing a specific task. Rather, we aim
to investigate on the required procedures to activate a con-
tainerized service and to enable the interaction between the
device requesting the task (i.e., the client) and the device actu-
ally executing the task (i.e., the server) in heterogeneous IoT
environments.

Fig. 2. Container-based architecture for clustered IoT environment.

Fig. 1 shows the basic workflow between a client and a
server to achieve container-based IoT service provisioning.
First, the client issues the command for task activation on the
server, which in turn executes the “containerized” service by
leveraging the local Docker engine. To guarantee the desired
interoperability in compliance with current IoT standards,
constrained application protocol (CoAP) is recommended to
define RESTful application interfaces [34], according to a
traditional client-server model.

Therefore, after the successful activation of the requested
container, interactions between client and server follow the
CoAP protocol rules. Once the desired task is completed, the
client can also issue the command to stop and remove the
container. In this approach, the entire control burden is del-
egated to the client, which has to comprehensively manage
the instantiation, monitoring, and removal of the instance.
Furthermore, the control requirements can be even increased
when interactions with multiple nodes are required, such as
in one of the following situations: 1) the IoT application is
composed by multiple modules (for example, with different
sensing requests); 2) the IoT client may be in charge of keep-
ing backup service, so to guarantee service continuity and
reliability even in case of node failure; and 3) the client can
need to scale up or down the service instances by accounting
for the resources of IoT nodes and the actual workload. To
sum up, this approach can ensure that fast management proce-
dures are achieved through the direct interaction between the
cooperating nodes, while all the control features for service
lifecycle are implemented in the client.

B. Container-Based Edge-Managed Clustering (CEMC)

According to this second approach, a container-oriented
orchestration system provides multiple features to: 1) ease
the deployment and monitoring of IoT services over multiple
nodes; 2) perform periodical service checking and resource
monitoring; and 3) implement replication and auto-scaling
policies. Similarly to the Docker Swarm framework, which
we use as a reference platform, we consider two different log-
ical nodes: 1) container-oriented edge manager (CEM) and
2) container-based IoT worker (CIW), whose features are

MORABITO et al.: EVALUATING PERFORMANCE OF CONTAINERIZED IoT SERVICES FOR CLUSTERED DEVICES AT NETWORK EDGE 1023

presented in the remainder of this section. An exemplary sce-
nario is sketched in Fig. 2, where a CEM controls a cluster
of nodes, operating as CIWs and leveraging the virtualization
features provided by Docker engine to host containerized IoT
services.

1) Container-Oriented Edge Manager Features: In our
view, a predominant role has to be played by the network
access point. This latter operates as a manager of the clus-
tered devices, by both providing network connectivity and
orchestrating integrated IoT applications. Indeed, we believe
that network providers are in a predominant position to offer
new management services to their IoT customers, by lever-
aging on their capillary infrastructure and on the emerging
cloudification of the Edge networks [35].

The CEM is responsible to handle several cluster manage-
ment tasks.

• Maintaining the Cluster State: The CEM maintains an
up-to-date internal state of the entire swarm, account-
ing for the available resources offered by each associated
device and for all the services running within the clus-
ter. In a densely connected environment, multiple CEMs
can be deployed over different access points to guaran-
tee fault tolerance features. Indeed, Docker Swarm uses a
Raft implementation to maintain a consistent distributed
state of the cluster among multiple manager nodes.

• Service Scheduling: When a new service is requested,
the CEM needs to select the most appropriate nodes
to deploy the containerized applications, by matching
service requirements and available workers‚ resources.

• Service Monitoring: During the whole application lifecy-
cle, the CEM must monitor the status of relevant contain-
ers and, if some failures are detected, new instances must
be promptly activated, to guarantee the desired Quality of
Experience.

• Distributing Container-Based Application Images: To
store and distribute Docker images containing all the
applications code and dependencies, Docker has intro-
duced public/private Docker registries. The desired flex-
ibility is achieved by enabling the CEM to implement a
private registry, to share trusted images among the nodes
of the cluster.

2) Container-Based IoT Worker Features: CIWs are
devices running instances of Docker engine whose sole pur-
pose is to create, start, and stop containers. These devices
require an operating system, whose kernel supports container-
based virtualization. Some bootstrap code is necessary to
activate Docker in swarm mode, and to automatically join
the desired cluster. Once a CIW has joined the cluster, the
CEM can deploy containerized applications through the CIW’s
Docker engine. If the relevant Docker image is not locally
available, then the CIW’s Docker engine can retrieve it through
either a public Docker registry, i.e., the Docker hub, or a
private Docker registry running on the CEM.

CIWs can also operate as a proxy or gateway node for
extremely resource-constrained nodes, which do not support
container-based virtualization yet. In [36], gateways features
can be deployed on-demand via Docker containers, to provide
integration capabilities to sensor/actuation devices.

Fig. 3. Workflow of CEMC for clustered IoT environment.

In Fig. 3 an exemplary workflow of container-based edge-
managed clustering (CEMC) approach is sketched. After the
CEM receives a service requests, it performs the relevant
scheduling operation by identifying the device which can bet-
ter host the requested applications in the cluster. Then, the
CEM issues a command to launch the containerized task in
the selected CIW. When the container is running, the client can
send CoAP task request to the containerized CoAP server run-
ning on the CIW, which performs the desired logic operations
providing the output in a proper CoAP response packet.

V. PERFORMANCE EVALUATION

Objective of our evaluation campaign is to assess the
performance of management and operational features of
container-based service provisioning in resource-constrained
IoT environments. In this thread, we focus on the analy-
sis of the centralized management introduced by the CEMC
approach with respect to the direct interactions envisaged by
the CPIS approach. Such an analysis results extremely use-
ful to service designers and engineers for the selection of the
most appropriate operational management, according to the
application requirements.

A further aspect to investigate is the impact of the used
network interface on the communication performance. In par-
ticular, in view of the emerging wireless edge IoT clustering
concept, this paper will assess the feasibility of deploying a
container-based solution not only in the presence of devices
connected through an Ethernet interface but also in case of
wireless connections.

A. Testbed Scenario

For our performance evaluation, we use the Raspberry
Pi 3 (RPi) board as an IoT representative of a broad family
of smart devices and appliances. Indeed, this board is mass-
produced, relatively inexpensive, and can be used for a wide
range of IoT applications. Not by chance, over eight million
RPi boards have been sold to date and have been increas-
ingly included in research and industrial works [3]. The RPi
device has a variety of interfaces for attaching hardware sen-
sor devices. Another key aspect that led us to its choice is
the RPi capability in efficiently managing virtualized applica-
tions by means of container technologies. The feasibility to

1024 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 4, AUGUST 2017

execute Docker containerized services on top of an RPi has
been shown in [7].

In our experimental setup, an additional RPi provides
edge management functionality (in case of CEMC approach).
Although a workstation can perform management tasks as
well, we have chosen the RPi since its lightweight capabilities
are comparable to the limited resources of a generic network
access point, such as an Ethernet or a Wi-Fi switch. This way,
we demonstrate that even a low-power device can efficiently
manage the orchestration of tasks at the edge of the network.

As concern the network configuration in the container-based
pair-oriented IoT service (CPIS) modality, the two cooperat-
ing devices are interconnected through the same 100 Mb/s
Ethernet switch in the wired case, whereas they rely on an
ad-hoc Wi-Fi LAN (WLAN) created by the server node in the
wireless case. In the CEMC modality, both CEM and CIWs are
connected through a 100 Mb/s Ethernet switch (this because
the RPi having CEM role offers a single Ethernet interface and
is not able to interconnect multiple devices in a wired configu-
ration). In case of wireless configuration, an ad-hoc network is
managed by the CEM to provide connectivity to the clustered
devices.

From the software perspective, the operating system we
use is the image provided by Hypriot,1 which runs Raspbian
Jessie with Linux kernel 4.4.10. The Hypriot image provides a
lightweight environment optimized for the execution of Docker
container technologies, by also offering dedicated tools for
container orchestration like Docker Swarm. Our services are
currently implemented in Python, as this language is well
supported on the RPi and provides libraries for easily con-
necting to the various hardware interfaces required by sensors,
including interintegrated circuit bus, serial peripheral interface
bus, and GPIO pins. For the CoAP server implementation,
we use the txThings framework [37], which allows for a fast
deployment of CoAP-oriented applications in Python code.

Regarding the measurement tools, the Unix tool dstat [38]
is used to evaluate the resource usage of the device running
the CoAP server. Dstat is a versatile tool that allows for moni-
toring all the system resources instantly (e.g., CPU utilization,
system load, RAM usage, etc.). Furthermore, we measure the
power consumption of the RPi during the execution of dif-
ferent tasks by using a voltage meter (USB-1608FS-Plus),
which has a resolution of 16 bits. Indeed, since the RPi can be
charged via USB, by interrupting the power lines of the USB
connection and inserting a measurement shunt in the 5-V line,
it is possible to measure the power consumption produced by
the device, through indirect measure. The USB measurement
tool can simultaneously acquire data from up to eight devices.
This feature allows us to monitor the power consumptions
of all the devices involved in our scenario. The setup used to
investigate the performance of the CEMC approach in wireless
configuration is shown in Fig. 4.

B. Experimental Results

To demonstrate that container-based virtualization causes a
negligible performance degradation with respect to OS native

1[Online]. Available: https://blog.hypriot.com/

Fig. 4. Testbed environment for CEMC approach in wireless configuration.

TABLE I
POWER CONSUMPTION OF RPI IN IDLE STATE

service execution, for a broad range of IoT applications,
we have considered three different heterogeneous IoT tasks.
Before going through the analysis of the different scenarios, in
Table I we report the power consumption of the RPi measured
in Idle state, both for the Ethernet and Wireless configurations.
This value can be used as a benchmark to compare the RPi
power consumption during a task execution.

1) Computation Tasks: Offloading high computation-
demanding tasks is a typical operation of IoT devices. To
evaluate this use case, we consider generic-purpose applica-
tions with different computation complexity, so that the results
can be easily generalized to manifold scenarios, according to
the service requirements.

In particular, we implement a CoAP server exposing
resources to perform three different operations: 1) Average,
which computes the average of all the numbers provided in
input and its complexity is equal to O(n); 2) MergeSort, which
allows to order the list of numbers with a complexity equal to
O(n · logn); and 3) BubbleSort, which allows to order the list
of numbers with a complexity equal to O(n2).

We measure the response times for both OS-native and
Docker-based execution. The response time is measured by
considering the elapsed time interval from the instant when the
CoAP client begins to transmit the CoAP PUT request (includ-
ing the input random array of integer numbers) to the instant
when it retrieves the CoAP response. Each test is repeated
ten times and all the results are shown with a 95% confi-
dence interval. Fig. 5 shows the experimental response times
of the three operations for different input sizes (i.e., 1000
and 2000 integer numbers). An increase in the size of num-
ber array implies an increase in the response times for each
investigated operation. Furthermore, higher response times are
measured for the wireless connectivity with respect to the
wired networking.

MORABITO et al.: EVALUATING PERFORMANCE OF CONTAINERIZED IoT SERVICES FOR CLUSTERED DEVICES AT NETWORK EDGE 1025

Fig. 5. Response times of computation tasks for different input sizes, comparing the native case to the Docker containerized services, in both Ethernet and
WLAN configurations.

(a)

(b)

Fig. 6. Average CPU utilization of (a) CEM and (b) device hosting the
CoAP server for different computation tasks.

We also analyze the CPU utilization of the involved devices
for the different algorithms. Fig. 6(a) reports the average CPU
utilization for the CEM, which performs orchestration fea-
tures in the CEMC mode. A further measurement campaign
has been finalized to analyze the resource performance on
the device hosting the containerized server CoAP accounting
for both CPIS and CEMC modes. Despite the background
management operation provided by the CEM to periodi-
cally monitor the server’s container status, the average CPU

Fig. 7. Comparison of CPU utilization of the device hosting the CoAP server
for different computation tasks in CPIS mode.

Fig. 8. Comparison of CPU utilization of the device hosting the CoAP server
for a computation use case accounting for both CPIS and CEMC modes.

utilization of the device is similar in both CEMC and CPIS
modes, as shown in Fig. 6(b).

To better characterize the performance of the investigated
approaches, in Fig. 7 we show the comparison of the instan-
taneous CPU utilization for the device hosting the CoAP
server, when accounting for different computation tasks in
CPIS mode. It can easily be observed that the heavier the
complexity of the task, the higher is the relevant CPU uti-
lization experienced by the node. Furthermore, in Fig. 8 we
report the instantaneous CPU utilization over the time interval

1026 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 4, AUGUST 2017

(a)

(b)

Fig. 9. Power consumption (a) of the CEM, and (b) of the device hosting
the CoAP server for different computation tasks.

of 60 s. In particular, in this time interval we include the acti-
vation of the containerized CoAP server, the processing of the
computation task operation after the reception of the client
request, and the final removal of the container. In the CPIS
mode, the client itself sends the request to the RPi executing
the containerized CoAP server. Whereas, in the CEMC mode,
the CEM issues the command to start the container on the
CIW. Fig. 8 shows a similar trend for both approaches, with
peaks during the activation and removal of the container and,
obviously, during task execution. As a consequence, the addi-
tional management features provided by the CMEC approach
have a negligible impact on the average CPU utilization.

Fig. 9(a) depicts the average power consumption for the
CEM, which performs orchestration features in the CEMC
approach. As expected, the power consumption is almost equal
for all investigated computation tasks; whereas, the wireless
case shows a small increase (in the order of 8%) in this param-
eter compared to the wired case. Fig. 9(b) reports the average
power consumption of the device executing the containerized
CoAP server for both CPIS and CEMC modes. The reader can
observe that: 1) the power consumption smoothly increases
when considering algorithms with a higher complexity; 2) the
wireless configuration implies a higher power consumption
with respect to the wired case; and 3) the power consumption
in both CEMC and CPIS modes is similar.

To analyze the cost of the additional management proce-
dures introduced by the CEMC approach, we evaluate the
activation times of the container implementing the CoAP
server. The measured values, reported in Fig. 10, confirm that
the orchestration feature introduces a further delay in terms

Fig. 10. Activation times of Docker-based containers for different configu-
rations.

of activation times. In particular, for the CEMC we consider
three different network configurations: 1) Ethernet configura-
tion, where the CEM and the CIWs are connected through
a switch (this represents the default wired configuration for
the CEMC tests); 2) WLAN setup, where the CEM creates
the wireless ad-hoc network the CIWs are attached to; and
3) Ethernet no-switch, where an Ethernet cable is used to
directly connect the CEM to a single CIW (this configuration
is used only to test the activation times and to better character-
ize the network delays). The Ethernet no-switch case allows
for achieving a lower activation time in the CEMC approach
with respect to the WLAN case. The Ethernet case presents the
highest activation times due to the additional delay introduced
by the communications over the Ethernet switch.

To sum up, the experimental results can provide useful
guidelines in the choice of the container-based management
framework. For delay-sensitive application, the CPIS approach
can guarantee a lower delay by exploiting direct interaction
between requesting client and devices offering the IoT service.
On the other hand, the CEMC management causes a negli-
gible increase of resource consumption, and can better cope
with scenarios where clients are resource-constrained and IoT
application are highly integrated.

2) Sensing/Actuation Tasks: Sensing and actuation services
are the most distinctive features of smart IoT environments.
In our framework, to test sensing and actuation operations,
we exploit the GPIO interface provided by the RPi board.
This interface allows to interact with different sensors and/or
actuators. In this paper, six different sensors/actuators are
used to perform sensing tasks. Below, we report a more
detailed description about the functionality provided by each
considered sensor/actuator.

1) Laser Emitter: This module is able to emit laser beam,
which is widely used in several fields thanks to its good
directivity and energy concentration.

2) Active/Passive Buzzer: Buzzers are audio signalling
devices that can be categorized into active and passive.
An active buzzer has a built-in oscillating source, so it
will make sounds when electrified, whereas a passive
buzzer requires square waves with frequency between
2 and 5 KHz to drive it.

3) Sound Sensor: This component detects the sound inten-
sity in the surrounding environment and converts it into
electrical signals.

MORABITO et al.: EVALUATING PERFORMANCE OF CONTAINERIZED IoT SERVICES FOR CLUSTERED DEVICES AT NETWORK EDGE 1027

Fig. 11. Average power consumption for sensing/actuation scenarios, in both Ethernet and WLAN configurations.

4) Photo-Resistor Module: A photoresistor is a light-
controlled variable resistor, i.e., its resistance exhibits
photoconductivity and decreases with increasing inci-
dent light intensity.

5) Flame Sensor: A flame sensor module consists of a
flame sensor, resistor, capacitor, potentiometer, and com-
parator LM393 in an integrated circuit. It can detect
infrared light with a wavelength ranging from 700 to
1000 nm. The far-infrared flame probe converts the
strength changes of the external infrared light into
current changes.

6) Humidity Sensor: The digital temperature and humidity
sensor DHT11 is a composite sensor that contains a cali-
brated digital signal output of temperature and humidity.
The technologies of a dedicated digital modules collec-
tion, as well as the temperature and humidity sensing
features, allow the product to ensure high reliability and
excellent long-term stability.

For this measurement campaign, the client sends a CoAP
PUT request for enabling sensing/actuation operation on the
CoAP server. Once that the sensor has been activated, the
CoAP client issues GET requests toward the server, to either
acquire the sensing value measured by the sensor or trigger
the actuation service. The GET requests are performed every
5 s within a time interval of 120 s. A final PUT request is sent
to turn the sensor off. Unfortunately, Docker Swarm does not
have support yet to activate containerized services that require
the permission to access modules via GPIO. Therefore, for this
use case, all the tests are performed by using the traditional
Docker mode, i.e., according to the CPIS approach.

In Fig. 11, we report the average power consumption of
the CoAP server for each used sensors. In particular, we can
note that the use of the passive buzzer involves a greater power
value since it requires square waves with a wide range of vary-
ing frequencies. Furthermore, the wireless networking requires
a higher power consumption with respect to the wired links.
This aspect can be clearly observed in Fig. 12, where the
different instantaneous power consumption of Docker-based
CoAP server for active buzzer are presented, accounting for
both wired and wireless networking. At the beginning and at

(a)

(b)

Fig. 12. Power consumption of the device running the Docker containerized
CoAP server for active buzzer in (a) Ethernet configuration and in (b) WLAN
configuration.

the end of the observed time interval, peaks of power con-
sumption are, respectively, due to the activation and stopping
of the relevant Docker container.

By inspecting the RPi resource usage during the exe-
cution of one of the sensing tasks (active buzzer), the
lightweight features of the overall operations can be observed.
In Fig. 13, although a peak in CPU utilization is reported at
the beginning for the container activation, during the remain-
ing part of the sensing operations the CPU utilization is,

1028 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 4, AUGUST 2017

Fig. 13. CPU utilization of Docker containerized CoAP server for active
buzzer.

on average, extremely low, i.e., around 1.5%, with major
peaks corresponding to the processing of the CoAP GET
requests.

3) Video Analytics: The so-called Internet of Multimedia
Things is a novel paradigm, which envisages a multitude of
heterogeneous multimedia things able to interact and cooper-
ate with one another and with other entities connected to the
Internet, to facilitate video-based services globally available to
end-users [39]. This is why we also performed some measure-
ments in a test scenario in which a USB camera is directly
connected to the RPi.

In our testbed, the client performs a CoAP PUT request to
activate a video transmission. As soon as the camera (with
native resolution equal to 1920×1080) is activated, the video
content is encoded in mp4v format, and transmitted through
HTTP protocol with a bit-rate of 5 Mb/s. We monitor the
performance of the CoAP server during a live streaming ses-
sion lasting two minutes. To make our scenario more realistic,
we consider that ten clients require the video content; these
clients are executed in the client RPi.

To also evaluate video processing operations we perform
basic video analytics. In particular, a filter of motion-detection
is applied to the video content before being transmitted. In
another scenario, we apply additional transcoding operation:
the video resolution is reduced from 1920×1080 to 320×240
and the bit-rate from 5 Mb/s to 400 kb/s. The overall transcod-
ing process can be considered a heavy workload for the RPi,
which in turn generates a higher resource usage, if compared
to the Sensing/Actuation tasks. By measuring the maximum
system load during the execution of the aforementioned tasks
(Fig. 14), we observe that the heaviest system load occurs
when the motion-detection filter is applied to the video con-
tent and the transmission rate is set at 5 Mb/s. Furthermore,
we observe that there is a slight system load increment for
the wireless case, and that the transmission bit-rate affects the
system load. In fact, even if a motion detection filter is applied,
the system load with a transmission rate equal to 400 kb/s is
also lower than the base case.

Fig. 15 shows the average power consumption of the
RPi server, for the three different cases considered in the
video analytics scenario. In particular, the operation with
active motion detection and maximum resolution is the

Fig. 14. Max system load of Docker containerized video services with/out
motion detection (MD) filter.

Fig. 15. Average power consumption of Docker containerized video services
with/out motion detection (MD) filter.

most power consuming. The wireless environment implies a
small increase in power consumption with respect to wired
connectivity.

VI. OPEN RESEARCH AREAS

This paper has highlighted that container-based orchestra-
tion represents a promising solution to create smart virtualized
IoT environments. Nonetheless, we believe that the following
features deserve further investigation.

1) Mobility: Several use cases consider mobile IoT nodes,
which involve a highly time-varying network cluster
topology. This can introduce strictly timing requirements
in terms of cluster creation and joining, to allow task
offloading in a short time interval. Furthermore, mobil-
ity introduces two further issues: a) to keep the latency
response time short, the CEM may be migrated across
different access points, so to be as close as possible to
the controlled nodes and 2) the CIWs belonging to the
same private/public entity can be deployed under dif-
ferent Edge nodes. In the latter scenario, a distributed
management system composed by multiple synchronized
CEMs, running on different network access points, is a
promising solution to investigate.

2) Intercluster Service Provisioning: In [40] the advan-
tages introduced by federations of multiple IoT clusters
at the edge of the network has been clearly high-
lighted. Therefore, in the next future it will be interesting
to evaluate the interaction among CIWs belonging to

MORABITO et al.: EVALUATING PERFORMANCE OF CONTAINERIZED IoT SERVICES FOR CLUSTERED DEVICES AT NETWORK EDGE 1029

different clusters that cooperate in providing integrated
IoT services.

3) Semantic Interoperability: In some IoT contexts—
such as smart buildings, smart farms, and so on—the
interoperability among different devices can be achieved
at the gateway. In [41], the architecture of a gateway
able to manage semantic features and to act as an end-
point for the presentation of data to users has been
proposed. To provide the desired interoperability, our
CEM should be able to appropriately enable interactions
between different semantic-based IoT clusters.

4) Security: Sharing IoT devices with their relevant
resources introduces additional security issues. These
will require novel lightweight authentication and trust-
worthy mechanisms, which need to be integrated with
container-based solutions. Furthermore, specific virtual
networking schemes should be considered to appropri-
ate manage the sensitive traffic flows among multicluster
IoT environments.

VII. CONCLUSION

In this paper, we evaluated container-based solutions for
IoT service provisioning. In particular, we considered two pos-
sible operational frameworks: 1) CPIS, which enables direct
interactions between devices and 2) CEMC, which introduces
a management functionality at the edge of the network to ease
the supervision of surrounding devices.

Our analysis in a real testbed demonstrated that lightweight
virtualization allows to execute a broad range of IoT applica-
tions in both wireless and wired networks while enabling the
desired abstraction level. Furthermore, the orchestration frame-
work introduces negligible overhead for small IoT cluster in
terms of resource consumption and service activation times,
while the advantages in terms of manageability and scalabil-
ity are remarkable. Finally, a list of promising research areas
has been drawn to provide useful guidelines for future works.
In the next future, we will address our research toward the
evaluation of scalability of the investigated solutions, when
accounting for both the impact of multiple containers running
on the same device and for an increasing number of devices
in the testbed environment.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, 2010.

[2] Raspberry Pi. Accessed on Jan. 2017. [Online]. Available:
https://www.raspberrypi.org/

[3] K. Hentschel, D. Jacob, J. Singer, and M. Chalmers, “Supersensors:
Raspberry Pi devices for smart campus infrastructure,” in Proc. IEEE
4th Int. Conf. Future Internet Things Cloud (FiCloud), Vienna, Austria,
2016, pp. 58–62.

[4] Docker Containers. Accessed on Jan. 2017. [Online]. Available:
https://www.docker.com/

[5] LXC Containers. Accessed on Jan. 2017. [Online]. Available:
https://linuxcontainers.org/

[6] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs. lightweight
virtualization: A performance comparison,” in Proc. IEEE Int. Conf.
Cloud Eng. (IC2E), Tempe, AZ, USA, 2015, pp. 386–393.

[7] R. Morabito, “A performance evaluation of container technologies
on Internet of Things devices,” in Proc. IEEE INFOCOM Demo,
San Francisco, CA, USA, 2016, pp. 999–1000.

[8] T. Taleb et al., “On multi-access edge computing: A survey of the emerg-
ing 5G network edge architecture & orchestration,” IEEE Commun.
Surveys Tuts., to be published, doi: 10.1109/COMST.2017.2705720.

[9] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the Internet of Things,” in Proc. 1st Edition MCC Workshop
Mobile Cloud Comput., Helsinki, Finland, 2012, pp. 13–16.

[10] A.-C. G. Anadiotis, L. Galluccio, S. Milardo, G. Morabito, and
S. Palazzo, “Towards a software-defined network operating system for
the IoT,” in Proc. IEEE 2nd World Forum Internet Things (WF-IoT),
Milan, Italy, 2015, pp. 579–584.

[11] C. Buratti et al., “Testing protocols for the Internet of Things on the
EuWIn platform,” IEEE Internet Things J., vol. 3, no. 1, pp. 124–133,
Feb. 2016.

[12] T. Taleb, A. Ksentini, and R. Jantti, “‘Anything as a service’ for 5G
mobile systems,” IEEE Netw., vol. 30, no. 6, pp. 84–91, Nov./Dec. 2016.

[13] P. Levis and D. Culler, “Maté: A tiny virtual machine for sensor
networks,” ACM SIGPLAN Notices, vol. 37, no. 10, pp. 85–95, 2002.

[14] F. Aslam et al., “Optimized Java binary and virtual machine for tiny
motes,” in Proc. Int. Conf. Distrib. Comput. Sensor Syst., Santa Barbara,
CA, USA, 2010, pp. 15–30.

[15] D. Alessandrelli, M. Petraccay, and P. Pagano, “T-Res: Enabling recon-
figurable in-network processing in IoT-based WSNs,” in Proc. IEEE Int.
Conf. Distrib. Comput. Sensor Syst., Cambridge, MA, USA, May 2013,
pp. 337–344.

[16] T. Renner, M. Meldau, and A. Kliem, “Towards container-based resource
management for the Internet of Things,” in Proc. Int. Conf. Softw.
Netw. (ICSN), 2016, pp. 1–5.

[17] H. Kang, M. Le, and S. Tao, “Container and microservice driven
design for cloud infrastructure DevOps,” in Proc. IEEE Int. Conf. Cloud
Eng. (IC2E), Berlin, Germany, 2016, pp. 202–211.

[18] A. Botta, W. De Donato, V. Persico, and A. Pescapé, “Integration of
cloud computing and Internet of Things: A survey,” Future Gener.
Comput. Syst., vol. 56, pp. 684–700, Mar. 2016.

[19] F. Li, M. Vögler, M. Claeßens, and S. Dustdar, “Efficient and scalable
IoT service delivery on cloud,” in Proc. IEEE 6th Int. Conf. Cloud
Comput. (CLOUD), Santa Clara, CA, USA, 2013, pp. 740–747.

[20] I. Farris, T. Taleb, H. Flinck, and A. Iera, “Providing ultra-short latency
to user-centric 5G applications at the mobile network edge,” Trans.
Emerg. Telecommun. Technol., doi: 10.1002/ett.3169.

[21] U. Shaukat, E. Ahmed, Z. Anwar, and F. Xia, “Cloudlet deployment
in local wireless networks: Motivation, architectures, applications, and
open challenges,” J. Netw. Comput. Appl., vol. 62, pp. 18–40, 2016.
[Online]. Available: http://dx.doi.org/10.1016/j.jnca.2015.11.009

[22] B. Tang et al., “A hierarchical distributed fog computing architecture for
big data analysis in smart cities,” in Proc. ASE BigData Social Informat.,
Kaohsiung, Taiwan, 2015, Art. no. 28.

[23] I. Farris et al., “Social virtual objects in the edge cloud,” IEEE Cloud
Comput., vol. 2, no. 6, pp. 20–28, Nov./Dec. 2015.

[24] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity:
Enabling remote computing among intermittently connected mobile
devices,” in Proc. 13th ACM Int. Symp. Mobile Ad Hoc Netw. Comput.,
Hilton Head Island, SC, USA, 2012, pp. 145–154.

[25] T. Penner, A. Johnson, B. Van Slyke, M. Guirguis, and Q. Gu, “Transient
clouds: Assignment and collaborative execution of tasks on mobile
devices,” in Proc. IEEE Glob. Commun. Conf., Austin, TX, USA, 2014,
pp. 2801–2806.

[26] T. Nishio, R. Shinkuma, T. Takahashi, and N. B. Mandayam, “Service-
oriented heterogeneous resource sharing for optimizing service latency
in mobile cloud,” in Proc. 1st Int. Workshop Mobile Cloud Comput.
Netw., 2013, pp. 19–26.

[27] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto clouds:
Leveraging mobile devices to provide cloud service at the edge,” in
Proc. IEEE 8th Int. Conf. Cloud Comput., New York, NY, USA, 2015,
pp. 9–16.

[28] C. Pahl and B. Lee, “Containers and clusters for edge cloud
architectures—A technology review,” in Proc. 3rd Int. Conf. Future
Internet Things Cloud (FiCloud), Rome, Italy, 2015, pp. 379–386.

[29] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck, “Mobile edge
computing potential in making cities smarter,” IEEE Commun. Mag.,
vol. 55, no. 3, pp. 38–43, Mar. 2017.

[30] A. Sill, “The design and architecture of microservices,” IEEE Cloud
Comput., vol. 3, no. 5, pp. 76–80, Sep./Oct. 2016.

[31] Kubernetes. Accessed on Jan. 2017. [Online]. Available:
http://kubernetes.io/

[32] Docker Swarm. Accessed on Jan. 2017. [Online]. Available:
https://www.docker.com/products/docker-swarm

1030 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 4, AUGUST 2017

[33] Apache Mesos. Accessed on Jan. 2017. [Online]. Available:
http://mesos.apache.org/

[34] M. Kovatsch, S. Mayer, and B. Ostermaier, “Moving application logic
from the firmware to the cloud: Towards the thin server architecture for
the Internet of Things,” in Proc. 6th Int. Conf. Innov. Mobile Internet
Services Ubiquitous Comput. (IMIS), Palermo, Italy, 2012, pp. 751–756.

[35] T. Taleb, “Toward carrier cloud: Potential, challenges, and solutions,”
IEEE Wireless Commun., vol. 21, no. 3, pp. 80–91, Jun. 2014.

[36] R. Morabito, R. Petrolo, V. Loscrì, and N. Mitton, “Enabling a
lightweight edge gateway-as-a-service for the Internet of Things,” in
Proc. 17th Int. Conf. Netw. Future, 2016, pp. 1–5.

[37] txThings—CoAP Library for Twisted Framework. Accessed on
Jan. 2017. [Online]. Available: https://github.com/mwasilak/txThings

[38] Dstat: Versatile Resource Statistics Tool. Accessed on Jan. 2017.
[Online]. Available: http://dag.wiee.rs/home-made/dstat/

[39] S. A. Alvi, B. Afzal, G. A. Shah, L. Atzori, and W. Mahmood, “Internet
of multimedia things: Vision and challenges,” Ad Hoc Netw., vol. 33,
pp. 87–111, Oct. 2015.

[40] I. Farris, L. Militano, M. Nitti, L. Atzori, and A. Iera, “MIFaaS:
A mobile-IoT-federation-as-a-service model for dynamic cooperation of
IoT cloud providers,” Future Gener. Comput. Syst., vol. 70, pp. 126–137,
May 2017.

[41] R. Petrolo, R. Morabito, V. Loscrì, and N. Mitton, “The design of the
gateway for the cloud of things,” Ann. Telecommun., vol. 72, no. 1,
pp. 31–40, 2017.

Roberto Morabito received the master’s degree
in computer and telecommunications systems engi-
neering from the University of Reggio Calabria,
Reggio Calabria, Italy, in 2013. He is currently
pursuing the Ph.D. degree at the Department of
Communications and Networking, Aalto University,
Espoo, Finland.

He has been with Ericsson Research, Helsinki,
Finland, since 2014, and involved in the FP7 ITN
METRICS Project. His current research interests
include multiaccess edge computing, Internet of

Things, and virtualization technologies.

Ivan Farris received the B.Sc. degree in telecommu-
nications engineering and M.Sc. degree in computer
and telecommunications systems engineering from
the University of Reggio Calabria, Reggio Calabria,
Italy, in 2011 and 2013, respectively, where he is
currently pursuing the Ph.D. degree in information
technology engineering.

He is currently a Researcher with the Department
of Communications and Networking, School of
Electrical Engineering, Aalto University, Espoo,
Finland. His current research interests include

Internet of Things, edge computing, and network softwarization.

Antonio Iera (SM’07) received the degree in com-
puter engineering from the University of Calabria,
Rende, Italy, in 1991, the Master Diploma degree in
information technology from CEFRIEL/Politecnico
di Milano, Milan, Italy, in 1992, and the
Ph.D. degree from the University of Calabria,
in 1996.

Since 1997, he has been with the University
of Reggio Calabria, Reggio Calabria, Italy, and
currently holds the position of a Full Professor
of telecommunications and the Director of the

Laboratory for Advanced Research into Telecommunication Systems. His cur-
rent research interests include next-generation mobile and wireless systems,
RFID systems, and Internet of Things.

Tarik Taleb (S’05–M’05–SM’10) received the B.E.
degree (with Distinction) in information engineer-
ing and M.Sc. and Ph.D. degrees in information
sciences from Tohoku University, Sendai, Japan, in
2001, 2003, and 2005, respectively.

He is currently a Professor with Aalto University,
Espoo, Finland, leading the MOSA!C Laboratory.
He was a Senior Researcher with NEC Europe
Ltd., Ruislip, U.K., until 2015. Prior to that, he
was an Assistant Professor with Tohoku University.
His current research interests include mobile core,

mobile cloud networking, network function virtualization, software-defined
networking, mobile multimedia streaming, and social media networking.

Prof. Taleb is an IEEE ComSoc Distinguished Lecturer.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

