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ABSTRACT Future-facing cities increasingly integrate smart and autonomous objects for their smooth
functioning and operations, which ultimately benefit city dwellers and the ecosystem at large. In such
highly complex and digital environments, the increased situational awareness is very important for the
safety of road participants. In this paper, we propose a new bandwidth-aware framework that maximizes the
situational awareness of a given region, using mobile digital boxes and 360° cameras, mounted on connected
vehicles, taking into account the constrained uplink capacity. The proposed framework leverages the multi-
view spectral clustering approach and the K-Means++ algorithms to ensure efficient clustering of vehicles
based on their GPS coordinates. The clustering step is crucial for larger spatial coverage and, thus, higher
situational awareness. Vehicle selection and video quality attribution, under limited uplink constraints,
are then performed per cluster to fairly cover the region. Extensive simulations and comparisons against
state-of-the-art solutions have been conducted to evaluate the performance of the proposed framework, in
terms of region coverage rate and normalized mutual information score, at both small- and large-scale
deployments. The results obtained demonstrate the superiority of the proposed approach.

INDEX TERMS Situational awareness, connected vehicles, multi-view clustering, digital twin, 360°
streaming, Dynamic Adaptive Streaming over HTTP, smart cities.

I. Introduction

SMART Cities is a hot topic that is gaining ample traction
nowadays due to its wide impact on most aspects of

human life. It uses Information and Communication Tech-
nology (ICT) to improve the lifestyle of city dwellers and
protect the ecosystem while ensuring future sustainability.
To a greater extent, smart cities promise to address most
challenges of current cities such as crowded roads, preserve
energy, foster safety, reduce gas emissions, promote intel-
ligent transportation, and improve social life. The surging
number of people at an unbridled rate, especially in large and
dense cities accounting for most of the world’s population,
urges governments to harness emerging technologies in favor
of smarter and more connected cities. To do so, we need to
bridge the chasm between a gamut of essential smart services
and systems, where each has its own data sources.

A key feature of smart cities is that different objects
should be connected and have the ability to exchange infor-
mation with both infrastructure (e.g., edge and cloud) and
other objects via a variety of network technologies. A very
promising technology to achieve this lofty goal is the Internet
of Things (IoT) paradigm. It is a revolutionary technology
that empowers things with intelligence and ubiquitous con-
nectivity to the Internet, enabling physical objects to be
sensed and controlled remotely [1]. The abundant amount
of data generated from billions of IoT devices can be used
to create the digital twin of their corresponding physical
objects. By doing so, we are actually creating a virtual world
in cyberspace that reflects what is happening in the real world
[2]. The more diversified the deployed sensors, the higher the
accuracy of the digital twin environment. The collected data
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can be leveraged to monitor and analyze the physical asset,
ultimately improving its performance in different aspects.

One crucial aspect that is required in smart cities is the
per-object and per-region Situational Awareness (SA). It
heavily relies on both real-time and historical data from
the road’s participants. While the per-object SA aims to
raise the awareness of the road’s participants about their
surroundings, the objective of the per-region SA is to enable
the city authorities to keep an eye on the different streets
for enhanced safety. This is mainly achieved through live
video streams coming from the streets. In addition, recent
advances in integrated sensing and communication between
the so-called Internet of Vehicles (IoV) [3] pave the way for
more innovative combined solutions to address the recent
challenges of SA considering both video streaming and
advanced vehicle-to-infrastructure (V2I) communications.

In a previous study [4], the authors proposed to install
Digital Twin Boxes (DTB) to create the digital twin of the
roadways. Two types of DTB were proposed, namely static
and mobile, whereby static DTBs could be deployed on, for
instance, street and traffic light poles. However, this kind of
deployment is too costly and can only be applied in some
specific areas. Alternatively, mobile DTBs can be carried on
board moving vehicles, including cars, bicycles, motorcycles,
buses, and even Unmanned Aerial Vehicles (UAVs) [5]–[7],
with the vehicle owner bearing the purchase and maintenance
costs. These mobile DTBs will dynamically cover much
larger surfaces, thus increasing overall SA.

Focusing on ground vehicles, this paper investigates the
problem of increasing the SA for a specific region based
on video stream feeds, while optimizing its delivery under
constrained uplink capacity. The ultimate goal is to cover
the maximum surface of the area of interest (AoI) at op-
timal video resolution for better monitoring and computer
processing (e.g., for object detection and recognition). In
bandwidth-constrained scenarios, our solution ensures effi-
cient network utilization by preventing redundant streams
in densely covered areas, where additional streams offer
diminishing returns, in favor of giving room to other ve-
hicles in underserved or uncovered regions. This maximizes
situational awareness by preventing clustered vehicles from
exhausting the network bandwidth to cover an area which is
already covered by other streams. In this work, we consider
the use of the dominant video streaming technique, namely
Dynamic Adaptive Streaming over HTTP (DASH) [8]. The
motivation beneath DASH lies in its high adaptation flexi-
bility in response to varying network conditions at chunk-
level granularity. Also, in this work, we assume 360° video
streams to acquire scenes omnidirectionally [9], which would
allow us to disregard the vehicle’s heading direction in
the proposed solution. Ideally, all vehicles located in the
AoI would be allowed to stream at the highest resolution.
However, the generated traffic from a large number of active
live-streaming vehicles would create an uplink bandwidth
crunch, likely to severely deteriorate the user’s Quality of

Experience (QoE) [10]. This compels us to employ a control
mechanism that takes into consideration both the vehicles’
positions, for the SA, as well as the received video quality
from each vehicle to avoid overwhelming the shared link
which leads to overall QoE degradation. It is worth noting
that the live streams from a subset of selected vehicles
are transmitted to a remote center for an increased SA of
the targeted area, not for the operational functioning and
manoeuvering of the vehicles, which are basically performed
in the vehicles.

To confront the aforementioned challenges, we devise
an unsupervised learning approach, deployed on the server,
for efficiently clustering all the vehicles in a region with
respect to specific distance-based criteria. The design choice
is motivated by the nature of the addressed problem, which
compels us to address the trade-off between the optimal
area coverage and the bandwidth allocated to that area. Our
approach contributes to the preliminary phase of choosing
which vehicle will stream and at which video quality. After
that, computationally speaking, it would be more efficient to
perform the learning with relatively small “data islands” [11]
on limited computation resources and transfer the learning
parameters of the chosen individual vehicles to train a more
global model at the server side.

The remainder of this paper is organized as follows.
Section II presents the current status of machine learning
implementation in video streaming and situational aware-
ness problems in the recent literature. Section III formu-
lates the target problem introducing basic notions towards
the suggested solution. Section IV describes the proposed
framework of our solution to the joint optimal situational
awareness and bandwidth allocation problem. Section V
evaluates and compares the performance results of our so-
lution against previous work in different scale scenarios and
our conclusions are given in Section VI.

II. Related Work
A crucial requirement of smart cities consists of maintaining
a high level of awareness of their environment for a timely
reaction when necessary. This can be achieved by creating
the digital twin of the roads by deploying different sensors
not only at the strategic spots of the roads but also along the
ways and streets. While the strategic spots can be covered
with static poles (e.g., on top of traffic lights or roadside units
RSUs), the other segments of the roads, which constitute
the majority, can be covered using moving vehicles such as
cars, bicycles, buses, and trains. A highly important sensor
that has been always used for monitoring is traditional video
streaming. The use of 360° video streams would offer better
awareness by capturing spherical streams per camera [12].
In addition, the use of VR devices, such as head-mounted
displays (HMDs), would ease the monitoring task. However,
due to resource limitations (e.g., uplink limitation) and
unnecessary content redundancy, it is not possible to allow
all existing video sources to stream, especially in highly
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dense areas [13]. Hence, a video source selection process
should be employed. In recent years, machine learning (ML)
techniques have proved to be highly efficient in making in-
telligent decisions for various complex problems in different
domains including vehicular communications [14], which
motivates us to leverage them in this work. In this section, we
review previous work related to digital twinning, 360° video
streams, and machine learning applications in the context of
situational awareness.

A. Digital Twins
Digital twins are a popular technology that progressively
integrates recent advancements in the IoT and ML scientific
fields for the optimal representation of a physical asset to its
virtual prototype in the digital world. In the framework of
Industry 4.0 objectives, this kind of technology was initially
deployed for manufacturing and product development cases
as well as for their life cycle assessment and monitoring [15].
Recently, there have been many efforts in both industry and
academia on the scalability of the digital world representa-
tion of more complex systems like smart cities and supply
chains. In the context of smart cities, this technology enables
data collection from various sources. In sequence, it will
enable extensive and sophisticated simulations of urban pro-
cesses for creating social and economic benefits [16]. As a
result of this direction, multidimensional aspects and deeper
insights can be better exploited for decision-making across
multiple interests, including real-time situational awareness
of the system, multilateral insurance schemes, disaster man-
agement, and strategic planning [17].

In the agricultural field, specifically in aquaculture farm-
ing, the authors of [18] propose a new framework for Plan-
etary Digital Twin to monitor, simulate, and control aqua-
culture processes in nearly real-time, ultimately to support
and foster the AquaGreen goals. In the proposed framework,
traditional IoT devices are used, while AI-based models are
employed to detect and control water anomalies through
a closed-loop feedback framework. Using IoT devices and
cloud computing services, the authors of [19] propose an
end-to-end system architecture and implementation for envi-
ronmental monitoring, particularly carbon dioxide concentra-
tion. In [20], the author addresses the problem of processing
real-time data collected from various systems in the Smart
City. A large-scale data processing architecture and proof-
of-concept implementation have been proposed for public
transport systems to achieve this goal. This architecture
monitors multiple activities of different actuators in the
Smart City, creates their Digital Twin, processes the large-
scale data to understand the current state of the city, and
ultimately produces actions to be executed in the physical
space. In addition, machine learning models are used to
restrict the amount and type of processing.
B. DASH-based 360° Video Streaming
Nowadays, 360° streaming is a hot topic due to the vivid
user experience that it offers clients, especially when it is

viewed through HMDs. Initially, its use has been mostly in
gaming, but it has rapidly expanded to various other domains
such as education and healthcare. However, this technol-
ogy has been suffering numerous hindrances at different
levels, including acquisition, transmission, and display. The
phenomenal technological advances at both the hardware
and network levels have paved the way for 360° stream-
ing technology to be increasingly adopted by both content
producers and consumers. For example, the 5G breakthrough
in link capacity and lower latency and the various network
slicing frameworks [21], [22] shall enable the end-users to
enjoy such immersive and bandwidth-hungry service in both
shifted and live modes [23], [24]. This paper focuses on
using 360° streaming for digital twinning the roads, which
can be used for limitless purposes such as increasing the
situational awareness of a specific environment through live
and shifted roads’ monitoring applications. For aerial video-
based surveillance and awareness, we refer the reader to [25].
This section describes previous work leveraging 360° video
streams for monitoring purposes as well as pull-based 360°
streaming techniques. The latter exhibits high flexibility in
controlling who can stream and at which video quality based
on many factors such as the busyness of the roads and the
uplink capacity [26]. This flexibility stems from the pull-
based paradigm of the DASH technology which enables a
content producer to intelligently control the encoding rate
based on the link variation.

An AQ360 system is proposed in [27], which relies
solely on 360° streams captured by unmanned aerial vehicles
(UAVs) for monitoring air quality. The reason for using
UAVs is that they are able to provide images with greater
depth, which is not possible with ground-based images due
to obstacles. The authors also proposed a location selection
algorithm that reduces system energy consumption in large-
range areas. The evaluation of the proposed method shows
that it achieves high accuracy by using a pre-trained infer-
ence model on small data sets while it consumes less energy
in larger areas.

In a similar vein to traditional streaming, 360° video
content can be delivered over the network via different low
latency protocols such as Real-Time Messaging Protocol
(RTMP), Real-Time Streaming Protocol (RTSP) [28]–[30],
WebRTC, as well as the universal HTTP, using DASH [8] in
all its variants. Despite the fact that DASH exhibits higher la-
tency compared to the aforementioned protocols, as its name
indicates, it offers the advantage of being much more flexible
for adapting the video quality to changes in conditions
such as fluctuating network and server workloads. There is
however a need to amend the MPEG-DASH specifications
to consider the spatial representation proposed in [9], [31]–
[33] in order to support tile-based streaming, where the tiles
within the active viewport are delivered at higher quality,
while the rest are delivered with a lower quality to reduce
the bandwidth usage.
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C. Machine Learning Techniques for the Situational
Awareness
Situational awareness is defined as the current perception
of the environment or system status with predictive ca-
pabilities referring to future system states. Based on our
application-specific scenario and setting, the system refers
to a particular area including the passing-by vehicles and
its road infrastructures. In this study, machine learning
will contribute to the required SA of our system with the
clustering of vehicles in a specific AoI and their subsequent
approximate selection based on clustering properties. Some
research studies with relevant machine learning applications
in SA-oriented problems were recently presented in the
relevant literature. A recent study in [34] presents a solution
to mitigate the effects of adverse weather conditions that
worsen traffic for vehicles by introducing a dual attention-
and dual frequency-guided dehazing network for immedi-
ate visibility improvement. Their model uses an attention
mechanism and an innovative frequency-related information
fusion strategy to extract both general and local features,
ensuring the recovery of clear high-frequency patterns and
fine low-frequency details. In [35], the author presents the
use of knowledge graphs for learning the representations of
objects while preserving the required system information.
With the use of path-based embeddings and graph neural
networks, a joint object representation learning from multiple
entities is experimentally achieved. In [36], the authors
present deep learning techniques using multi-modal informa-
tion from imagery, text, video, and other sensor sources for
extending situational awareness performance. Deep Multi-
modal Image Fusion is selected as the most promising
approach for distance-based system performance modeling.
In [37], a serverless computing approach for multimodal
computing is presented that enables the effective use of
neural networks and machine learning approaches in relevant
situation awareness implementations. Recently, the authors
of [38] proposed an innovative framework that combines
360-degree video streaming with graph neural networks to
create a road digital twin with enhanced predictive situational
awareness capabilities for intelligent transportation systems.

D. Multi-view K-Means and Spectral Clustering
The traditional single-view K-means clustering is a centroid-
based clustering method, which partitions the data space into
a structure. Due to its low computational cost and easily par-
allel process, the K-means clustering method has often been
applied to solve large-scale data clustering problems [39].
A usual challenge is when the data needs to be interpreted
and represented by multi-view aspects. To overcome this
challenge, a group of unsupervised multi-view clustering
methods have been presented in the literature [40]. Although
these methods can achieve interactions between heteroge-
neous features, there are still some problems regarding high
computational complexity or the curse of dimensionality.
Spectral clustering is also one of the most commonly used
clustering methods due to its clear mathematical principles

and good performance compared to other clustering methods.
Multi-view clustering is a special clustering subcategory in
the relevant literature that mainly refers to the partitioning
of data considering multiple views, where the information
from the individual views can be used together for more
efficient cluster creation and visualization. These views may
of course come from different sources or correspond to
subsets of the same underlying feature space. To exploit
the diverse and complementary information contained in
different views, numerous multi-view clustering methods
have been proposed [41]–[43]. To this end, multi-view spec-
tral clustering aims to group data into different categories
by optimally exploring complementary information from
multiple Laplacian matrices.

In this paper, we propose a new framework that maximizes
situational awareness in urban areas using DASH-based 360°
live streams while preserving the overall users’ QoE. The
live streams originate from mobile DTBs onboard various
vehicle types (e.g., cars, bicycles, etc.). The motivation
behind opting for 360° is the spherical Field of View (FoV)
which offers better awareness of the target area. The DASH-
based streaming offers great flexibility in switching between
different video qualities. In addition, it makes it easy to
dynamically enable/disable the different DTBs, based on
their GPS locations and the vehicular density of the area,
at short time scales. It is worth noting that, in this work,
we consider only the case of outdoor vehicles moving in
urban areas without any specific restrictions to their GPS
availability on the system.

For the efficacy of our solution to the problem of optimal
bandwidth allocation with situational awareness constraints,
we leverage ML techniques, namely the multi-view Spectral
and K-Means clustering algorithms for the approximate
optimal coverage of the AoI. It is noteworthy to mention
that the choice of the specific algorithms is based on their
performance advantages compared to other clustering algo-
rithms and refers to the nature of our research problem [44].
Moreover, the multi-view aspect has a double advantage in
the nature of our problem, as it can be shown to lead to better
algorithmic performance with less computational complexity.
This is further enhanced by dividing the AoI into smaller
subdomains during the actual multi-view clustering process.
The novelty of this work lies in its significant contribution to
the situational awareness goals and requirements for future
smart cities and their corresponding digital twins with the
implementation of combined machine learning algorithms
for joint near-optimal coverage and bandwidth allocation. To
the best of our knowledge, this is the first work to address the
specific problem of maximizing situational awareness using
machine learning techniques.

III. Problem Formulation
The objective of this work is to maximize the situational
awareness (SA) of a specific region R. To better evaluate
the covered region R, we virtually divide it into N smaller
circular and adjacent subareas R = {R1,R2, · · ·RN } of

4 VOLUME 00, 2024



identical radius r. The center of each subarea Rn is denoted
by λn representing the global positioning system (GPS)
coordinates. Each subarea Rn, n ∈ [ 1,N ] , contains a
number of vehicles that might be equipped with mobile
DTBs. We denote by Dn = {Dn

1 ,Dn
2 , · · · Dn

M} the set of
available DTBs in a subarea Rn, where M denotes the
number of DTBs in a subarea. Each DTB Dn

m, n ∈ [ 1,N ] ,
m ∈ [ 1,M] , has a specific GPS coordinate Gnm. We denote
by Gn = {Gn1 ,Gn2 , · · · GnM} the set of latest GPS coordinates,
of a given snapshot of the system, corresponding to the set
of DTBs Dn co-located in the same subarea Rn.

In this work, we consider 360° video cameras capable of
streaming a spherical view of the environment. For compu-
tational and demonstration reasons, we assume the cameras
can have different values of lens focal length (LFL) L ∈
(r/4, r). It actually represents the distance ahead it could
cover. These cameras stream live using DASH technique at K
predefined video qualities Q = {Q1,Q2, · · · QK},Qk, k ∈
[ 1,K] , where Q1 and QK represent the lowest and highest
video qualities, respectively. We denote by D̂n

m ∈ Q the
actual video quality selected by the mobile DTB Dn

m. We
also denote by B the total uplink bandwidth available in the
whole region, where Bn denotes the fair bandwidth budget
allocated to a subarea Rn.

We define the matrix Pn that refers to all the distances
among the different DTBs co-located within the same sub-
area Rn, where both the rows and columns represent the
DTBs Dn available in Rn. The matrices Pn,∀n ∈ N are
pre-calculated, based on the latest GPS coordinates Gnm of
each DTB Dn

m, and provided as input to the system, where
the cell values Pn[i, j],∀i, j ∈ M contain the distances
between the DTBs Dn

i and Dn
j . Obviously, the distance

between the Di and itself is always 0, i.e.,

∀i = j,∀i, j ∈ [ 1,M] ,Pn[i, j] = 0 (1)

We also define a 1-dimensional matrix T n, n ∈ [ 1,N ] ,
per each subarea Rn, to store the distances between all the
DTBs in Dn and the center of the subarea λn. We denote by
||Dn

mλn||, the Euclidean distance between the m-th DTB in
the n-th subarea and the center λn of the subarea Rn, i.e.,

∀n ∈ [ 1,N ] ,∀m ∈ [ 1,M] , T n[m] = ||Dn
mλn|| (2)

We ensure that the minimum coverability of a region Rn by
a DTB Dn

m is satisfied when:

||Dn
mλn|| ≤ r

We also denote by Cn = {Cn1 , Cn2 , · · · CnH} the set of the
computed clusters from the set of DTBs Dn in the subarea
Rn, where each cluster Cnh , h ∈ [ 1,H] contains a non-empty
and disjoint subsets of DTBs, i.e.,

∀h ∈ [ 1,H] , Cnh ⊆ Dn (3)

∀h ∈ [ 1,H] , Cnh ̸= ∅ (4)

∀n ∈ [ 1,N ] ,

H⋃
h=1

Cnh = Dn (5)

∀h ̸= v,∀h, v ∈ [ 1,H] , Cnh ∩ Cnv = ∅ (6)

Similarly, we denote by Ĉnh the centroid of the cluster Cnh .
In this work, we aim to enhance situational awareness in a

region (a.k.a. the area of interest) by covering the maximum
surface of that area with the FoV of the DTBs’ cameras,
while taking into account the number of video sources and
the user’s QoE. Due to the limited uplink capacity B and to
preserve the QoE from degradation, only a subset of DTBs
Sn ⊆ Dn (called active DTBs) should be allowed to stream,
where the DTB selection process uses their actual GPS
coordinates Gn. In addition to the DTB selection process,
a subsequent video quality identification process is also
performed to assign a video quality D̂n

m ∈ Q to each
DTB in Sn. Figure 1 helps understand the main notations
and concepts used in this section. The maximization of
road situational awareness will then be addressed with the
framework proposed in Section IV.

FIGURE 1. Cluster selection based on the distance to the center of the
subarea.

IV. System Design and Proposed Framework
In this paper, we address the problem of maximizing the
situational awareness of a given environment by creating
its digital twin that mainly uses live video streams. Specif-
ically, we target the creation of the digital twin of the
road’s infrastructure using 360° live streams. This can be
achieved by deploying DTBs composed of single onboard
computers, with different processing capabilities, that are
equipped with various sensing devices such as cameras and
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GPS devices [4]. Two types of DTBs are identified, namely
static and mobile. In the present study, we primarily focus
on the selection of mobile DTBs that are mounted onboard
moving vehicles such as cars and buses. In dense areas
(e.g., downtown), a potentially large number of connected
vehicles will simultaneously livestream to create a digital
twin of roadways, which would lead to a bandwidth crunch.
A more critical situation might arise when 360° live streams
are delivered, where very high frame rates and ultra-high def-
inition are used. The dynamic vehicle selection and flexible
video quality allocation are therefore necessary to cope with
the coverage maximization across regions while considering
the uplink capacity limitation. The objective of this work
is to dynamically select relevant vehicles that allow better
coverage of the targeted region while taking into account
the limited uplink capacity B and preventing video stalls.

The key innovation of our study lies in the novel algorithm
we have developed, which simultaneously achieves two key
objectives: (1) maximizing situational awareness through
optimal selection of geographically distributed vehicles using
advanced clustering techniques, and (2) enhancing the video
quality per region while ensuring fair bandwidth allocation
across different regions. This is achieved through the de-
velopment of road digital twins [4] based on distributed
360° video streaming sources for optimal area coverage
considering video quality requirements. Optimal area cov-
erage is necessary to maintain the integrity of digital twin
services, while the allocated video quality directly impacts
their performance and enables additional functionalities such
as object detection tasks. Unlike previous works that focus
solely on video streaming or machine learning clustering
algorithms, our solution innovatively combines state-of-the-
art clustering and adaptive streaming techniques (DASH),
carefully selected and integrated to effectively address the
challenge of enhancing situational awareness in smart city
environments under contrained network bandwidth.

A. Architecture Description
Figure 2 illustrates the overall architecture of the proposed
situational awareness framework at a given region in the
presence of a limited shared uplink B for the entire region.
In this work, we use 360° video streaming as it provides
a spherical view that enhances flexibility while monitoring
via HMD. Furthermore, it will reduce the complexity of
the SA maximization problem when it comes to vehicle
steering. As shown in Fig. 2, the red circles represent the
spherical field of view of the 360° cameras, while the yellow
vehicles represent all connected vehicles (e.g., autonomous
vehicles or legacy vehicles equipped with DTBs) that are
capable of sending 360° live streams, whereas the rest are
conventional vehicles. The 360° live video streams are sent
to a control center where surveillance operators can monitor
the roads using either legacy monitors or HMDs to enable
enhanced monitoring flexibility. In order to reduce the end-
to-end (E2E) latency, the 360° video streams are primarily
viewed at a local control center, if one is available, through

multi-access edge computing (MEC) servers that are located
in close proximity to the AoI [28]. In case there is no
local control center available, live streams are sent to cloud
servers, so a remote control center can perform surveillance
through the cloud. In what comes next, we describe the
main phases of the proposed framework to maximize the
SA of the covered region, while shielding users’ QoE from
degradation. It is noteworthy that we interchangeably use the
terms vehicles and DTBs since we only consider connected
vehicles in this work.

B. Divide the AoI into Smaller Subareas
To efficiently measure the coverage of the entire region,
we divide the AoI into smaller circular subareas, as shown
in Fig. 1, where the radius equals the double of the lens
focal length L of the camera. The clustering of the DTBs
belonging to each subarea is then performed separately from
the others, and the aggregated individual results provide
coverage of the entire global area. The number of circular
subareas can be configured and adapted to any size of the
AoI according to its density and the number of obstacles.
Intuitively, in urban areas where too many obstacles and
buildings exist, a smaller value of L would be more appropri-
ate and vice versa. It is worth noting that the clustering step
works well for the entire region without any consideration
for logical divisions. The latter only helps in assessing the
coverage rate of the AoI and reduces the computational
complexity of the clustering algorithm in large-scale cases.

C. Clustering
In order to achieve the best possible coverage of the AoI
without compromising the video streaming QoE of the users
at the control center, only a subset of DTBs should be
allowed to live stream. Owing to the fact that adjacent and
nearby vehicles would stream duplicate scenes, especially
when a spherical view is delivered, it would be more efficient
to select video sources whereby scenes do not overlap with
each other. To do so, we cluster existing vehicles, based
on their actual GPS coordinates, and group all geographi-
cally close-by vehicles together because they would stream
similar scenes. It is worthwhile mentioning that clustering
is performed within subareas, not for the entire region. In
what follows, we describe the different unsupervised learning
algorithms that are used to produce better clustering results.

As a first step, we use the Elbow [45] method to determine
the optimal number of clusters (Line 8 in Algorithm 1).
Next, we employ the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN-CORE) algorithm [46]
ultimately to identify the core samples of high density (i.e.,
dense areas of vehicles) and the outlier vehicles, correspond-
ing to the two subsets A and B in Algorithm 1, respectively.
The next step (Line 10 in Algorithm 1) consists of clustering
the vehicles in subset A (i.e., dense areas) using the one-step
multi-view spectral clustering approach [47]. The clustering
step is guided by the input from the Elbow method to
produce ζ clusters. Two different views are identified:
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FIGURE 2. The overall architecture of the situational awareness digital twin framework.

• View 1: is the standard input for the spectral cluster-
ing algorithm. It consists of a 2-dimensional matrix,
namely Pn (defined in Section III), that stores the
computed distances among the DTBs themselves. This
view considers only the distances between the vehicles
and the clustering outcome is based on this distance-
based matrix.

• View 2: a 1-dimensional matrix, namely T n, that con-
tains the distances between the center λn of a subarea
Rn and the DTBs Dn

m belonging to it. This view con-
siders only the distances of the vehicles from a specific
point of reference (e.g., the centre of the subarea) and
the clustering outcome is based on this distance-based
matrix.

A given DTB belongs to the subarea Rn if the distance
between its GPS coordinates and the center λn of the subarea
is strictly less to a certain threshold (r). The second view
ensures that the clustering process considers only the DTBs
belonging to the same subarea separately from the DTBs
of other subareas. The inputs for the multi-view spectral
clustering step are mainly computed based on the latest GPS
coordinates of the different DTBs at a given snapshot of the
system. The outliers data in subset B along with the outcome

of the Multi-view spectral clustering, which is a set Cn of
clusters per subarea Rn, is then provided as input to the k-
nearest neighbors (k-NN) algorithm (Line 11 in Algorithm 1)
to update the set of clusters Cn by allocating the outliers
vehicles to the nearest neighboring cluster Cnh located in the
same subarea Rn. Each generated cluster Cnh has a centroid,
where the distance between the clusters’ centroids satisfies
a minimum threshold using the K-Means++ algorithm [48],
which is implicitly applied when forming the clusters at step
10 in Algorithm 1.
D. Clusters & Vehicles Selection
Following the previous step, the different vehicles are as-
signed to the set of generated clusters that are sufficiently
distant from each other, allowing for better coverage of the
subareas, given the GPS coordinates of the vehicles. The
next step consists of selecting a subset of vehicles that are
allowed to stream live. To do so, we perform iterations
over the different clusters within the same subarea, while
prioritizing clusters whose centroids are closer to the center
of the subarea, and we pick only one vehicle from each
cluster per iteration to spatially maximize the coverage of
the area, which would result in better SA, and fairly share
the uplink bandwidth among vehicles in distinct clusters.
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Rationally, the closer the selected vehicle is to the center of
the subarea, the larger the covered surface of that subarea.
Similarly, the closer the cluster is to the circle’s perimeter,
the less subarea is covered by vehicles belonging to that
cluster. Figure 1 provides an illustration of the AoI division
into smaller subareas as well as clustering. The big blue
circle represents a subarea, while the smaller circles (shown
in green, orange, and red) illustrate an example of clusters
and their distances to the center λ5 of the subarea R5. The
grey circles represent the FoV of the 360° cameras with focal
length L. As to the vehicle selection at each iteration step,
we start off by selecting the closest vehicle to the cluster’s
centroid in the first round. In subsequent rounds, a minimum
distance threshold, equal to half the FoV (i.e., L/2) of the
360° camera, should be verified whenever possible between
previously selected vehicles and the one to be selected within
the same cluster. By doing so, we avoid selecting multiple
vehicles in close proximity to one another, which basically
stream similar scenes, while potentially leaving other spots
uncovered due to bandwidth scarcity. It is worth mentioning
that the selected vehicles are the ones allowed to stream live,
also called active DTBs, while the rest remain inactive (i.e.,
do not livestream), but can still record and store the video
streams locally for later upload.

E. Bandwidth Allocation & Video Quality Selection
Once vehicles are selected, the last step consists of deciding
which video qualities the selected DTBs are allowed to
livestream so that the QoE is not compromised at either
local or remote control centers, while taking into account the
uplink capacity B. Initially, B is evenly distributed among the
subareas Rn ∈ R,∀n ∈ [ 1,N ] to ensure the bandwidth is
fairly shared across the different subareas. The latter are then
considered in ascending order, in terms of number of vehicles
located in each subarea Rn, to proceed with the vehicle
selection process starting from the less crowded subareas.
By doing so, the more crowded subareas would benefit from
the leftover bandwidth budget that was initially allocated to
non-crowded subareas.

As explained in Section D, the generated clusters Cn at
each subarea Rn are sorted in ascending order according to
their distances to the center of the subarea to prioritize the
clusters which are in the middle of the subareas. The process
of video quality allocation is then performed by iterating over
the different clusters in the predefined order while selecting
a single vehicle from each cluster at a given iteration to
maximize spatial area coverage. In the first round, the default
video quality assigned to the selected vehicle is the highest
one. In the following rounds, and based on the number of
selected vehicles, we progressively reduce the video quality
in order to accommodate as many vehicles as possible for
wider spatial coverage and better situational awareness. The
aim is to offer at least one high-resolution stream per cluster
and possibly several distant vehicles covering other angles of
the cluster at lower resolutions, while the essential objective

Algorithm 1 Situational Awareness Maximization (SAM)
1: procedure MSA(R, D, G,B)
2: B̃ ← B ▷ B̃ is the left over bandwidth
3: R ← sort(R, ASC)
4: for Rn ∈ R do
5: Sn ← ∅; Bn ← B̃/n; B̃ ← B̃ − Bn; iter ← 0
6: Pn ← get dtbs distances(Dn,Gn)
7: T n ← get dtbs proximity(λn,Dn,Gn)
8: ζ ← get elbow clusters(Dn,Gn)
9: A,B← cluster dbscan core(Dn,Gn)

10: Cn ← cluster SC(ζ,A,Pn, T n, ASC)
11: Cn ← kNN allocate outliers(Cn,B,Dn,Gn)
12: while Bn ≥ Q1 AND Cn

h ̸= ∅ do ▷ Vehicle &
video quality selection

13: iter++;
14: for h← 1 to H do
15: if Bn ≤ Q1 then
16: break
17: end if
18: η ← select dtb(Cnh )
19: η̂ ← select video quality(η,Bn, iter)
20: Bn ← Bn − η̂
21: Cnh ← Cnh \ η
22: Sn ← Sn ∪ η
23: end for
24: end while
25: B̃ ← B̃ + Bn
26: end for
27: end procedure

is to avoid video stalls, which are the most serious cause of
QoE degradation.

We keep iterating over the generated clusters in a given
subarea until there is no longer enough bandwidth to be
allocated to the vehicles (Line 12 in Algorithm 1), or
all the vehicles in that subarea are satisfied in terms of
bandwidth coverage. The complete pseudo-code of the sit-
uational awareness maximization framework is provided in
Algorithm 1. It should be noted that Algorithm 1 is executed
at discrete timesteps to account for vehicles’ mobility. The
higher the vehicles’ velocity (e.g., on an expressway), the
shorter the timestep interval for algorithm execution, and
vice versa. A more sophisticated solution which takes into
account, during the DTB selection, other mobility-related
parameters such as the vehicle’s velocity and its planned
trajectory, can be found in [38].
V. Performance Evaluation
A. Evaluation Setup
To demonstrate the performance of our proposed framework,
we conducted extensive simulations under several scenarios,
namely low, middle, large, and very large-scales, corre-
sponding to cases of 20, 100, 200, and 400, for evaluating
the effect of subareas and the coverage performance while
considering the region division into subareas of different
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number of vehicles. In addition, we considered also scenarios
of 600, 900, and 1200 vehicles for testing the scalability of
Algorithm 1. For the GPS coordinates we used a real-world
dataset, namely the Road Vehicle Localization dataset [49],
while our ground truth dataset is defined, using NumPy,
Pandas and Shapely Geometry libraries, by choosing the
coordinates set that gives the maximum area coverage. The
area is defined by the largest x and y values among all the
vehicle GPS coordinates. The algorithm implements single-
view and multi-view clustering with K-Means++ to obtain
the final clustering results. The clustering parameters are
defined in Table 1.
TABLE 1. Algorithm 1 Set-up Parameters

Single-View & Multi-View Clustering

Clusters 8

Random state None

Info view None

Max iterations 10

No. of initializations 10

Affinity Nearest Neighbors

Gamma None

Neighbors 10

DBSCAN Algorithm

Eps 0.5

Minimum Samples 5

Metric Euclidean

k-Nearest Neighbor algorithm

Metric Euclidean

Shrink Threshold None

The evaluation process was conducted on a DELL Insp-
iron 3847 with a processor Intel Dual Core i3 1600MHz,
8GB RAM. As for the software configuration, we ran our
experiments on a Windows 10 OS with Python 3.7.13
using the NumPy 1.23.0 library. In our simulations, we
considered a large area divided into relatively small circular
subareas of fixed radius r = 80 meters. The set of video
qualities is defined as Q = {10, 8, 6}Mbps with 10Mbps
representing the highest video quality and 6Mbps the lowest
acceptable case. To account for critical situations where the
uplink capacity is extremely disproportional to the number
of vehicles in a certain region, we set the uplink capacity
as B = 1500Mbps to evaluate the coverage performance
when a region is divided into several subareas. For the larger
scenarios of 600, 900, and 1200 vehicles, we further tested
them as distinct whole regions (i.e., without divide them
into subareas) with B = 3.000Mbps for each one, without
subdivision into smaller subareas. It is noteworthy that we
used a radius of r meters for the circular adjacent subareas
to generate the results presented in Table 5. Alternatively, a

radius of 10r meters was used when considering the entire
region during the scalability evaluation to obtain the results
shown in Table 8.

Furthermore, in terms of coverage performance, we in-
cluded in Tables 6 to 9 the comparison results with the
algorithms proposed by [50] and [51]. In [50], the authors
presented 3 different scenarios comparing their algorithm’s
performance against others in the literature. Their second
scenario was about a sensor deployment case for the connec-
tivity improvement among the robots that move in a region
of interest. In correspondence with our setup, the cameras
are addressed in the same way as the sensors mounted on
the robots to satisfy the optimal area coverage requirements.
In [51] the authors proposed an improved Flower Pollination
Algorithm (FPA) to guarantee the coverage and connectivity
requirements in a specific region. The algorithm was properly
configured in accordance with our coverage requirements
and compared to our proposed Algorithm 1. More partic-
ularly, we assumed that the target points of their experiment
were the centers of our subareas, while the sensor nodes
were addressed as vehicles in our scenarios. The optimal
locations of the nodes determined by the algorithm are then
compared with the closest vehicles in our scenario to make
their selection for video coverage. To this end, we select the
vehicles that are closest to the node coordinates given by the
algorithm.

Given that the main contribution of this work is to study
the SA of roads’ infrastructure and how to maximize it in a
given area by leveraging 360° live streams, it is noteworthy
to add that our focus in the current section is on the eval-
uation and comparison of the proposed framework against
state-of-the-art algorithms in terms of covered surface rather
than the live video streams performance. Furthermore, it is
worth mentioning that transmitted live streams are mainly
consumed by humans (e.g., national security agents) for
monitoring purposes and the targeted use cases by this work
are not subsecond-latency critical, which tolerate for few
seconds of latency in DASH-based streaming, fluctuating
between 1s to 3s.

B. Performance Evaluation Metrics
For the evaluation process, we adopted two Key Performance
Indicators (KPIs), namely the overall percentage of the cov-
ered region and the performance of the algorithms in terms
of Normalized Mutual Information (NMI) [52]. To compute
the coverage percentage of the subareas, and eventually the
overall regional coverage, we deduct the subarea surfaces
covered by the 360° cameras, after considering surface
overlaps, from the accumulated subarea surfaces.

Thus, let Sm be the virtual circular surfaces of the cameras
Dn

m and Sn the circular surfaces of the subareas Rn. The
surface coverage computation is provided by equations (7)
and (8), based on the notions and formulations of [53]
and [54]. The coverage percentage of each subarea is given
in Table. 6. The overall percentage of the covered region,
SP , is calculated by:
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Sp =
SA∑N
n=1 Sn

× 100, (7)

where:

SA =

M∑
m=1

Sm −
M∑
ξ=1

M∑
η=ξ+1

Θξη, (8)

where Sm denotes the virtual circular surfaces of the active
DTBs and Θξη denotes the overlapping area between Sξ and
Sη.
C. Performance Results
The evaluation process will consider the widely used K-
Means and spectral clustering approaches in both single- and
multi-view schemes. Our scenarios are based only on these
approaches as they present better clustering performance
against other clustering approaches, see Table 10, while
they present much better computation times for real-time
scenarios. The performance evaluation of both schemes is
assessed through different metrics, namely cluster formation,
DTB selection, video quality attribution, and per-subarea SA
percentage. In addition, performance benchmarking between
multi-view K-Means and spectral clustering is presented
referring to the aforementioned vehicular scalability cases.

1) Single-view K-Means and Spectral Clustering
In this section, we evaluate the single-view implementation
of both the popular K-Means, in a similar concept as in a
network traffic application in [55], and spectral clustering
algorithms. In this scheme, the two views are combined
into one single view to be used in the clustering process
by concatenating the input adjacency matrices. We assume
a region of 720 vehicles is divided into four equal and
adjacent circular subareas with different vehicular densities,
defined at 20, 100, 200, and 400 vehicles respectively. The
clustering results for Subarea 1 are given in Table. 2, where
the vehicle IDs in bold denote the detected outlier vehicles
before their reallocation to their actual clusters based on line
11 of Algorithm 1. The clustering outcome of the remaining
three subareas is not presented here due to the lengthy
results. They are, however, included in Table. 5 which
shows bandwidth allocation and video quality selection. In
Figure 3 and due to visual presentation clarity, we can see
an indicative single-view spectral clustering outcome of an
area with 100 vehicle coordinates divided into four subareas.
2) Multi-view K-Means and Spectral Clustering Schemes
Contrary to the previous scheme, the multi-view clustering
consists of simultaneously considering the two separate
views described in Section IV. In our computational experi-
ments, we use a well-known open-source software package
developed in Python for multi-view clustering approaches,
namely the mvlearn [56]. Classical methods of inference and
analysis are often poorly suited when considering multiple
views of the same data sample. With mvlearn, we can
implement leading multi-view machine learning methods.
The library has been demonstrated through specific multi-
view example cases highlighting the performance superiority

TABLE 2. Single-view Clustering for the subarea 1 (N = 20 vehicles)

Subareas Cluster ID Spectral Clustering K-Means

1 12,14,15,7 2,10

2 1,17,20,9 13,14,16,19

3 4,5 8,18

Subarea 1 4 16 1,5,11

5 13,19 4,6,7,9

6 6,18,11 3,12

7 2,3 17,20

8 8,10 15

of multi-view algorithms compared to their respective single-
view ones, as presented in the library repository1. Similarly
to the single-view, the generated multi-view oriented clusters
per algorithm for Subarea 1 are presented in Table. 3. In
Figure 4 we graphically depict the clustering outcome of the
multi-view spectral algorithm for Subarea 1, which has 20
out of 720 total vehicles in the whole region of our tested
scenario.
TABLE 3. Multi-view Clustering for Subarea 1 (N = 20 vehicles)

Subareas Cluster ID Spectral Clustering K-Means

1 7,9,10,11,12 12,14,15,17,20

2 2,5,20 4,6,7,9,10

3 13,14,15 2

Subarea 1 4 4,6,18,19 3

5 3 1,16

6 1 8,18

7 8 13,19

8 16,17 15,11

3) Video Quality Selection
For scalability demonstration reasons, we assumed that the
region consists of four subareas with completely different
vehicular densities, i.e., 20, 100, 200, and 400 vehicles, re-
spectively. Considering that the above region has an uplink
capacity of 1500Mbps, and the vehicles are included in the
predefined four circular and adjacent subareas in a 2×2 lay-
out, we proceed with our suggested framework for bandwidth
allocation per subarea and per DTB. Any bandwidth left in
each subarea is added to the next one following an ascending
order based on the number of vehicles it includes. The
bandwidth allocation and the video quality selection results
for Subarea 1 are presented in Table. 4, including only the
IDs of the DTBs that are selected for live streaming, along
with their attributed video qualities. In Table. 5, we present
the summary of the results from the remaining subareas, in
terms of the total number of clusters and selected vehicles
as well as the number of selected vehicles per video quality.

1https://mvlearn.github.io/
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FIGURE 3. A single-view clustering for n=100 vehicles with 4
subareas.

FIGURE 4. Multi-view Spectral Clustering in the 1st Subarea (n=20
vehicles).

It is important to note that the average video quality is
consistently optimized on the basis of the selected vehicle set
at each timestep. To achieve this, our algorithm guarantees
that at least one vehicle per cluster streams in the highest
possible video quality, given the available bandwidth during
each round.
TABLE 4. Bandwidth Allocation for n=720 vehicles and B=1500 Mbps

(Multi-view Spectral Clustering).

Subarea 1: n = 20 vehicles

Residual
Bandwidth
Iterations
(Mbps)

Cluster ID
Selected
Vehicles

Assigned
Video Qualities

per Iteration
(Mbps)

1 2 1 2

375 297 5 16,10 10 8

365 289 2 6,4 10 8

355 289 7 14 10 -

345 289 4 8 10 -

335 281 6 18,19 10 8

325 281 1 1 10 -

315 281 3 13 10 -

305 281 8 15 10 -

Note: Initial allocated bandwidth and the final
residual bandwidth are in bold.

4) Situational Awareness
Table. 6 presents the area coverage results, expressed in per-
centage, for the four virtual subareas, of different densities,
from the whole region containing 720 vehicles. Among the

spectral and K-means clustering algorithms, the results show
the superiority of the multi-view clustering approaches over
their single-view counterparts. However, it is observed that in
small-scale scenarios, single spectral view clustering seems
to have better coverage performance. It happens because
small datasets often have simpler relationships that can be
captured effectively by focusing on a single feature. Adding
multiple views with variable FoV introduces unnecessary
complexity, which might not improve clustering but instead
overfit the limited data. Also, it is apparent that the multi-
view spectral clustering algorithm outperforms the multi-
view K-means algorithm.

In addition, we conducted similar computations for very
large-scale scenarios starting from 600 vehicles up to 1200
vehicles and measured the SA percentage for the whole
region, without dividing it into subareas. In these simula-
tions, we used a radius of r = 2.000 meters for the global
area and an uplink capacity of B = 3.000Mbps. The large-
scale results given in Table. 8 corroborate the observations
derived from the analysis of multiple subareas at smaller
scale. Furthermore, we expanded our area coverage analysis
in Tables 7 and 9 by considering a realistic scenario
where vehicles are equipped with cameras featuring varying
FoVs, namely r/4, r/2 and r with equal distribution into the
vehicle populations, thereby demonstrating the robustness
and consistency of our solution across diverse conditions.

Based on the results in Tables. 6 - 9, we clearly see that our
Algorithm 1 with the multiview spectral clustering approach
outperforms the multiview K-Means clustering algorithm,
which highlights its effectiveness in vehicle selection towards
a near-optimal solution for our joint video streaming and SA
problem. It also outperforms the proposed and properly con-

VOLUME 00, 2024 11



El Marai et al.: Roads Infrastructure Digital Twin: Advancing Situational Awareness through Bandwidth-Aware 360° Video Streaming and Multi-View Clustering

TABLE 5. Bandwidth allocation for n=720 vehicles and B=1500 Mbps (Rest of subareas)

Subarea IDs
Allocated

Bandwidth
(Mbps)

Consumed
Bandwidth

(Mbps)

Num. of
Clusters

Total
Num. of
Vehicles

Selected
Vehicles

Total Vehicles per Video Quality

High Medium Low

2 656 530 40 100 57 40 14 3

3 501 500 75 200 50 50 0 0

4 376 376 125 400 38 37 0 1

TABLE 6. Effect of Subareas: Approximate Area Coverage Results with

N=720 vehicles and 4 subareas (Sp) - Fixed Fov

L = r/2 Single-view Multi-view

Subareas Spectral K-Means Spectral K-Means [50] [51]

1 50.3% 47.71% 52.33% 38.29% 49.28% 44.56%

2 67.85% 62.17% 71.23% 66.19% 63.4% 70.05%

3 61.13% 51.78% 67.24% 52.41% 64.11% 62.13%

4 58.92% 53.46% 69.7% 54.45% 66.1% 61.55%

TOTAL 59.55% 53.78% 65.12% 52.83% 60.72% 59.57%

TABLE 7. Effect of Subareas: Approximate Area Coverage Results with

N=720 vehicles and 4 subareas (Sp) - Variable Fov

L ∈ (r/4, r) Single-view Multi-view

Subareas Spectral K-Means Spectral K-Means [50] [51]

1 44.2% 41.53% 42.23% 31.17% 38.88% 36.62%

2 56.15% 50.76% 58.13% 57.9% 53.1% 62.15%

3 48.43% 37.18% 49.41% 40.11% 52.12% 49.15%

4 39.92% 41.62% 61.19% 42.51% 51.1% 44.18%

TOTAL 47.17% 42.77% 52.74% 42.92% 48.8% 48.02%

TABLE 8. Effect of Scalability: Approximate Region Coverage Results with

B=3.000 Mbps and radius r=2.000 meters (Sp)

Fixed FoV

L = r/2 Single-view Multi-view

Vehicles Spectral K-Means Spectral K-Means [50] [51]

600 59.66% 52.11% 67.88% 62.31% 63.29% 65.32%

900 61.87% 64.12% 68.47% 64.73% 65.25% 67.49%

1200 59.67% 56.17% 65.18% 61.34% 61.56% 62.15%

figured state-of-the-art algorithms in [50] and the Improved
FPA algorithm in [51].

5) Comparison of clustering algorithms performance
Table. 10 shows the NMI comparison results of the K-
Means (1) and spectral clustering (2) algorithms in both
single- and multi-view schemes as well as the results of two
selected popular single-view algorithms from the literature,
namely the Gaussian Mixture Model [57] (3) and the Fuzzy
C-Means [58] (4). For multi-view spectral and K-Means,

TABLE 9. Effect of Scalability: Approximate Region Coverage Results with

B=3.000 Mbps and radius r=2.000 meters (Sp)

Variable FoV

L ∈ (r/4, r) Single-view Multi-view

Vehicles Spectral K-Means Spectral K-Means [50] [51]

600 50.3% 42.13% 52.62% 51.11% 50.9% 48.12%

900 49.71% 51.2% 53.56% 51.33% 51.96% 47.39%

1200 57.21% 54.1% 63.88% 60.47% 58.62% 60.3%

NMI scores demonstrate better performance against all the
rest of the compared algorithms. Our scenarios were based
only on the multi-view clustering approaches as they present
better clustering performance against the other 4 cases,
while the Gaussian Mixture Model and Fuzzy C-Means are
computationally expensive because of the larger computation
times for real-time scenarios and the need to estimate the
covariance matrices [59], [60]. The comparison is performed
at different scale scenarios using the NMI bounded scores.
TABLE 10. Comparison of the clustering algorithms’ performance per

scenario scale (nmi score).

Single-view Multi-view

Vehicles 1 2 3 4 1 2
Num. of
Clusters

20 1.0 0.87 0.961 0.923 1.0 0.94 8

100 0.863 0.734 0.81 0.785 0.882 0.767 40

200 0.691 0.727 0.703 0.722 0.703 0.769 75

400 0.668 0.711 0.699 0.708 0.665 0.732 125

600 0.657 0.696 0.668 0.679 0.613 0.708 200

900 0.583 0.621 0.607 0.619 0.520 0.698 350

1200 0.614 0.633 0.638 0.657 0.610 0.685 500

The NMI metric demonstrates that in low- and middle-
scale scenarios, the multi-view K-Means clustering algorithm
performs better, while in large-scale scenarios the multi-
view spectral clustering algorithm gives slightly better re-
sults, with its performance being comparably the best as
scale grows. Given that our proposed framework will be
used in real-life scenarios in high-density areas, multi-view
clustering is the prevalent solution. Besides, it should be
pointed out that if the region is divided into many small equal
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subareas, the multi-view K-Means should be the designer’s
preferred choice, while in larger vehicle populations with
fewer subareas the multi-view spectral clustering presents
better results.

6) Complexity Analysis
From a complexity analysis point of view, we examined both
single-view and multi-view spectral clustering in combina-
tion with the rest of the computations made in Algorithm
1. To this end, DBSCAN presents a time complexity of
O(nlogn) with n defined as the number of vehicles (data
points), spectral clustering presents a time complexity of
O(pn3) with p defined as the number of views, kNN presents
a time complexity of O(pn) and Euclidean distance presents
a time complexity of O(n).
TABLE 11. Simulation Execution Time in Seconds (s).

Vehicles Time Clusters Subareas

20 3.1s / 2.4s / 0.6s 8 0 / 4 / 8

100 5.2s / 3.4s / 1.2s 40 0 / 6 / 12

200 6.6s / 4.2s / 2.3s 75 0 / 6 / 12

400 7.3s / 5.1s / 2.8s 125 0 / 8 / 12

600 9.8s / 6.7s / 4.8s 200 0 / 8 / 16

1200 11.3s / 8.7s / 4.4s 500 0 / 10 / 16

In Table 11 we present the algorithm execution time results
for various numbers of subareas and vehicles in order to
underline the fact that the more the sub-areas, the better
the execution time of the algorithm. Since we refer to
temporal snapshots of bandwidth allocation, the temporal
execution is not suitable for a large number of vehicles.
This drawback can be removed by increasing the number
of sub-areas for presenting better computational efficiency.
Another solution should be the use of hardware acceleration
techniques and GPU-related deployments, which we will
include and evaluate in our future research.

VI. Conclusions
In this paper, we successfully applied a machine learning
approach for maximizing the situational awareness of a given
region leveraging moving DTBs and using 360° live streams.
The ultimate goal consists of enhancing the overall SA
while preserving the QoE at the consumer side (e.g., remote
surveillance agents) under uplink capacity constraint. This
is achieved by allowing only a subset of vehicles, notably
in dense areas, to live stream when the bandwidth becomes
critical. These vehicles are optimally selected, so that the
coverage of the AoI is maximized. Towards this end, we
leveraged the K-Means and spectral clustering approaches
at both single- and multi-view schemes to obtain optimal
clustering of DTBs based on the distances between them-
selves as well as the distance to the subareas centers. We also
ensured that the K-Means++ module is included in the algo-
rithms’ configuration for achieving the best possible cluster
centroid distribution. Then, we proposed and implemented

vehicle selection and video quality attribution logic to ensure
maximized situational awareness based on the DTBs’ instant
GPS coordinates. We have conducted extensive simulations
and demonstrated the effectiveness of the proposed solution
in terms of situational awareness meeting the requirements
for optimal coverage and the performance of the algorithms
validated with the NMI score. We also compared the re-
sults of the K-Means and spectral clustering approaches
in different scenarios at low, medium, and large-scales and
with two state-of-the-art coverage algorithms from the recent
literature. Our selection of K-Means++, Spectral Clustering,
and DBSCAN was driven by their proven efficiency in
multi-view clustering scenarios. To justify our selection, we
compared our approach against alternative novel clustering
methods, demonstrating why our choice remains competitive
for real-time smart city applications.

In terms of clustering performance, it was demonstrated
that the multi-view algorithms outperform their single-view
counterparts. Subsequently, the proposed SAM algorithm
gives a discrete quantized bandwidth allocation in different
video qualities based on the resulting centroids of the clusters
from the multi-view clustering part of the algorithm. This
outcome satisfies the joint objective of the approximate op-
timal vehicle selection and bandwidth allocation confirmed
by both the results of the subarea’s coverage efficiency and
scalability. A crucial finding of this work is that multi-view
spectral clustering performs better in environments with a
large number of vehicles (i.e. dense areas), while the multi-
view K-Means algorithm performs better in environments
with a large number of sub-areas.

In the future, we plan to implement more sophisticated
machine and deep learning approaches for addressing the
problem of maximizing situational awareness and optimal
bandwidth allocation among vehicles in smart cities. From
a federated learning aspect and the digital twin system’s
perspective, we plan to examine, test, and integrate incentive
mechanisms for the choice of cameras that will take part
in the learning process without violating the joint optimal
coverage requirements. Predicting the vehicle’s position,
based on its velocity and trajectory, is another crucial feature
for vehicle selection that needs to be considered in our next
research endeavor.
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