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Abstract— The great attraction that unmanned vehicles have
gained in the past years has marked this century as the era
of automation. In particular, automated vehicles have recently
become the center of attention of many research activities. All
of which have had one goal in common: achieving a complete
or partial automation of driving functions, all while ensuring
safety and security of other traffic agents. It is with this
purpose in mind that the concept of dynamic maps has been
introduced to allow vehicles to be aware of their surroundings
and have precise knowledge of their environment and all of
its components. Aiming for a mapping system that sets out a
layered view of a vehicle vicinity ranging from highly-static to
highly-dynamic data layers, researchers have taken different
approaches. In this paper, we present a system, inspired from
the concept of dynamic maps, that collects data from user
vehicles and maps them out by location and time, keeping
a history of all recorded information. We then evaluate the
performance of the system module in charge of localization
and tracking of users’ devices, and present and discuss the
obtained results.

I. INTRODUCTION

The key idea beneath the concept of dynamic maps is
to provide autonomous vehicles with access to traffic data
ranging from permanently static, such as roads, intersections,
and nature (e.g., trees), to highly dynamic data, such as
locations of moving persons and objects (e.g., pedestrians,
cyclists, and buses). In order to form a better understanding
of the requirements on a dynamic maps system, we take a
closer look at the process of automated driving. The levels
of automated driving have been set out by the National
Highway Traffic Safety Administration (NHTSA) of the US
Department of Transportation as follows:

o Level 0: The vehicle is completely controlled by a
human driver. There is no automated driving.

e Level 1: Only a few driving functions are automated,
the rest are performed by a human driver.

o Level 2: At this level, the driving is done autonomously;
at least the cruise control and lane steering are con-
ducted autonomously. However, there is a driver present
monitoring the situation and may intervene if needed.

o Level 3: At this level the driver is not required to
monitor the system as closely as in Level 2.

o Level 4: All driving and parking functions are au-
tonomous and the driver is not expected to intervene
at any point.

The concept of automated driving hinges on the capability
of vehicles to locate and detect objects in their environments,
analyze the collected data, and alter their behaviors accord-
ingly [1][2]. The tasks required of an autonomous vehicle
can be then categorized in the following way:

« Sensing — an autonomous vehicle is equipped with a
number of sensors that make it aware of its surround-
ings. The data collected from these sensors is combined
for maximum accuracy. Some of these sensors are GPS,
Inertial Measurement Unit (IMU), LiDAR, Cameras,
and Radar.

o Perception - after acquiring the data, the system ana-
lyzes it to build an understanding of its surroundings.
This process goes through three main steps, namely the
localization of the vehicle itself and its nearby objects,
the detection and classification of these objects, and the
tracking of the identified objects.

o Decision — based on the information established in the
previous stages, the system should then generate an
adequate action plan for the situation. This stage of au-
tonomous driving mainly utilizes probabilistic processes
and Markov chains. It aims to complete the following
tasks:

— Prediction — the system set in place should be able
to predict future movements of nearby vehicles.

— Path planning — all possible paths that the vehicle
can take are established. The best one is then
identified based on a cost function.

— Obstacle avoidance — this process works on two
levels. The first is pro-active; in this level the
planned path is constantly being updated to avoid
collision. The second level is reactive, and comes
into play in case of emergency cases whereby the
first level fails.

For our work, we focus on the first two sub-processes
of automated driving. One of the main challenges. raised
in these two phases, lies in the accurate positioning of the
detected objects, which, in turn, cannot be achieved without
being able to localize the vehicles precisely in real-time and
with a small latency. Our implementation, in comparison to
other research works [3][4][5][6], also allows the users to
keep a history log of all data collected by the device cameras.
In fact, the idea of a highly dynamic precise mapping system



of road components has inspired us to create a platform
that goes a step further than mapping the different road
components by location, and provides the user with an
effective tool to map out the objects by timestamp as well.
To this end, after analyzing the visual data that the system
has received from the streaming devices, and extracting the
necessary information to identify and classify the detected
objects, it keeps a copy of every stream and associates it
with a geographical path. Along with the drawn stream path
that the end user can access, he can also view the detected
objects, their locations and timestamps, and a visual log of
their time of detection.

The remainder of this paper is organized in the following
fashion. Section II covers the state-of-the-art of dynamic
maps. Section III describes the envisioned architecture along
with the different components of our dynamic map system.
Section IV explores our framework API and the technologies
used for enabling it. This section also discusses in dept how
the device tracking system works and the process that a
video feed undergoes from the moment it is captured through
a device camera to when it is streamed back through the
user interface. Section V describes the experiment set to
evaluate the device tracking module to measure its latency
and provide an accurate representation of its usage of the
system resources. To this end, the section provides results
on the system performance under different settings and with
different numbers of users, and propose solutions for its
optimization. Finally, the paper concludes in Section VI.

II. RELATED WORK

The idea of dynamic maps was first introduced within the
7.3.1 work project [7] of the SAFESPOT project in 2010.
This project was co-funded by the European Commission
Information Society Technologies [8]. The idea behind it
was to create a connected dynamic network between traffic
agents in order to help vehicles become more aware of their
environments and enable them to avoid obstacles without
the help of a human driver. The concept of a Local Dynamic
Map (LDM) was standardized a year later in 2011 through
the ETSI TR 102 863 (V1.1.1) report [9]. This report was
the first to introduce the layered view of LDM whereby
data provided by it can range from highly dynamic data,
like pedestrian and vehicle locations, to highly static data,
like roads and intersections. The second ETSI report, ETSI
EN 302 895 (V1.1.0) final draft [10], came in 2014 as
an extension to the first report. The ISO standards ISO/TS
17931:2013 [11] and ISO/TS 18750:2015 [12] came respec-
tively in 2013 and 2015 and presented a similar dynamic
maps architecture to that of the ETSI standards.

Some research works have also proposed an implementa-
tion of dynamic maps, such as the work of Netten et al. that
introduced DynaMap [13], and the work of Shimada et al.
that proposed an implementation of LDM [14] based on the
SAFESPOT project specifications. Ulbrich et al. presented
another implementation that combined static map data with
dynamic sensory collected data to enable automated driving
[15]. El Zoghby et al. introduced their distributed approach to

dynamic maps whereby vehicles cooperate within a VANet
(Vehicular Ad-hoc Network) in order to form a complete
view of LDM [16]. Xu et al. proposed an implementation of
3D point cloud map based on data collected from LiDAR
units on vehicles [17]. This concept is the same as the
high-definition 3D maps that were created within the project
launched in 2016 under the support of the Japanese gov-
ernment program, Strategic Innovation Promotion Program
Innovation of Automated Driving for Universal Services
(SIP-adus).

III. SYSTEM ARCHITECTURE
A. System overview

In order to achieve the concept of dynamic maps and
successfully utilize it in an Intelligent Transport System
(ITS) environment, many requirements, that prove to be quite
demanding in terms of computational power, need to be
satisfied. As a first step, we chose to focus our work on
tracking the user devices’ GPS locations in real time and
saving a log of their streams.

Our system allows users to stream their environment
through a camera lens. Once these video feeds are received
by the server, they are processed to extract pertinent data
around the different traffic agents that they have captured.
The detected objects are then highlighted and the new video
frames are streamed back. The system also tracks the users’
moving vehicles in real-time. Every piece of information that
is collected through the different service modules is mapped
out and is publicly accessible through a web platform. This
platform provides its users with a variety of maps that
showcase the collected data filtered by zones. The end users
can share and view their movements in real-time.

B. Components and architecture

The idea behind our system was inspired from the concept
of LDMs that contain highly dynamic data and other semi-
dynamic data (e.g., traffic signs). Our system keeps a history
log of all traffic agents captured through the cameras of
its clients, and in this aspect, may be utilized in a law
enforcement and security setting. As depicted in Fig.1, it
consists of the following modules:

e Object detection and tracking module: Responsible
for processing the video streams and detecting the
different traffic agents appearing in their frames and
classifying them.

o Streaming module: In charge of receiving the streams
from the user devices, redirecting them to the object
detection module and streaming back the live feeds with
the detected objects.

e Local Dynamic map: A web platform that gives the
users access to a number of maps. These maps display
user devices, the streams generated by them and the
objects captured by their cameras.

o Device tracking module: In order to satisfy the LDM
timing and positioning accuracy requirements, the traffic
agents locations in the database needs to be up to date



at all time. To this end, this module keeps track of the
users GPS coordinates through a real-time database.

« Data management module: It stores and retrieves user,
object and stream data into and from the database.

o Authentication module: It allows the users to subscribe
to the system and be authenticated before accessing its
services.
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Fig. 1: Overview of the envisioned system architecture.

IV. FRAMEWORK API AND ENABLING TECHNOLOGIES
A. Scenarios and system functionality

As portrayed in the sequence diagram in Fig.2, our system
functionality can be summarized in three main services:

+ Real-time object detection
The user first signs into the system through his mobile
device. Upon signing up, the user is issued a token that
will be returned to him each time he signs into the
system. This token is then used when the user sends a
streaming request to the video streaming and processing
server. After checking the authenticity of the request, the
server starts receiving the video stream. This process
automatically triggers the video processing service, by
redirecting the video data to it. The object detection
module then extracts the features from the video frames,
and classifies the detected objects. It then draws boxes
around these objects, and indicates the class and level
of accuracy of each detection. Upon doing so, the object
detection module starts sending the new frames, as they
are generated, to the streaming module. The latter then
serves these new frames to the end user using the same
token that was provided to the end user in the beginning.

o Device tracking
This service is distributed between the mapping plat-
form side and the mobile system. From the mobile sys-
tem side, the user can either allow location tracking or

not. If he chooses to allow it, a communication channel
is then established between the device and the real-time
database. Through this channel, the device location is
uploaded in the database every time it changes. This
service runs in the background of the device.

From the mapping platform side, in order to display
the vehicle movements, the server tracking module
establishes a web socket connection with the real-time
database, and listens for changes to the vehicles GPS
locations. Once a change is detected, it is automatically
displayed on the map that is accessible to the end user.
Live video feed mapping and visualization

Aside from the location data of the user devices, the
mapping platform allows users to access a range of
other information around the recorded streams. These
information include the detected objects and the vehi-
cles path history. The mapping service filters these data
by location and separates them by geographical zones.
By doing so, the system creates a hierarchy of pages
that branch out from a root worldview page, where
the user can access traffic and population information
about different countries. We discuss in more depth
the mapping services offered by the platform in the
following subsection.

B. Data mapping framework API

In order to map out the different data recorded by the
system as efficiently as possible, we opted for a hierarchical
approach. Through this approach, we can list the following
services that are offered by the data mapping framework API:

getCountries: This service retrieves a list of 250 coun-
tries. For each country it gets the following data: GPS
location, population, currency, area, capital, language,
flag, number of recorded streams, number of users, and
number of detected objects by class. The system also
assigns a rating to each country based on the number
of users and streams hosted in it.

getCities: This service takes as input a country ID
and returns a list of its cities along with representative
images from the Google Places API for each city.
getVehicles: It returns the moving vehicles located
in a particular city. For each vehicle, it provides the
brand, the VIN (Vehicle Identification Number), the user
associated with it, the last known location if the vehicle
tracking is off or the vehicle authentication token if the
tracking is on.

getStreams: This service gives access to the streams
that have been or are being recorded by a vehicle. If
the stream is live the service returns the URL where
the edited stream with the detected objects is being
broadcasted. And if the stream is no longer live, it
returns a link to the recorded video of this stream along
with the recording time, date and location.
getObjects: Given that the system associates each video
frame with a GPS location, this service returns, for a
specific stream, a list of detected objects, their classes,
their time and location of detection and a snapshot
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Fig. 2: Sequence diagram describing the signaling messages exchanged for the different operations of the system.

image that has been captured at the time of detection.
This service also provides, for a given stream, the path
that the vehicle followed when recording it.

C. Tools and technologies

For the object detection service, we used Tensorflow-GPU
with CUDA 9.0 and OpenCV. We relied on the open source
pre-trained model of SqueezeDet [18] to classify the objects.
For the streaming service, we used two RTMP streaming
servers: one for receiving the vehicle streams and redirect-
ing them to the object detection service, and another for
broadcasting the updated streams with the detected objects
to the end users. For the device tracking module, we used
Firebase real-time database with websockets to listen for
data changes to vehicle locations. And finally for the data
mapping module, we used Google maps API and Google
Places APL

V. EXPERIMENT AND RESULTS

In order to test the performance of our tracking module,
we ran the service for 60 minutes and recorded the results.
We present a 3 minute sample of the evaluation process for
both the client and the server side.

A. Client app evaluation

For the client app, we run the service on a moving
device that is constantly updating its location in the real-time

database, and record the CPU, memory and network usage
of the app, to determine the device resource consumption by
the service. When observing the results depicted in Fig.3a,
we observe that the CPU usage of the app during the tracking
process is negligible, as it does not surpass 1%, compared
to the 13% that other running apps consume. The memory
usage of the app is displayed in a stacked graph (Fig.3b)
that shows the memory allocated to Java and native objects,
the memory used by Java and native stacks in our app, the
memory used for graphics and the memory allocated to code
and resources. The number of Java objects allocated by our
app is displayed on the right y-axis of the graph. We can see
that the memory usage of the app does not exceed 80Mb.
This number, while not small, is acceptable, considering that
the app is constantly sending location updates to the real-
time database. This mechanism is also portrayed in Fig.3c
where we display the mobile device network usage variations
throughout the experiment. We can observe that the spikes
in the network usage mirror the recurrent data transfers
corresponding to the location updates.

B. Server side evaluation

For the server side, we simulated the movement of varying
numbers of vehicles running the client app, we then accessed
the mapping platform that loads the moving vehicles on
the map, and listens for updates to their location through
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Fig. 3: Resource usage of the device tracking client app.
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Fig. 4: Device tracking module latency results in different settings.

a web socket to the real-time database. We then measured
the latency between the time of the location update in the
real-time database, and its retrieval by the location update
listeners of the mapping module. We measured the average
latency every two seconds throughout the whole evaluation
time. We start off by running this experiment on one server
flavor (instance 1) with varying numbers of users (100, 500,
1000, 2000, 5000, and 10000), (Fig.4a). We notice that the
system performs very well with up to 1000 users, even when
tested on the least powerful server flavor (instance 1). In fact
for these numbers of users, the system latency is generally
under 1 second, and never goes over 2 seconds (Fig.4a).

Therefore, we record the system latency for four different
server flavors for 2000, 5000, and 10000 moving vehicles.
The specifications of these instances are shown in Table I.
We noticed that the difference in latency between the four
instances was very small, so we chose to show only the
results of the best and worst performing instances in the same
diagram, to showcase how small the difference is (Fig.4b).

TABLE I: Server flavors

Memory Clockrate Bandwidth
Name vCPUs (Gb) (GHz) (Gbls)
Instance 1 2 8 2.3 0.45
Instance 2 4 16 2.3 0.7
Instance 3 8 32 2.3 1
Instance 4 16 64 2.4 10

After observing that the system performs relatively well
with up to 1000 users, regardless of the underlying instance,
and after noticing that even a big upgrade to the server

resources did not improve the results much, we came up with
a possible solution that would ensure that the system would
experience an average latency in case of 10000 vehicles
comparable to that in the case of 1000 vehicles. Our proposed
implementation (Fig.5) would set in place an orchestrator
service that would receive, for example, a location update
request for IV vehicles. This service would calculate, based
on a previously set up algorithm, the number of server
instances it needs to create in order to respond to the
request. The system should be able to scale up and down
depending on the need. After defining the number of server
instances needed, the orchestrator would then function as a
load balance, determining which vehicles should be assigned
to which servers based on the location of the vehicles and
their distance from the servers that would listen for changes
to their locations [19]. It then distributes the location update
requests across the server instances, who then, in turn, create
a listener service for each vehicle.

VI. CONCLUSIONS

In this paper, we introduced a different approach for a
dynamic maps implementation. This approach aimed to keep
a log of traffic data and allow users to efficiently filter and
access the recorded vehicle video streams and the informa-
tion that has been extracted from them. The implementation
we proposed allows the mapping of traffic agents by space
and time. The paper also presented a few experiments that we
have conducted on the device tracking module to calculate its
latency under different settings and with varying numbers of
users. The obtained results indicated that the best solution to
achieve a smaller latency regardless of the number of users or
the server specifications is to implement an orchestrator that
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would rely on several optimization algorithms, to distribute
the location update requests on multiple server instances
depending on the need. We will implement this solution in
future research works in order to optimize the overall system
performance.
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