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Abstract—Large-scale networking infrastructures such as 

service providers deploy complex services to deal with the growing 

network traffic demand, security concerns, and user preferences. 

Using Service Function Chaining (SFC), a set of networking and 

management operations, permits to steer the traffic through a list 

of intermediate services. Traffic steering for SFC is usually based 

on packet headers to share the SFC information, however such 

headers introduce encapsulation overhead and require service 

functions support. In this paper, we present a novel traffic steering 

technique based on a compact SFC header. The proposed header 

does not increase the packet size and allows network operators to 

deploy SFC using legacy service functions. We also present a new 

SDN architecture for SFC based on compact headers. Our 

proposal permits a scalable and a flexible SFC deployment in real-

life infrastructures.  

Keywords—service function chaining; traffic steering; software-

defined networking; network function virtualization  

I.  INTRODUCTION  

Big networking infrastructures such as service providers 
afford complex services involving a significant number and type 
of service functions, A Service Function (SF) can be any 
networking middlebox, such as Network Address Translation, 
Deep Packet Inspection or firewall. Accordingly, Service 
Function Chaining (SFC) [1]  is a set of operations that combines 
intermediate services to compose complex services. SFC relies 
on traffic steering configurations or protocols to direct traffic 
to/from the intermediate SFs.  SFC assists network operators in 
customizing the composition of complex services to offer 
diverse customers services and optimizing infrastructure 
resources usage.  

Current SFC deployments are usually static, relying on 
network configurations to stitch SFs together. One way to chain 
services is by configuring VLANs to steer traffic among the SFs. 
Recently, the new technologies of Software-Defined 
Networking (SDN) [2] and Network Function Virtualization 
(NFV) [3] permit to dynamically compose chains  and make the 
accurate forwarding policies. 

SDN is an emerging networking concept that separates the 
data plane from the control plane. It provides a centralized 
control and programming via southbound communication 
protocols and interfaces to the data plane networking devices. In 
the same way, NFV is a trending technology based on network 
virtualization that enables the development of network functions 

that can be deployed on commodity hardware. NFV, together 
with SDN, enhance the flexibility for implementing SFC.  

SFC has gained significant interest from Academia and 
industry, and several SFC approaches have been proposed thus 
far [4]–[11]. However, the static SFC techniques and the recent 
dynamic SFC approaches are still not flexible enough to be 
deployed in real-life infrastructures [8]–[10]. On the one hand, 
the static SFC solutions that rely on physically stitching service 
functions together to compose Service Chains (SC) or 
configuring networks to create the service chain paths are costly, 
and require complex and error-prone configurations. On the 
other hand, new dynamic SFC solutions that use new headers 
such as Network Service Header (NSH) [9] involve service 
function and Service Function Forwarders (SFF) to support  new 
headers. Furthermore, an additional network encapsulation 
overhead is produced and cannot be negligible for SFC 
deployment in large-scale infrastructures. Therefore, the 
deployment complexity in real-life infrastructures, as well as the 
scalability issues limit the efficiency of such SFC solutions. 
Indeed, the efficiency of the SFC deployment is based on the 
type of the traffic steering method used. Thus, the choice and the 
design of the accurate forwarding operations must be 
investigated. 

The main contributions of this paper are the design of a new 
SFC header for encoding SFC forwarding information, and a 
traffic steering mechanism based on the existing packet header: 
source Mac address. Our solution meets the requirements of an 
SFC flexible solution, easily deployable without further SF/SFF 
support. Furthermore, the compact header described in this 
paper does not induce additional packet size or encapsulation 
overhead as compared to NSH[9]. 

 The remainder of this paper is organized as follows. Section 
II presents the most related works to the approach described in 
this study. Section III describes the design choices of our SFC 
solution as well as the traffic steering method proposed, and 
section IV presents an evaluation of our proposal and its 
potential to scale. Finally, Section V concludes the paper and 
presents our future works. 

 



II.  RELATED WORK 

Substantial research efforts were provided to respond to the 

challenges of dynamic service function chaining. This section 

gives an insight on some recent SFC approaches. 

A. SFC based on the definition of new headers 

The first contributions for service function chaining began in 

IETF working groups (WG), mainly the service function 

chaining  [12] and in ETSI NFV [13] WGs. Some of the 

proposals rely on packet headers, such as: Network Service 

Header (NSH) [9] and SFC IPv6 extension header (SFCEH) 

[14]. Particularly, NSH protocol received the most attention 

from academia and industry. NSH [9] [15] is a forwarding 

protocol for SFC; it ensures the traversal of network traffic 

among the  SFs composing a service chain.  Several SFC 

propositions are based on the NSH protocol. G. Li et al. [16] 

and Mehmeri et al. [17] used NSH as the traffic steering 

protocol. Furthermore, S. Kulkarni et al. [15] presented a 

modified version of the protocol to improve scalability. Despite 

the popularity of the NSH protocol, it worth noticing that NSH 

produces additional packet size and communication overhead, 

because of the encapsulation required for its header. Thus, this 

protocol adds considerable complexity in real life deployments. 

Moreover, it requires SFs and SFFs to support the header or to 

request additional intermediate proxies. For these reasons, we 

avoided using extra SFC headers and other tunneling 

techniques for the design of our proposal. Our approach is based 

on rewriting the source Mac address to encode an SFC compact 

header. 

B. SFC based on the rewriting legacy packet headers 

Besides the proposals discussed earlier, other SFC 

approaches choose to rewrite existing packet headers such as 

the L2 Ethernet MAC address, IP option field or IP DiffServ. 

Among these proposals, the works presented in [8], [18], [19].  

Recently, Blendin et al.  [19] suggested to rewrite the next SF’s 

Mac address in the packet's destination Mac address. The 

association of SF address and the incoming port identify the 

service chain while IP addresses identify users. They choose to 

encode the SF address and retrieves the precise service chain.  

Likewise, Ding et al. [18] encoded the service chain identifier 

(SC-ID) in the packet's source Mac address and retrieve the 

accurate SFs. Conjointly, Abujoda et al. [8] encoded the  

forwarding path in a header that combines multiple fields: the 

destination MAC address, VLAN tags and MPLS label. These 

approaches encoded SFC information differently, however, 

tradeoff between sharing the necessary SFC information and 

encoding this information in moderate size headers must be 

studied.   For this reason, our solution encodes the relevant SFC 

information in a compact header. The compact header rewritten 

to the Mac address field prevents additional packet size. 

Moreover, the proposed header allows traffic forwarding with 

less lookup by avoiding re-classification. By taking these 

factors into consideration, our solution can be easily deployed 

and responds to scalability and flexibility requirements.  

III. THE PROPOSED APPROACH DESIGN 

In this section, we present the design choices for our SFC 

proposal, the compact header format and the traffic steering 

operation. 

A. Compact header proposal 

The goal of Compact header proposal is to simplify SFC 

forwarding, reduce packet size and avoid re-classification of the 

traffic each time it visits an SFF. We choose to encode the SFC 

information in a Compact header that does not add size to 

packets, by re-writing the Mac source address to carry SFC 

forwarding information.  

The mandatory SFC information, that helps SFFs to identify 

the traffic is: (i) the service chain identifier, (ii) the next service 

function in the path and (iii) a counter to position the path. The 

header format is depicted in Figure 1; it consists of an identifier 

of the service chain, the next service function that is updated 

after every SF by the SFF and a counter that is decremented 

after visiting the SF and initialized with the number of SFs that 

the traffic flow should traverse.  
The header’s chain ID field supports more than 4000 million 

chain identifiers, which supports fine granular policies and 
allows for very large-scale networks [20]. Moreover, The SF ID 
field scales for more than 4000 SFs. As for the counter, it serves 
to identify the position of the next service function and expires 
after visiting the last SFF, right before sending the packets to the 
destination. The counter field size is 4 bits and supports service 
chains with an order up to 15 SFs per chain.  

B. Deployment 

The design of SFC compact header is motivated by the need 
for more flexible and scalable solutions for production 
environments. Furthermore, the reduced overhead and 
complexity for deployment in real-life infrastructures are 
required. These requirements are considered for the design of 
our proposal: 

• Flexibility: one of the advantages of SFC being deployed 
in an SDN environment is the flexibility gained from 
programming the configurations and pushing the 

 
Figure 1: format of the SFC Compact header  

 



forwarding state into the data plane elements. The 
forwarding state can be calculated proactively or 
reactively. Routes are calculated and inserted in the data 
plane components using southbound communication 
protocols such as OpenFlow [31]. Our approach can be 
implemented in an SDN controller to manage SFC 
forwarding rules in the switches, that can be software or 
hardware appliances.  

• Scalability: A key requirement of an SFC solution is its 
ability to scale for medium to very large-scale networks, 
as the concept of SFC is more meaningful in the context 
of an enterprise, datacenter up to provider infrastructures. 
An SFC solution can scale if it supports high number of 
chains with acceptable overhead. The compact header 
proposed in this paper encodes the relevant information 
in Mac address to allow for simple matching. Thus, it 
does not add any bits to the packets, and at the same time, 
it provides a significant number of chains and functions, 
allowing fine granularity policies for an important 
number of users, applications or hosts. 

• Overhead: among the limits of the current SFC 
approaches (e.g. NSH [4]) is the need for further 
tunneling. SFC and transport tunneling introduce 
overhead, mainly related to the increased packet size and 
encapsulation-decapsulation operations. 

• Support: the compact header approach can be 
implemented in a controller and does not require 
modifications of the switches and the southbound 
communication protocols between the controller and the 
involved SFFs. 

C. System architecture and traffic steering method 

  The architecture of our SFC proposal shown in Figure 2 is  
inspired by RFC 7665 [1]. It consists of a three-layered 
architecture composed of a management plane, control plane, 
and data plane. The management plane contains the northbound 
applications that describe the network policy and pushes 
requests for the control plane to translate to policy rules into 
forwarding rules. The forwarding state is sent to the data-plane 
components (mainly classifiers and service function forwarders) 
to ensure steering traffic to accurate service functions and final 
destination.  

 The traffic steering process is initiated by defining the policy 
in the management plane. The controller follows up by sending 
forwarding state to classifiers and SFFs. The traffic flows are 
first filtered by the classifier(s). The later associates the accurate 
SFC information to the packets by rewriting the Ethernet MAC 
source address. Usually, the Mac source address is not changed 
across the network. Deploying transparent SFs that does not 
modify packet headers, ensures that the SFC information 
follows the journey of a packet. Next, an SFC index and 
identifier of the first SF are inserted in the packet, as well as a 
counter initiated by the number of SFs in the chain.  

As illustrated in Figure 2, once the classifier (CL) prepares the 
packets, they are sent to the accurate SFF that hosts the first SF 
in the service chain. Upon reception, an SFF looks at the SFC 
compact header and checks the SF identifier, if the SFF hosts the 
SF, it forwards the flow towards the accurate SF and backward, 
updates the next SF field and decrements the counter. In case the 
SFF does not host the SF, it sends it to the nearest SFF in the 
path. If the counter equals to 0, then the SF is the last SF in the 

 
 

Figure 2: The proposed SDN based SFC architecture and traffic steering operation using compact header 

 



chain, the SFF rewrites the source Mac address to the original 
address and forwards the packet to the final destination based on 
legacy routing.  

IV. SCALABILITY OF SERVICE FUNCTION 

CHAINING 

In this section, we discuss how the use of a compact header 

can increase the capacity of an SFF (mainly switches) to handle 

a high number of SFs, chains and support chains with several 

SFs. First, we calculate the maximum number of chains that the 

switches can handle according to our compact header fields 

capacity while varying the number of SFs in a service chain and 

increasing the number of SFs connected to an SFF. Then, we 

discuss different factors that impact the SFF memory. For this 

discussion, we refer to switches within the interval of [12,48] 

ports.  

A. The scale of service chains 

The deployment of service function chaining is significant 
for medium to very-large-scale networks. Thus, it is important 
to consider the scalability requirements while designing an SFC 
header. Figure 3 illustrates the scale of service chain identifiers 
versus the size of the field where the identifier is encoded. 
Therefore, the capacity of a service chain identifier field should 
support a high number of chains. By considering the scalability 
requirement for service function chaining and as recommended 
in [20], a 32 bits field can encode service chain identifiers for a 
very large-scale network. With 2^32 combinations of service 
chain identifiers, compact header allows for more than 10^9 
possible identifiers as shown in Figure 3. Moreover, compact 
header contains an 8 bits field for SF identifier which supports 
up to 255 SFs. 

B. The scale of  service chains and service functions for an 

SFF 

Large-scale topologies deploy an important number of SFs 
that also impacts the scalability of an SFC solution. In this 
section, the scale of service chains and service functions for an 
SFF refers to the maximum number(Max_SCs) of chains where 
a switch (SW) is involved. Max_SCs depends on the order of 
service chains (Osc). Osc is the number of SFs in a service chain, 
e.g., Osc =2 for SCs with two intermediate SFs. The order of SFs 
in SCs does not define the scalability of the network; it shows 
the complexity of chains and how strict the network policy is. 
Thus, large chains with a high SFC order indicate that the flows 
are subject to complex treatment by various SFs, which is the 
case for security SCs and sensitive infrastructures. 

Moreover, nb_SFs refers to the number of SFs connected to 
a switch; it increases the number of combinations of SCs. In this 
paper, we choose to use the extreme case, where the SFs 
connected to the switch are all involved in SCs. We vary Osc 
and calculate the maximum of possible combinations of SFs in 
SCs, For example:  

with Osc=2 and nb_SFs=10,  

𝑀𝑎𝑥_𝑆𝐶𝑠(𝑂𝑠𝑓𝑐) =  𝑛𝑏_𝑆𝐹𝑠. ( 𝑛𝑏_𝑆𝐹𝑠 − 1) =90 

In general, we find that the number of possible combinations of 
service chains identifiers is: 

𝑀𝑎𝑥𝑆𝐶𝑠(𝑂𝑠𝑐) = ∏  𝑛𝑏_𝑆𝐹𝑠 − 𝑖𝑖≤𝑂𝑠𝑐
𝑖=0                             (1) 

The number of combinations of SC identifiers depends on 
two parameters as shown in (1): Osc and the number of SFs 
connected to the switch. Table 1 shows the number of SC 
combinations calculated referring to (1). Therefore, we observe 
that by increasing the order of SCs, the number of SC 
combinations increases from tens to millions of chains. 
Similarly, while increasing the total number of SFs, the number 
of SCs increases to millions of SFC combinations.  

C. Impact of compact header on SFF memory 

SFFs can be either software or hardware appliances. 

Recently, the software switches such as Open Vswitch  [21] 

introduced important improvement concerning the capacity to 

store a high number of flows because of the type of memory 

used, usually RAM. However, when dealing with hardware 

switches that use Ternary Content Addressable Memory 

(TCAM), the storage capacity is about few hundreds of flow 

rules [22]. Therefore, managing the switch memory is 

challenging, and strategies for reducing the required memory 

allocation for flow entries is a critical point for the scalability 

of an SFC solution.  
Each flow requires a rule or a flow entry in the switch. The 

number of flow entries nb_entries required for the service chains 
linearly depends on the order of chains. Thus, each SF in the 
chain requires an entry in the flow tables. Thus, the larger the 
Osc is, the highest is the number of flows. Noting that the chains 
are not symmetric, as such reverse chains will require different 
flow entries. A reverse chain can be deployed by reversing the 
order of SFs and switching the flow identifiers (e.g., IP address, 
port number) and it requires different flow entries. The equation 
(2) represents the number of required flow entries for a given 
switch:  

𝑛𝑏𝑒𝑛𝑡𝑟𝑖𝑒𝑠(𝑜𝑠𝑐) =  𝑂𝑠𝑐 . 𝑀𝑎𝑥𝑆𝐶𝑠                           (2) 

 
Figure 3: Compact header capacity requirements for service 

chain identifier versus the number of possible SC combinations 



Table II shows the required number of flow entries according 
to equation 2. The number of entries is per switch, assuming the 
extreme case where all the SFs of an SC are connected to the 
same switch and involving all the switch’s ports.  It shows that 
the number of flow entries increases while increasing the 
number of SFs and the SCs order. The number of flow entries 
varies from thousands to millions of rules.  

The efficiency of a switch memory depends on the memory 
capacity as well as the management of flow entries allocation. 
As such the number of entries can be strengthened by reducing 
the amount of memory allocated per entry. The latter depends 
on the switch memory characteristics such as the memory 
blocks, banks and words [23]. It also depends on the complexity 
of match and action fields. OSI L2-L3 match fields require less 
memory than complicated matches L4-L5 or higher.  Thus, by 
matching on simpler fields such as compact header, a switch can 
handle more flow entries than with complicated matches that 
increase the per entry memory allocation and consequently 
reduces the total number of entries and the scale of the switch to 
support a high number of flows, SCs and SFs.  

Another factor that increases the flow entries is the number 
of hops in a given path [24]. This factor explains the increase of 
the number of entries in the SFC use cases, where chains with a 
higher order, that implies multiple SFs increase the number of 
chains and consequently leads to a higher number of flow 
entries. This result is also explained by the linearity of (1): the 
number of possible SCs linearly depends on the order of SCs and 
the total number of SFs connected to the switch. 

Different ways allow to reduce the flow state and enable the 
flow table to support more flows and scale to larger topologies. 
Some solutions  permits to compress the number of flow entries 
for an SDN Switch such as MINNIE [25]; MINNIE allows to 
find the possible compressions and wildcards in a flow table.  
Deploying less complex match and actions, using the minimum 
number of hops or reducing the order of necessary SFs per SC 
can reduce the forwarding state as well.  

The allocated size of a flow entry depends on how 
complicated the flow rules are. It also depends on the 
characteristics and the type of the memory used. A flow entry is 
mainly composed of match headers, counters, and actions [26]. 
We can model the flow entry capacity as a factor of E: the 
memory allocation for an entry, M: the memory capacity for 
match headers, A: the memory capacity for match headers and 
α: the additional memory allocated for other flow entry fields. 
Therefore: 

   E= M+A+α                (3) 

 Another factor that impacts the number of flow entries in a 
switch is the type and characteristics of each switch. Virtual 
switches use RAM which supports an order of millions of rules. 
Hardware switches support fewer rules due to the limited and 
restricted capacity of TCAM that only supports hundreds of 
rules. TCAMs are different and can have different depths (e.g. 
36,72). Thus, different TCAMs may support a different number 
of entries. Thus, a flow entry capacity must be a multiple of 
TCAM widths, where x is the number of TCAM_width required 
for an entry.  

  E=x . TCAM_width                        (4) 

β is an additional overhead of empty drops of memory for 
each entry allocation. Assuming exact match rules where the 
same headers are matched (M), the same additional fields are 
present (α) and the same memory overhead is added (β), a flow 
table with capacity C is represented in (6). 

  C=∑(M+A+α+β)                                       (6) 

As equation (6) is linear, each of the factors can increase or 

decrease the switch memory to support less or more rules, 

respectively.  

Consequently, different factors impact the number of flow 

rules that a switch can store especially for hardware appliances 

where the flow table size is an issue. Indeed, managing flow 

tables   can extend the switch’s flow table capacity. The types 

of headers an SFF can match, and the resulted actions allow a 

switch to extend its flow table [27]. Thus, scaling to bigger 

infrastructures or supporting fine granular policies. For this 

reason, the compact header solution deploys simple OSI-L2 

matches and simple modification actions. Compact header 

requires flow entries with regular capacity and memory 

allocation. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we presented a Compact SFC header, that 
allows to share SFC information without increasing the packet 
size. Our solution encodes the compact header in the Mac source 
address and permits to reduce the encapsulation overhead, which 
makes it supported by service functions. We analyzed SFC 
scalability, memory constraints for SFFs and showed that our 
proposal does not impose memory constraints. Furthermore, we 
introduced a traffic steering method and SFC architecture based 
on compact header. 

The traffic steering method described in this paper is suitable 
for transparent SFs, that does not update the packet headers. 
However, the SFC information could be lost after visiting 

TABLE I: THE NUMBER OF SERVICE CHAINS FOR DIFFERENT ORDER AND 

NUMBER OF SFS 

           N° SFs  

 Osc     12 24 48 

2 132 552 2256 

3 1320 12144 103776 

4 11880 255024 4669920 

5 95040 5100480 205476480 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE II: THE NUMBER OF FLOW RULES FOR DIFFERENT ORDER AND 

NUMBER OF SFS 

  N° SFs =12 N° SFs =24 N° SFs =48 

Osc=2 
264 1104 4512 

Osc=3 
3960 36432 311328 

Osc=4 
47520 1020096 18679680 

Osc=5 475200 25502400 1027382400 

 



opaque SFs, that alter the packet headers. Our next step is to 
investigate on better ways to restore SFC header after visiting 
opaque SFs. We plan to develop an SFC routing engine in 
Floodlight SDN controller, to automatically translate the 
policies into forwarding state based on our traffic steering 
method. 
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