
A Novel Compact Header for Traffic Steering in

Service Function Chaining

Hajar Hantouti

Faculty of sciences

Moulay Ismail University

Meknes, Morocco

h.hantouti@edu.umi.ac.ma

Nabil Benamar

School of Technology

Moulay Ismail University

Meknes, Morocco

n.benamar@est.umi.ac.ma

Tarik Taleb

Aalto University

Espoo, Finland

tarik.taleb@aalto.fi

Abstract—Large-scale networking infrastructures such as

service providers deploy complex services to deal with the growing

network traffic demand, security concerns, and user preferences.

Using Service Function Chaining (SFC), a set of networking and

management operations, permits to steer the traffic through a list

of intermediate services. Traffic steering for SFC is usually based

on packet headers to share the SFC information, however such

headers introduce encapsulation overhead and require service

functions support. In this paper, we present a novel traffic steering

technique based on a compact SFC header. The proposed header

does not increase the packet size and allows network operators to

deploy SFC using legacy service functions. We also present a new

SDN architecture for SFC based on compact headers. Our

proposal permits a scalable and a flexible SFC deployment in real-

life infrastructures.

Keywords—service function chaining; traffic steering; software-

defined networking; network function virtualization

I. INTRODUCTION

Big networking infrastructures such as service providers
afford complex services involving a significant number and type
of service functions, A Service Function (SF) can be any
networking middlebox, such as Network Address Translation,
Deep Packet Inspection or firewall. Accordingly, Service
Function Chaining (SFC) [1] is a set of operations that combines
intermediate services to compose complex services. SFC relies
on traffic steering configurations or protocols to direct traffic
to/from the intermediate SFs. SFC assists network operators in
customizing the composition of complex services to offer
diverse customers services and optimizing infrastructure
resources usage.

Current SFC deployments are usually static, relying on
network configurations to stitch SFs together. One way to chain
services is by configuring VLANs to steer traffic among the SFs.
Recently, the new technologies of Software-Defined
Networking (SDN) [2] and Network Function Virtualization
(NFV) [3] permit to dynamically compose chains and make the
accurate forwarding policies.

SDN is an emerging networking concept that separates the
data plane from the control plane. It provides a centralized
control and programming via southbound communication
protocols and interfaces to the data plane networking devices. In
the same way, NFV is a trending technology based on network
virtualization that enables the development of network functions

that can be deployed on commodity hardware. NFV, together
with SDN, enhance the flexibility for implementing SFC.

SFC has gained significant interest from Academia and
industry, and several SFC approaches have been proposed thus
far [4]–[11]. However, the static SFC techniques and the recent
dynamic SFC approaches are still not flexible enough to be
deployed in real-life infrastructures [8]–[10]. On the one hand,
the static SFC solutions that rely on physically stitching service
functions together to compose Service Chains (SC) or
configuring networks to create the service chain paths are costly,
and require complex and error-prone configurations. On the
other hand, new dynamic SFC solutions that use new headers
such as Network Service Header (NSH) [9] involve service
function and Service Function Forwarders (SFF) to support new
headers. Furthermore, an additional network encapsulation
overhead is produced and cannot be negligible for SFC
deployment in large-scale infrastructures. Therefore, the
deployment complexity in real-life infrastructures, as well as the
scalability issues limit the efficiency of such SFC solutions.
Indeed, the efficiency of the SFC deployment is based on the
type of the traffic steering method used. Thus, the choice and the
design of the accurate forwarding operations must be
investigated.

The main contributions of this paper are the design of a new
SFC header for encoding SFC forwarding information, and a
traffic steering mechanism based on the existing packet header:
source Mac address. Our solution meets the requirements of an
SFC flexible solution, easily deployable without further SF/SFF
support. Furthermore, the compact header described in this
paper does not induce additional packet size or encapsulation
overhead as compared to NSH[9].

 The remainder of this paper is organized as follows. Section
II presents the most related works to the approach described in
this study. Section III describes the design choices of our SFC
solution as well as the traffic steering method proposed, and
section IV presents an evaluation of our proposal and its
potential to scale. Finally, Section V concludes the paper and
presents our future works.

II. RELATED WORK

Substantial research efforts were provided to respond to the

challenges of dynamic service function chaining. This section

gives an insight on some recent SFC approaches.

A. SFC based on the definition of new headers

The first contributions for service function chaining began in

IETF working groups (WG), mainly the service function

chaining [12] and in ETSI NFV [13] WGs. Some of the

proposals rely on packet headers, such as: Network Service

Header (NSH) [9] and SFC IPv6 extension header (SFCEH)

[14]. Particularly, NSH protocol received the most attention

from academia and industry. NSH [9] [15] is a forwarding

protocol for SFC; it ensures the traversal of network traffic

among the SFs composing a service chain. Several SFC

propositions are based on the NSH protocol. G. Li et al. [16]

and Mehmeri et al. [17] used NSH as the traffic steering

protocol. Furthermore, S. Kulkarni et al. [15] presented a

modified version of the protocol to improve scalability. Despite

the popularity of the NSH protocol, it worth noticing that NSH

produces additional packet size and communication overhead,

because of the encapsulation required for its header. Thus, this

protocol adds considerable complexity in real life deployments.

Moreover, it requires SFs and SFFs to support the header or to

request additional intermediate proxies. For these reasons, we

avoided using extra SFC headers and other tunneling

techniques for the design of our proposal. Our approach is based

on rewriting the source Mac address to encode an SFC compact

header.

B. SFC based on the rewriting legacy packet headers

Besides the proposals discussed earlier, other SFC

approaches choose to rewrite existing packet headers such as

the L2 Ethernet MAC address, IP option field or IP DiffServ.

Among these proposals, the works presented in [8], [18], [19].

Recently, Blendin et al. [19] suggested to rewrite the next SF’s

Mac address in the packet's destination Mac address. The

association of SF address and the incoming port identify the

service chain while IP addresses identify users. They choose to

encode the SF address and retrieves the precise service chain.

Likewise, Ding et al. [18] encoded the service chain identifier

(SC-ID) in the packet's source Mac address and retrieve the

accurate SFs. Conjointly, Abujoda et al. [8] encoded the

forwarding path in a header that combines multiple fields: the

destination MAC address, VLAN tags and MPLS label. These

approaches encoded SFC information differently, however,

tradeoff between sharing the necessary SFC information and

encoding this information in moderate size headers must be

studied. For this reason, our solution encodes the relevant SFC

information in a compact header. The compact header rewritten

to the Mac address field prevents additional packet size.

Moreover, the proposed header allows traffic forwarding with

less lookup by avoiding re-classification. By taking these

factors into consideration, our solution can be easily deployed

and responds to scalability and flexibility requirements.

III. THE PROPOSED APPROACH DESIGN

In this section, we present the design choices for our SFC

proposal, the compact header format and the traffic steering

operation.

A. Compact header proposal

The goal of Compact header proposal is to simplify SFC

forwarding, reduce packet size and avoid re-classification of the

traffic each time it visits an SFF. We choose to encode the SFC

information in a Compact header that does not add size to

packets, by re-writing the Mac source address to carry SFC

forwarding information.

The mandatory SFC information, that helps SFFs to identify

the traffic is: (i) the service chain identifier, (ii) the next service

function in the path and (iii) a counter to position the path. The

header format is depicted in Figure 1; it consists of an identifier

of the service chain, the next service function that is updated

after every SF by the SFF and a counter that is decremented

after visiting the SF and initialized with the number of SFs that

the traffic flow should traverse.
The header’s chain ID field supports more than 4000 million

chain identifiers, which supports fine granular policies and
allows for very large-scale networks [20]. Moreover, The SF ID
field scales for more than 4000 SFs. As for the counter, it serves
to identify the position of the next service function and expires
after visiting the last SFF, right before sending the packets to the
destination. The counter field size is 4 bits and supports service
chains with an order up to 15 SFs per chain.

B. Deployment

The design of SFC compact header is motivated by the need
for more flexible and scalable solutions for production
environments. Furthermore, the reduced overhead and
complexity for deployment in real-life infrastructures are
required. These requirements are considered for the design of
our proposal:

• Flexibility: one of the advantages of SFC being deployed
in an SDN environment is the flexibility gained from
programming the configurations and pushing the

Figure 1: format of the SFC Compact header

forwarding state into the data plane elements. The
forwarding state can be calculated proactively or
reactively. Routes are calculated and inserted in the data
plane components using southbound communication
protocols such as OpenFlow [31]. Our approach can be
implemented in an SDN controller to manage SFC
forwarding rules in the switches, that can be software or
hardware appliances.

• Scalability: A key requirement of an SFC solution is its
ability to scale for medium to very large-scale networks,
as the concept of SFC is more meaningful in the context
of an enterprise, datacenter up to provider infrastructures.
An SFC solution can scale if it supports high number of
chains with acceptable overhead. The compact header
proposed in this paper encodes the relevant information
in Mac address to allow for simple matching. Thus, it
does not add any bits to the packets, and at the same time,
it provides a significant number of chains and functions,
allowing fine granularity policies for an important
number of users, applications or hosts.

• Overhead: among the limits of the current SFC
approaches (e.g. NSH [4]) is the need for further
tunneling. SFC and transport tunneling introduce
overhead, mainly related to the increased packet size and
encapsulation-decapsulation operations.

• Support: the compact header approach can be
implemented in a controller and does not require
modifications of the switches and the southbound
communication protocols between the controller and the
involved SFFs.

C. System architecture and traffic steering method

 The architecture of our SFC proposal shown in Figure 2 is
inspired by RFC 7665 [1]. It consists of a three-layered
architecture composed of a management plane, control plane,
and data plane. The management plane contains the northbound
applications that describe the network policy and pushes
requests for the control plane to translate to policy rules into
forwarding rules. The forwarding state is sent to the data-plane
components (mainly classifiers and service function forwarders)
to ensure steering traffic to accurate service functions and final
destination.

 The traffic steering process is initiated by defining the policy
in the management plane. The controller follows up by sending
forwarding state to classifiers and SFFs. The traffic flows are
first filtered by the classifier(s). The later associates the accurate
SFC information to the packets by rewriting the Ethernet MAC
source address. Usually, the Mac source address is not changed
across the network. Deploying transparent SFs that does not
modify packet headers, ensures that the SFC information
follows the journey of a packet. Next, an SFC index and
identifier of the first SF are inserted in the packet, as well as a
counter initiated by the number of SFs in the chain.

As illustrated in Figure 2, once the classifier (CL) prepares the
packets, they are sent to the accurate SFF that hosts the first SF
in the service chain. Upon reception, an SFF looks at the SFC
compact header and checks the SF identifier, if the SFF hosts the
SF, it forwards the flow towards the accurate SF and backward,
updates the next SF field and decrements the counter. In case the
SFF does not host the SF, it sends it to the nearest SFF in the
path. If the counter equals to 0, then the SF is the last SF in the

Figure 2: The proposed SDN based SFC architecture and traffic steering operation using compact header

chain, the SFF rewrites the source Mac address to the original
address and forwards the packet to the final destination based on
legacy routing.

IV. SCALABILITY OF SERVICE FUNCTION

CHAINING

In this section, we discuss how the use of a compact header

can increase the capacity of an SFF (mainly switches) to handle

a high number of SFs, chains and support chains with several

SFs. First, we calculate the maximum number of chains that the

switches can handle according to our compact header fields

capacity while varying the number of SFs in a service chain and

increasing the number of SFs connected to an SFF. Then, we

discuss different factors that impact the SFF memory. For this

discussion, we refer to switches within the interval of [12,48]

ports.

A. The scale of service chains

The deployment of service function chaining is significant
for medium to very-large-scale networks. Thus, it is important
to consider the scalability requirements while designing an SFC
header. Figure 3 illustrates the scale of service chain identifiers
versus the size of the field where the identifier is encoded.
Therefore, the capacity of a service chain identifier field should
support a high number of chains. By considering the scalability
requirement for service function chaining and as recommended
in [20], a 32 bits field can encode service chain identifiers for a
very large-scale network. With 2^32 combinations of service
chain identifiers, compact header allows for more than 10^9
possible identifiers as shown in Figure 3. Moreover, compact
header contains an 8 bits field for SF identifier which supports
up to 255 SFs.

B. The scale of service chains and service functions for an

SFF

Large-scale topologies deploy an important number of SFs
that also impacts the scalability of an SFC solution. In this
section, the scale of service chains and service functions for an
SFF refers to the maximum number(Max_SCs) of chains where
a switch (SW) is involved. Max_SCs depends on the order of
service chains (Osc). Osc is the number of SFs in a service chain,
e.g., Osc =2 for SCs with two intermediate SFs. The order of SFs
in SCs does not define the scalability of the network; it shows
the complexity of chains and how strict the network policy is.
Thus, large chains with a high SFC order indicate that the flows
are subject to complex treatment by various SFs, which is the
case for security SCs and sensitive infrastructures.

Moreover, nb_SFs refers to the number of SFs connected to
a switch; it increases the number of combinations of SCs. In this
paper, we choose to use the extreme case, where the SFs
connected to the switch are all involved in SCs. We vary Osc
and calculate the maximum of possible combinations of SFs in
SCs, For example:

with Osc=2 and nb_SFs=10,

𝑀𝑎𝑥_𝑆𝐶𝑠(𝑂𝑠𝑓𝑐) = 𝑛𝑏_𝑆𝐹𝑠. (𝑛𝑏_𝑆𝐹𝑠 − 1) =90

In general, we find that the number of possible combinations of
service chains identifiers is:

𝑀𝑎𝑥𝑆𝐶𝑠(𝑂𝑠𝑐) = ∏ 𝑛𝑏_𝑆𝐹𝑠 − 𝑖𝑖≤𝑂𝑠𝑐
𝑖=0 (1)

The number of combinations of SC identifiers depends on
two parameters as shown in (1): Osc and the number of SFs
connected to the switch. Table 1 shows the number of SC
combinations calculated referring to (1). Therefore, we observe
that by increasing the order of SCs, the number of SC
combinations increases from tens to millions of chains.
Similarly, while increasing the total number of SFs, the number
of SCs increases to millions of SFC combinations.

C. Impact of compact header on SFF memory

SFFs can be either software or hardware appliances.

Recently, the software switches such as Open Vswitch [21]

introduced important improvement concerning the capacity to

store a high number of flows because of the type of memory

used, usually RAM. However, when dealing with hardware

switches that use Ternary Content Addressable Memory

(TCAM), the storage capacity is about few hundreds of flow

rules [22]. Therefore, managing the switch memory is

challenging, and strategies for reducing the required memory

allocation for flow entries is a critical point for the scalability

of an SFC solution.
Each flow requires a rule or a flow entry in the switch. The

number of flow entries nb_entries required for the service chains
linearly depends on the order of chains. Thus, each SF in the
chain requires an entry in the flow tables. Thus, the larger the
Osc is, the highest is the number of flows. Noting that the chains
are not symmetric, as such reverse chains will require different
flow entries. A reverse chain can be deployed by reversing the
order of SFs and switching the flow identifiers (e.g., IP address,
port number) and it requires different flow entries. The equation
(2) represents the number of required flow entries for a given
switch:

𝑛𝑏𝑒𝑛𝑡𝑟𝑖𝑒𝑠(𝑜𝑠𝑐) = 𝑂𝑠𝑐 . 𝑀𝑎𝑥𝑆𝐶𝑠 (2)

Figure 3: Compact header capacity requirements for service

chain identifier versus the number of possible SC combinations

Table II shows the required number of flow entries according
to equation 2. The number of entries is per switch, assuming the
extreme case where all the SFs of an SC are connected to the
same switch and involving all the switch’s ports. It shows that
the number of flow entries increases while increasing the
number of SFs and the SCs order. The number of flow entries
varies from thousands to millions of rules.

The efficiency of a switch memory depends on the memory
capacity as well as the management of flow entries allocation.
As such the number of entries can be strengthened by reducing
the amount of memory allocated per entry. The latter depends
on the switch memory characteristics such as the memory
blocks, banks and words [23]. It also depends on the complexity
of match and action fields. OSI L2-L3 match fields require less
memory than complicated matches L4-L5 or higher. Thus, by
matching on simpler fields such as compact header, a switch can
handle more flow entries than with complicated matches that
increase the per entry memory allocation and consequently
reduces the total number of entries and the scale of the switch to
support a high number of flows, SCs and SFs.

Another factor that increases the flow entries is the number
of hops in a given path [24]. This factor explains the increase of
the number of entries in the SFC use cases, where chains with a
higher order, that implies multiple SFs increase the number of
chains and consequently leads to a higher number of flow
entries. This result is also explained by the linearity of (1): the
number of possible SCs linearly depends on the order of SCs and
the total number of SFs connected to the switch.

Different ways allow to reduce the flow state and enable the
flow table to support more flows and scale to larger topologies.
Some solutions permits to compress the number of flow entries
for an SDN Switch such as MINNIE [25]; MINNIE allows to
find the possible compressions and wildcards in a flow table.
Deploying less complex match and actions, using the minimum
number of hops or reducing the order of necessary SFs per SC
can reduce the forwarding state as well.

The allocated size of a flow entry depends on how
complicated the flow rules are. It also depends on the
characteristics and the type of the memory used. A flow entry is
mainly composed of match headers, counters, and actions [26].
We can model the flow entry capacity as a factor of E: the
memory allocation for an entry, M: the memory capacity for
match headers, A: the memory capacity for match headers and
α: the additional memory allocated for other flow entry fields.
Therefore:

 E= M+A+α (3)

 Another factor that impacts the number of flow entries in a
switch is the type and characteristics of each switch. Virtual
switches use RAM which supports an order of millions of rules.
Hardware switches support fewer rules due to the limited and
restricted capacity of TCAM that only supports hundreds of
rules. TCAMs are different and can have different depths (e.g.
36,72). Thus, different TCAMs may support a different number
of entries. Thus, a flow entry capacity must be a multiple of
TCAM widths, where x is the number of TCAM_width required
for an entry.

 E=x . TCAM_width (4)

β is an additional overhead of empty drops of memory for
each entry allocation. Assuming exact match rules where the
same headers are matched (M), the same additional fields are
present (α) and the same memory overhead is added (β), a flow
table with capacity C is represented in (6).

 C=∑(M+A+α+β) (6)

As equation (6) is linear, each of the factors can increase or

decrease the switch memory to support less or more rules,

respectively.

Consequently, different factors impact the number of flow

rules that a switch can store especially for hardware appliances

where the flow table size is an issue. Indeed, managing flow

tables can extend the switch’s flow table capacity. The types

of headers an SFF can match, and the resulted actions allow a

switch to extend its flow table [27]. Thus, scaling to bigger

infrastructures or supporting fine granular policies. For this

reason, the compact header solution deploys simple OSI-L2

matches and simple modification actions. Compact header

requires flow entries with regular capacity and memory

allocation.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a Compact SFC header, that
allows to share SFC information without increasing the packet
size. Our solution encodes the compact header in the Mac source
address and permits to reduce the encapsulation overhead, which
makes it supported by service functions. We analyzed SFC
scalability, memory constraints for SFFs and showed that our
proposal does not impose memory constraints. Furthermore, we
introduced a traffic steering method and SFC architecture based
on compact header.

The traffic steering method described in this paper is suitable
for transparent SFs, that does not update the packet headers.
However, the SFC information could be lost after visiting

TABLE I: THE NUMBER OF SERVICE CHAINS FOR DIFFERENT ORDER AND

NUMBER OF SFS

 N° SFs

 Osc 12 24 48

2 132 552 2256

3 1320 12144 103776

4 11880 255024 4669920

5 95040 5100480 205476480

TABLE II: THE NUMBER OF FLOW RULES FOR DIFFERENT ORDER AND

NUMBER OF SFS

 N° SFs =12 N° SFs =24 N° SFs =48

Osc=2
264 1104 4512

Osc=3
3960 36432 311328

Osc=4
47520 1020096 18679680

Osc=5 475200 25502400 1027382400

opaque SFs, that alter the packet headers. Our next step is to
investigate on better ways to restore SFC header after visiting
opaque SFs. We plan to develop an SFC routing engine in
Floodlight SDN controller, to automatically translate the
policies into forwarding state based on our traffic steering
method.

ACKNOWLEDGEMENT

 This work was partially funded by the Academy of Finland

Project CSN – under Grant Agreement 311654 and also partially

supported by the European Union’s Horizon 2020 research and

innovation program under the 5G!Pagoda project with grant

agreement No. 723172.

REFERENCES

[1] J. Halpern and C. Pignataro, “Service Function Chaining (SFC)

Architecture,” IETF RFC 7665, 2015. [Online]. Available:

https://tools.ietf.org/html/rfc7665.

[2] Open Networking Foundation, “SDN Architecture Overview,”

2014. [Online]. Available:

https://www.opennetworking.org/images/stories/downloads/sdn-

resources/technical-reports/SDN-architecture-overview-1.0.pdf.

[3] ETSI GS NFV, “NFV-Architectural Framework,” Etsi, 2013.

[Online]. Available:

http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs

_nfv002v010101p.pdf.

[4] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci,

and T. Magedanz, “Service Function Chaining in Next Generation

Networks: State of the Art and Research Challenges,” IEEE

Commun. Mag., pp. 2–9, 2016.

[5] T. Taleb, S. Member, A. Ksentini, S. Member, M. Chen, and S.

Member, “Coping With Emerging Mobile Social Media

Applications Through Dynamic Service Function Chaining,” IEEE

Trans. Wirel. Commun., vol. 15, no. 4, pp. 2859–2871, 2016.

[6] F. Z. Yousaf and T. Taleb, “Fine-Grained Resource-Aware Virtual

Network Function Management for 5G Carrier Cloud,” IEEE Netw.

Mag., vol. 30, no. Mars, pp. 110–115, 2016.

[7] P. Zave, X. K. Zou, and J. Rexford, “Dynamic Service Chaining

with Dysco,” in SIGCOMM ’17, 2017.

[8] A. Abujoda, H. R. Kouchaksaraei, and P. Papadimitriou, “SDN-

based source routing for scalable service chaining in datacenters,” in

Mamatas L., Matta I., Papadimitriou P., Koucheryavy Y. (eds)

Wired/Wireless Internet Communications. WWIC 2016. Lecture

Notes in Computer Science, vol. 9674, Springer, 2016, pp. 66–77.

[9] P. Quinn, “Network Service Header,” IETF-Draft, 2017. [Online].

Available: https://tools.ietf.org/html/draft-ietf-sfc-nsh-28.

[10] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,

“Enforcing Network-Wide Policies in the Presence of Dynamic

Middlebox Actions using FlowTags,” 11th USENIX Symp.

Networked Syst. Des. Implement. (NSDI 2014), pp. 543–546, 2014.

[11] E. Datsika, A. Antonopoulos, N. Zorba, and C. Verikoukis,

“Software Defined Network Service Chaining for OTT Service

Providers in 5G Networks,” IEEE Commun. Mag., vol. 55, no. 11,

pp. 124–131, 2017.

[12] IETF, “Service Function Chaining (sfc),” IETF Working Group.

[Online]. Available: https://datatracker.ietf.org/wg/sfc/documents/.

[13] ETSI, “European Telecommunications Standards Institute.”

[Online]. Available: http://www.etsi.org/about/what-we-are.

[14] M. Boucadair and C. Jacquenet, “An IPv6 Extension Header for

Service Function Chaining (SFC),” IETF-Draft, 2016. [Online].

Available: https://tools.ietf.org/html/draft-jacquenet-sfc-ipv6-eh-00.

[15] S. Kulkarni, “Neo-NSH : Towards Scalable and Efficient Dynamic

Service Function Chaining of Elastic Network Functions,” in

Innovations in Clouds, Internet and Networks (ICIN), 2017 20th

Conference, 2017, p. 5.

[16] G. Li et al., “Fuzzy Theory Based Security Service Chaining for

Sustainable Mobile-Edge Computing,” Mob. Inf. Syst., p. 13, 2017.

[17] V. Mehmeri, X. Wang, Q. Zhang, P. Palacharla, T. Ikeuchi, and I. T.

Monroy, “Optical Network as a Service for Service Function

Chaining across Datacenters,” in Optical Fiber Communications

Conference and Exhibition (OFC), 2017, p. 4.

[18] W. Ding, W. Qi, J. Wang, and B. Chen, “OpenSCaaS: An open

service chain as a service platform toward the integration of SDN

and NFV,” IEEE Netw., vol. 29, no. 3, pp. 30–35, 2015.

[19] J. Blendin, J. Ruckert, N. Leymann, G. Schyguda, and D. Hausheer,

“Position paper: Software-defined network service chaining,” Proc.

- 2014 3rd Eur. Work. Software-Defined Networks, EWSDN 2014,

pp. 109–114, 2014.

[20] M. Boucadair and C. Jaquenet, “Service Function Chaining: Design

Considerations, Analysis & Recommendations,” IETF-Draft, 2014.

[Online]. Available: https://tools.ietf.org/html/draft-boucadair-sfc-

design-analysis-03.

[21] B. Pfaff et al., “The Design and Implementation of Open vSwitch,”

Nsdi, pp. 117–130, 2015.

[22] A. Vishnoi, R. Poddar, V. Mann, and S. Bhattacharya, “Effective

switch memory management in OpenFlow networks,” Proc. 8th

ACM Int. Conf. Distrib. Event-Based Syst. - DEBS ’14, pp. 177–

188, 2014.

[23] P. Bosshart et al., “Forwarding Metamorphosis: Fast Programmable

Match-Action Processing in Hardware for SDN,” Acm Sigcomm, pp.

99–110, 2013.

[24] X. N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, “OFFICER:

A general optimization framework for OpenFlow rule allocation and

endpoint policy enforcement,” Proc. - IEEE INFOCOM, vol. 26, pp.

478–486, 2015.

[25] M. Rifai, N. Huin, and C. Caillouet, “Too many SDN rules ?

Compress them with MINNIE,” in Global Communications

Conference (GLOBECOM), 2015 IEEE, 2015, pp. 0–6.

[26] B. Heller, “OpenFlow Switch Specification 1.0.0,” Open

Networking Foundation, 2015. [Online]. Available:

https://www.opennetworking.org/wp-

content/uploads/2014/10/openflow-switch-v1.5.1.pdf.

[27] S. Banerjee, “Tag-In-Tag : Efficient Flow Table Management in

SDN Switches,” in Network and Service Management (CNSM),

2014 10th International Conference, 2014, pp. 109–117.

