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AbstrAct

Unmanned aerial vehicles (UAVs) were 
initially developed for military monitoring and 
surveillance tasks but found several interesting 
applications in the civilian domain. A promising 
application/technology is to use drone small cells 
(DSCs) to expand wireless communication cov-
erage on demand. Rapid deployment along with 
limited operating costs are key factors that boost 
the development of DSCs for both military and 
civilian utilizations. DSCs are rapidly deployable 
to provide connectivity for temporary users (e.g. 
attendees of festivals, sporting events, or semi-
nars), or over disaster areas to replace damaged 
communication infrastructure. UAVs are bat-
tery-powered, which makes energy consumption 
optimization a critical issue for acceptable per-
formance, high availability, and an economically 
viable DCS deployment. In this article we focus 
on the scheduling of beaconing periods as an effi-
cient means of energy consumption optimization. 
The conducted study provides a sub-modular 
game perspective of the problem and investigates 
its structural properties. We also provide a learn-
ing algorithm that ensures convergence of the 
considered UAV network with its unique Nash 
equilibrium operating point. Finally, we conduct 
extensive numerical investigations to assist our 
claims about the energy efficiency of the strategic 
beaconing policy (at Nash equilibrium).

IntroductIon
Unmanned aerial vehicles (UAVs) have been 
commonly associated with military technology 
suited for tactical offensive/defensive missions. 
However, there has been a growing interest 
in broadening their usage range to cover civil 
applications such as monitoring traffic conges-
tion, network coverage extension, and disaster 
management. Drone small cells (DSCs) are 
envisioned to provide temporary communica-
tion coverage in areas with no or limited network 
capacity through deployment of UAV fleets.

Rapidly deployed, UAVs at low altitude will 
act as aerial base stations for providing coverage 
for mobile users on the ground. Thus, they will 
likely form a communication backbone during 
temporary mass events such as sports compe-
titions, festivals, conferences, and seminars. 

Besides, drone small cells could substitute dam-
aged communication infrastructure in the after-
math of disasters (e.g. earthquakes or tsunamis). 
Thus, different public law enforcement and safe-
ty agencies will have a reliable communication 
infrastructure to coordinate rescue operations 
and provide timely guidance to the population.

Fast deployment and effective relocation in 
response to demand is one major asset of UAVs 
without being hampered by geographical con-
straints inherent to on the ground deployed 
communication networks. This ability to relo-
cate allows great responsiveness to mass mobility 
and copes with communication disruption in the 
wake of disasters. Self-organizing UAV networks 
are highly effective in providing timely commu-
nications cover for on the ground users when a 
spurt in communication demand occurs. Figure 1 
illustrates two UAVs deployed over a geographic 
area to provide network coverage in areas with 
different mobile user densities.

The Google Loon project [1] is based on 
balloon deployment to provide ubiquitous net-
working. The balloon will be deployed in high 
altitude in the stratosphere to provide Internet 
access, especially in rural and poorly covered 
areas. Internet coverage will be provided for 
LTE-enabled devices by balloons relying on wind 
to relocate. The balloons form one large com-
munications network. Facebook has the Drone 
project [2], its own vision for providing Internet 
access. The proposed architecture is a mixture 
of low earth orbit, geosynchronous earth orbit, 
and stationary drones, depending on the density 
of the target population. This could potentially 
lead content providers such as Google and Face-
book to become independent Internet service 
providers (ISP) and circumvent existing ISPs to 
distribute their content.

In order to optimize the energy consumption 
of mobile users and the drones acting as airborne 
access points, we propose the use of passive scan-
ning for the mobiles and periodic beaconing for 
UAVs. The problem of optimal beaconing sched-
uling of relocating UAVs is a constrained optimi-
zation problem. In order for UAVs to be highly 
responsive to user mobility, self-organization is a 
key feature. The latter is hampered by the cen-
tralized nature of constrained optimization 
solutions. Indeed, a central authority needs to 
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allocate UAVs to their optimal locations, which 
increases the communication overhead and 
slows down the responsiveness to environment 
changes. Besides, UAVs acting as DSCs could 
be owned by different operators competing to 
provide effective coverage for mobile users and 
those not reporting to a central authority. UAVs 
are engaged in a competition to maximize their 
individual coverage probability of mobile users 
within a geographic area of interest (festival, 
football field, etc.). This setup can be naturally 
addressed using non-cooperative game theory 
where rational agents compete to maximize their 
own individual payoff. However, in a disaster 
relief scenario, drones must have incentive to 
cooperate to provide an alternative access net-
work for damaged communication infrastructure. 
Hence, cooperative game theory tools will be the 
most suitable.

In [3] the authors investigate the optimal alti-
tude that ensures maximal downlink ground cov-
erage while minimizing the transmit power for a 
single UAV. They subsequently study the scenario 
of two UAVs and compute the optimal altitude 
for each UAV along with the separation distance 
to guarantee maximum coverage both in free and 
full interference scenarios. The authors of [4] 
study optimal coverage and rate performance of 
UAV-based wireless communication in the pres-
ence of underlaid device-to-device (D2D) com-
munication links. Both a static and a mobile UAV 
scenario are considered, and the UAV altitude 
along with D2D user density influence the overall 
measured performance. For the mobile case, the 
optimal stopping number is computed to ensure 
coverage for the downlink users.

In [5] the location and movement of UAVs 
are optimized to improve the connectivity of a 
wireless network. The authors formulated deploy-
ment and movement problems for the UAV and 
developed adaptive algorithms to increase the 
network performance in terms of global message 
connectivity. They showed that network bisection 
and k-connectivity are improved by the addition 
of a UAV to the network. In [6] the authors pro-
posed a novel usage model for a UAV network, 
where a number of UAVs are required to collect 
information from randomly located areas and 
transmit it wirelessly to a common receiver. The 
authors of [7] consider energy-efficiency maxi-
mization for UAV-based relay architectures. In 
this work a fixed-wing UAV relays data between 
a stationary source and destination nodes. Thus, 
circular maneuvering is optimized through tuning 
the turning radius parameter. Energy efficiency 
is defined as the ratio of network capacity to the 
power consumption of both maneuvering and 
communication. The authors provide a closed 
form for a suboptimal solution for an approxi-
mate energy efficiency formula.

The authors of [8] propose a distributed 
framework for UAV-based disaster sensing. The 
presented framework comprises a client unit 
hosted by the UAV on-board system and a server 
unit hosted by the remote computing cloud infra-
structure that provides service-oriented resource 
support. To address the processing and storage 
limitations inherent in small civilian UAV, they 
propose in-cloud selective data offloading and 
processing. The selection process on the UAV 

filters acquired video and only offloads essential 
frames for power-hungry advanced processing. 
The work in [1] investigates UAV based relaying 
both for single and multiple relay UAV over test-
beds. Performance bounds are derived based on 
stochastic geometry formulation. The proposed 
UAV-based relay is compared to load balancing 
and traffic management techniques. In [9] it has 
been shown that an efficient UAV system can 
only be improved by the use of energy efficient 
components. The authors propose to optimize 
the maximum operating range and frequency 
band for data-transfer to a ground station. In 
addition, complex tasks are distributed among 
multiple UAV working as a fleet. Optimal bea-
coning control for epidemic routing in delay tol-
erant networks for energy efficiency is proposed 
in [10]. The authors propose a continuous Mar-
kov and derive a threshold beaconing policy that 
maximizes the delivery ratio within an energy 
constraint.

In this work we examine the problem of opti-
mal beaconing in drone small cells networks with 
two competing UAVs. To achieve the maximum 
system performance in terms of encounter rate 
and energy efficiency, we propose to carefully fix 
the duration of periodic beaconing periods. First, 
we introduce a game theory model for beaconing 
independent period duration choice. Second, we 
investigate the existence and uniqueness of Nash 
equilibrium based on the sub-modularity of the 
game. Then we provide a fully distributed learn-
ing framework allowing UAVs to discover their 
equilibrium beaconing period duration. Finally, 
we show the efficiency of our proposed beacon-
ing strategy through extensive numerical results.

The rest of this article is organized as follows. 
We present the adopted approaches for cover-
age advertisement. We formulate a sub-modular 
game to capture the competition among UAVs 
for providing drone small cells (DSCs) coverage. 
Then we provide implementation insights gained 
from the proposed learning framework. We 
study a representative case study through exten-
sive numerical investigations. Finally, we draw 
some conclusions and discuss future directions.

Figure 1. Drone small cells for coverage expansion.
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drone smAll cells for coVerAge 
exPAnsIon: uAV Presence AdVertIsement

As illustrated in Fig. 1, the drones are able to 
carry several transceivers for different wireless 
access technologies. Hence, the small cells are 
heterogeneous and comprise WiFi and 3G/4G 
enabled mobile devices. The drone-satellite com-
munications operate on the C band while the 
drone-to-devices communications operate on dif-
ferent bands (e.g. 2.4 GHz and 5 GHz for WiFi, 
2 GHz for 3G, and 2.6 GHz for 4G).

The access standards support both active 
and passive scanning. The active scanning mode 
is enabled by default on mobile phones that 
broadcast probe-any frames. The objective of 
this procedure is to solicit probe responses from 
available access points. Thus, mobile devices 
actively look for reachable access points. During 
passive scanning, the radio listens for beacons 
and probe response frames. In passive mode, 
the radio scans are performed once per second. 
As reported in [11], active probing/beaconing 
is extremely power-hungry. For instance, WiFi 
probing consumes 221.4587 mW while video 
playback consumes 209.4283 mW, which is quite 
surprising.

UAVs relocate frequently in search of ground 
mobile users. Consequently, performing active 
scanning increases the mobile users’ energy con-
sumption. Besides, no guarantees for successful 
association with air-born access points are pro-
vided due to base station mobility (BS). Thus, 
passive scanning for beacons announcing the pres-
ence of BSs will be economically viable architec-
tures for the deployment of drone small cells.

To reduce energy consumption by the mobile 
users, passive scanning will be used. Hence, the 
mobile users will avoid sending scanning packets 
when no drone is covering them. The drones will 
periodically send beacons advertising their pres-
ence to mobile users on the ground. The bea-
coning period duration for UAV i is τi ∈ [0, T]. 
Hence, this UAV will send beacon packets for 
every slot in [k  T , k  T + τi] where k ∈ {0, 1, 
2, …, K} is the beaconing period ID number. If 
a number of beacon responses exceeding a pre-
defined threshold is received during the UAV 
beaconing period, a successful encounter with 
mobile users on the ground has been achieved. 
Hence, the mobile becomes the center of the 
small cell covering the encountered users. Oth-
erwise, the beaconing response failed and there-
fore the UAV relocates according to its mobility 
pattern and starts beaconing in the period with 

ID k + 1. The drone remains idle during the 
period [k  T + τi, (k + 1)  T] to reduce its 
energy consumption.

the system model

We consider two flying drones acting as aerial 
base stations belonging to different operators. 
The two drones will move randomly to cover an 
interest area, as depicted in Fig. 1. Each UAV 
will probe for mobile users on the ground during 
a fixed period of duration τ. Because mobile 
users are moving randomly, UAVs have to stra-
tegically choose their beaconing period to maxi-
mize their encounter rate. However, they should 
avoid battery depletion resulting from maintain-
ing useless beaconing in the absence of contact 
on the ground. The probability density function 
of the first encounter rate follows an exponen-
tial distribution with parameter λ [12]. Figure 2 
describes the beaconing schedule for two com-
peting UAVs, i and j. Let us denote by m the 
activity schedule duration formed by an ordered 
sequence of beaconing and idle periods. m stands 
for the encounter deadline above which the tem-
porary DSC establishment is no longer required. 
The beaconing/idle cycle is periodically repeated 
every T slots for a number of l = m/T cycles.

The two drones are competing over being the 
first to provide coverage for the mobile users 
on the ground. For a given DSC, the successful 
encounter rate depends on its activity schedule 
(sequence of beaconing/idle periods) and the 
other drone’s activity schedule. We distinguish 
two cases, depending on the drones’ chosen bea-
coning durations. If drone i meets the mobile 
users first within one of its beaconing periods, 
then it succeeds. Whereas, if drone j is the first 
to encounter the mobile users, then in order for 
i to succeed, the UAV j encounter must hap-
pen during an idle period of its activity sched-
ule. As drones belong to different operators, 
each UAV wants to be the first to encounter the 
mobile users and act as DSC. Drones need to 
self-organize by autonomously and independent-
ly choosing a beaconing scheduling strategy to 
maximize a successful encounter rate. This leads 
to a strategic competition with conflicting self-in-
terests. The formulated problem fits within the 
framework of a non-cooperative game theory, 
where the drones are players that strategically 
choose their respective beaconing schedules, and 
compete to be rewarded upon first successful 
encounter with the mobile users on the ground. 
We will exhibit an equilibrium operating regime 
and a learning mechanism to understanding the 
interaction between UAVs.

gAme formulAtIon

Game theory is a field of applied mathematics 
that analyzes multi-person decision situations. 
Its analytic tools help predict the outcome 
of complex interactions between independent 
self-interested agents in situations where ratio-
nality demands strict commitment to a strategy 
deducted upon perceived and measured results. 
Economics, political science, biology, sociology, 
engineering, and computer science are the main 
fields benefiting from game theory. There are 
two main branches of game theory: cooperative 
and non-cooperative. Non-cooperative game the-

Figure 2. A snapshot of the activity schedule for two autonomous UAVs.
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ory [13] deals with how individuals interact with 
one another, in an effort by each to achieve their 
own goals, and not, as it may suggest, that the 
theory applies only to scenarios where agents’ 
interests confl ict. In cooperative games, the com-
petition is set among groups (coalitions) of play-
ers with the same objective. Here, the interaction 
among UAVs is captured using a non-coopera-
tive game.

The beaconing scheduling game involves 
two UAVs (players) who independently choose 
the strategy maximizing their respective pay-
offs. UAV i fixes its beaconing period dura-
tion τi comprised between zero and T. A value 
of 0 means that the UAV will not perform on 
the ground user detection for the whole activi-
ty schedule duration. Whereas, with τi = T, the 
UAV will perform active beaconing for mobile 
users all the time. The beaconing period schedul-
ing can be modeled as a game  = , {{i∈}}, 
{u{i∈}}}. Here,  represents the set of UAVs, 
and the action set i = [0, T] for every UAV i 
is the beaconing period duration. If τi is the bea-
coning period duration for UAV i, then its idle 
period will last for T – τi. The payoff ui for UAV i 
is the difference between a reward and a cost. 
The reward is the probability of successful first 
contact with mobile users on the ground, while 
per slot consumed energy to send beacons and 
to switch the transceiver state are considered as 
costs. In order for the fi rst contact to be success-
ful, it must happen during the beaconing period. 
We denote by Ps

i(τi, τj) the probability of the two 
drones choosing the beaconing durations τi and 
τj, respectively. Only the fi rst UAV to encounter 
the mobile users while doing beaconing will serve 
as an airborne access point base station. Thus, 
the beaconing period duration of each UAV 
impacts the payoff of the other.

From a single UAV perspective, there is a 
trade-off between the encounter rate and ener-
gy consumption. On one hand, as the beacon-
ing duration increases, the encounter rate Ps 
grows. On the other hand, energy consumption 
is proportional to the beaconing period duration. 
We denote by Cb (respectively Cs) the energy 
cost per slot for sending beacons (respectively 
remaining switching the transceiver state). The 
payoff of UAV i under the beaconing strategy 
profi le (τi, τj) is

ui
i (τ i ,τ j ) = Ps

i (τ i ,τ j )−
(Cbτ i +Cs )l

m  
(1)

where m = l  T is the available time window for 
UAVs to enter in contact with mobile users on 
the ground. Denote by Xi (resp. Xj) the encoun-
ter time of UAV i (resp. j) with the mobile users 
without accounting for its state (beaconing/idle). 
Then, the successful encounter rate1 is given by

Ps
i (τ i ,τ j ) =

P(Xi ≤ X j )+ (P(Xi > X j )
×P(1{ j idle})
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 

                          × P(1{ibeaconing} )   
 

(2)

Two possible scenarios are to be considered for 
the computation of Ps

i(τi, τj). Indeed, if UAV i 
encounters fi rst the mobile users on the ground 
(i.e. Xi ≤ Xj), then i has to be in its beaconing 
period at Xi. However, if Xi > Xj, UAV i has 
to be sending beacons at time Xi, and j has to 

be idle at Xj. To this point, we have defi ned the 
UAVs involved in the beaconing periods sched-
uling game  payoffs and their strategy spaces. 
We let each UAV unilaterally decide how long 
its beaconing period will be. As mentioned pre-
viously, the payoff for each UAV is a function 
of that UAV’s own strategy as well as the deci-
sions of the other UAV. We are now interested 
in fi nding the outcome of this strategic interac-
tion. Each UAV will choose the best beaconing 
period to maximize its payoff while taking into 
account that the other UAV is doing the same. 
The strategy space and the payoff is common 
knowledge of the UAVs, but the chosen period 
is not since decisions are taken simultaneous-
ly. Then, a rational choice for the UAVs is an 
operating point that is stable against individu-
al deviation, called Nash equilibrium. At Nash 
Equilibrium, none of the UAVs will benefi t from 
unilaterally deviating.

exIstence And unIQueness of the nAsh eQuIlIbrIum

The Nash equilibrium is the operating point 
(duty-cycling regime) from which none of the 
drones could unilaterally deviate while enhanc-
ing its gains. The beaconing scheduling game is 
sub-modular and has at least one pure Nash equi-
librium. Sub-modular games have very attractive 
properties since they do not require concavity 
nor the convexity assumption to guarantee NE 
existence. Informally, the sub-modularity of the 
game  implies that if one UAV reduces its bea-
coning period, the other UAV also has an inter-
est in decreasing its own. Stated otherwise, the 
best response of a UAV is a non-increasing func-
tion of another UAV beaconing duration [14].

Theorm 1–(Debreu, Glicksberg, Fan) [13]: Con-
sider a strategic form game  = {, {{i∈}}, 
{u{i∈}}} such that for each i ∈ :
• i is compact and convex.
• ui(τi, τ–i) is continuous in τ–i.
• ui(τi, τ–i) is continuous and quasi-concave in 

τi.
Then a pure strategy Nash equilibrium exists.
The game’s structural properties such as qua-

si-concavity are key factors to have insight on 
its Nash equilibrium existence and uniqueness. 
Since the second order derivative

∂2 Ui (τ i ,τ j )
∂τ i

2
 

is negative, i(τi, τj) is concave and consequently 
quasi-concave. Hence, according to Theorem 1, 
there exists at least a pure Nash equilibrium for 
the game .

For the symmetric case, the drones have the 
same encounter rate λi = λj = λ. The symmetric 
game satisfies the dominance solvability condi-
tions stated in [15] and consequently also satis-
fi es Rosen’s conditions [15] which guarantee the 
uniqueness of the Nash equilibrium. We solved 
numerically the fi rst order condition,

∂U (τ ,τ )
∂τ

= 0,
 

for several values of λ and reported the obtained 
results for the equilibrium beaconing period 
duration τ* in Fig. 3.

1 For details: https://sites.google.
com/site/essaidsabir/publications/
UAV.pdf
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We notice that as the encounter rate increas-
es, the optimal beaconing period duration τ* 
decreases. Indeed, the higher are the chances to 
meet with the destination, the more it is logical 
and strategic to decrease its beaconing period 
duration in order to save its energy budget. This 
is even more accurate in the case of fully sym-
metric UAVs since all the other drones will have 
the same reasoning and have the same τ.

InsIghts on reAl-World ImPlementAtIon: 
leArnIng AutomAtA

We now turn to investigate the learning process 
by which we aim to understand the behavior of 
the users during the interactions and the even-
tual convergence toward the Nash equilibrium. 
Best response dynamics (BRD) [14] is known to 
reach equilibria for S-modular (both sub-modu-
lar and super-modula) games, by exploiting the 
monotonicity of the best response functions. At 
iteration t, each UAV chooses the best strate-
gy to the opponent strategy chosen in iteration 
t – 1. Although BRD is easy to implement and 
offers certain convergence to the equilibrium for 

S-modular games, it suffers from major short-
comings. Yet this scheme requires perfect ratio-
nality and complete information, which is not 
practical for real-world applications and may 
increase the signaling load as well. Therefore, we 
propose an adaptive distributed learning frame-
work to discover equilibria for the activation 
game based on the “Nash Seeking Algorithm” [15] 
with stochastic state dependent payoffs for con-
tinuous actions.

The equilibrium learning framework is an 
iterative process. At each iteration t, the UAV 
i chooses its beaconing period duration τi,t and 
obtains from the environment the realization of 
its payoff. The improvement of the strategy is 
based on the current observation of the realized 
payoff and previously chosen duration. Hence, 
we say UAVs learn to play an equilibrium, if 
after a given number of iterations, the strategy 
profile converges to an equilibrium strategy. The 
proposed learning framework has the following 
parameters: φi is the perturbation phase, zi is the 
growth rate, bi is the perturbation amplitude, and 
Ωi is the perturbation frequency. 

Algorithm 1 summarizes the NSA learning 
steps that UAV i (resp. j) has to perform in 
order to discover its NE beaconing strategy. NSA 
exhibits enormous advantages as it is fully distrib-
uted and hence reduces the signaling overhead 
and does not rely on any coordination between 
UAVs. Besides, it does not require knowledge 
about the exact formula of the payoff. Indeed, 
the numerical value of the function at each iter-
ation is sufficient. Also, each UAV strategy is 
only based on its observations. Indeed, it is not 
required for a UAV to acquire knowledge about 
strategies and payoffs of other players. These 
advantages are particularly suitable to the drone 
small cells where no central controlling entity 
is available to manage the different operators’ 
UAVs. NSA is resilient to errors produced by 
the noisy learning environment. This learning 
error resilience is a result of a fine-tuning of 
NSA perturbation parameters.

dscs for temPorAry eVents: 
A cAse study

The developed beaconing period learning frame-
work is validated through numerical investiga-
tion and event-driven simulation on MATLAB®. 
The considered scenario comprises two UAVs 
moving randomly according to a random way-
point (RWP) model and a group of mobile users 
moving on the ground also according to a RWP 
mobility model. The encounter rates between the 
UAVs and the mobile users are, respectively, λ1 
and λ2. For sake of comparison, we benchmark 
the proposed learning framework versus BRD.

Figure 4 depicts the behavior of the pro-
posed learning algorithm over time and how it 
converges to the equilibrium beaconing dura-
tion. Here we consider two UAVs with identi-
cal encounter rates λ = {0.1, 1, 10}. In addition, 
we plot the best reply dynamics learning curve 
that serves as a baseline for comparison with 
NSA. The proposed learning approach converg-
es within approximately 20 iterations, while the 
BRD approach needs five to 15 iterations to 
converge. The relatively small number of extra 

Figure 3. Beaconing period τ* at Nash Equilibrium for different encounter 
rates λ values.

Encounter rate 
21

0.5

0

Na
sh

 e
qu

ilib
riu

m
 b

ea
co

ni
ng

 p
er

io
d 

du
ra

tio
n 

(s
lo

ts)

1

1.5

2

2.5

3

3.5

4

3 4 5 6 7 8 9 10

Beaconing/idle cycle duration T=5
Beaconing/idle cycle duration T=10
Beaconing/idle cycle duration T=20
Beaconing/idle cycle duration T=50
Beaconing/idle cycle duration T=70

Algorithm 1. Nash seeking algorithm (NSA) for 
UAV i.

Data:
    φi ∈ [0; 2π] : perturbation phase;
    bi > 0 : perturbation amplitude;
    Ωi : perturbation phase;
    zi: the growth rate;
Result: Equilibrium beaconing period duration τi
1 Initialization:
2     Assign a value for τi

*
,0 2 [0, m];

3 Learning pattern: For each iteration k
4    
      

Compute k*! 1
′k +1′k +1

k

∑ ;

5     Observe the realization U
∧

i,k and estimate τi
*
,k+1 using

6        τi
*
,k+1 = τi

*
,k + k* zi bi sin (Ωik* + φi) U

∧
i,k;

7     Update beaconing duration τi using the following rule
8        τi,k+1 = τi

*
,k+1 + bi sin (Ωik + φi);
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iterations required by the NSA to converge are a 
very acceptable price for the associated benefits, 
i.e. fully distributed and reduced signaling. We 
notice that UAVs with high encounter rates bea-
con less, which is quite intuitive. This behavior 
participates to reduce their energy consumption, 
which explains the result observed in Fig. 4.

Figure 5 shows the beaconing duration at 
equilibrium as a function of per-slot beacon-
ing energy cost for several λ values. Increas-
ing sensing energy cost will reduce the UAVs’ 
incentive to beacon for potential on the ground 
mobile users, which results in saving energy. This 
decrease in the beaconing period is more visible 
on the behavior of UAVs with high encounter 
rates, as illustrated in Fig.4. Henceforth, one can 
efficiently define a mobility-beaconing tradeoff, 
i.e. one can compensate for the decrease of bea-
coning duration by fine-tuning mobility parame-
ters (e.g. speed, direction, …).

We define the energy efficiency metric as 
the ratio of the successful probability encounter 
and the consumed energy. Hence, an efficient 
beaconing strategy will be reached by increasing 
the encounter rate while reducing the associated 
energy consumption, equivalently reducing the 
beaconing duration. Namely, we measure the indi-
vidual energy efficiency by the following metric:

EE(τ i ,τ j ) =
Ps (τ i ,τ j )

Cb ×τ i +Cs  
(3)

Figure 6 plots both the energy efficiency and 
the analytical successful encounter rate for the 
strategic beaconing and the always-beaconing 
policies. Some key observations are worth men-
tioning. Indeed, the equilibrium beaconing strat-
egy exhibits high energy efficiency with a slight 
decrease regarding the encounter rate level 
compared to the continuous-beaconing policy. 
For instance, at encounter rate λ = 0.1, iden-
tical energy efficiency is achieved at a price of 
an 8 percent decrease in encounter rate. For 
encounter rates exceeding 1.3, the encounter rate 
is identical with an energy efficiency increasing 
from 1.59 to 5.64 folds. Thus, our strategic bea-
coning scheme efficiently performs as well as 
the continuous-beaconing scheme for moderate 
and high values of λ in terms of encounter rate. 
Regarding energy efficiency, our scheme outper-
forms the continuous-beaconing policy and guar-
antees clearly higher network lifetime. Therefore, 
one can efficiently define a delivery-energy trade-
off. Yet, one can achieve a high energy efficien-
cy level while keeping the encounter rate close 
enough to the continuous-beaconing policy.

In order to check and evaluate the accuracy of 
the success probability closed-form expression we 
derived so far, we implemented the behaviour of 
UAVs in the opportunistic network environment 
(ONE) simulator. Namely, we implemented a 
scenario consisting of two UAVs competing to 
provide DCS access to a randomly located pop-
ulation of mobile users in a geographic area of 
interest. Both UAVs are moving according to the 
RWP mobility model. For each configuration of 
the mobility model (UAVs speed, waiting time, 
etc.), we run 1000 simulations and record the dis-
tribution of the inter-contact times. We then use 
the maximum likelihood estimation to obtain an 

estimator of the exponential distribution param-
eter value. The latter happens to be the inverse 
of the sample mean and models the number of 
encounters within five hours of simulation. As 
depicted in Fig. 6, we notice that the simulation 
based measurement of success probability is 
coherent with the analytically obtained formula. 
Indeed, the analytically obtained result falls with-
in the simulation confidence interval, and only a 
slight gap occurs between the two values.

conclusIon
In this article we dealt with the activity sched-
uling of competing unmanned aerial vehicles 
acting as drone small cells for temporary events 
and disaster-relief activities. We constructed the 
induced non-cooperative game and characterized 
the equilibrium beaconing period durations for 
the competing drones. Next we described a fully 
distributed mechanism that allows each drone to 
self-discover its equilibrium beaconing strategy 
without any knowledge of its opponent’s sched-

Figure 4. Seeking the equilibrium beaconing duration using NSA and BRD 
under different encounter rates λ.
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Figure 5. Equilibrium beaconing duration as a function of the beaconing cost 
(energy consumption) under different λ.
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ule. Latter equilibrium point allows drones to 
efficiently optimize their energy consumption 
while maximizing the likelihood of getting in 
contact with the mobile users on the ground.

As a future work, we are working toward 
generalizing our scheme while considering both 
competing UAVs and collaborating UAVs sce-
narios. The case where energy harvesting is pos-
sible is also a very attractive open issue we would 
like to deal with. Furthermore, we also seek to 
implement such a distributed mechanism in a 
real UAV network. 
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Figure 6. Encounter rate and Energy Efficiency for strategic beaconing (i.e., 
at Nash equilibrium) and always-awake scheme.
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