Virtual Security as a Service for SG Verticals

Yacine Khettab, Miloud Bagaa, Diego Leonel Cadette Dutra, Tarik Taleb and Nassima Toumi
Dep. of Communications and Networking, School of Electrical Engineering, Aalto University, Espoo, Finland
Emails:{firstname.lastname } @aalto.fi

Abstract—The future 5G systems ought to meet diverse re-
quirements of new industry verticals, such as Massive Internet
of Things (IoT), broadband access in dense networks and ultra-
reliable communications. Network slicing is an important concept
that is expected to support these 5G verticals and cope with
the conflicting requirements of their respective services. Network
slicing allows the deployment of multiple virtual networks, or
slices, over the same physical infrastructure as well as supporting
on-demand resource allocation to those slices. In this paper, we
propose an architecture that will explore how both Network
Function Virtualization (NFV) and Software Defined Networking
(SDN) may be leveraged to secure a network slice on-demand,
addressing the new security concerns imposed to the network
management by the flexibility and elasticity support. Our pro-
posed framework aims to ensure an optimal resource allocation
that manages the slice security strategy in an efficient way.
Moreover, experimental performance evaluations are presented
to evaluate the security overhead in virtualized environments.

I. INTRODUCTION

The next generation of wireless access systems (5G) aims to
improve the Quality of Experience (QoE) for critical services,
as well as to provide high availability, low latency, elasticity,
and increased security [1]. SDN, NFV and Network Slicing
are new concepts and technologies that have emerged as
5G enablers. These technologies can be leveraged to provide
Security as a Service (SECaaS) by deploying Security Virtu-
alized Network Functions (VNFs) within different slices and
ensuring optimal resource provisioning to reduce Operational
Expenditures (OPEX) while ensuring the provisioning of the
Service Level Agreement (SLA). Furthermore, proper resource
allocation is crucial as a malfunctiong security VNF can
compromise the network; therefore, a predictive auto-scaling
function, implementing application-specific policies, needs to
be deployed along with the monitoring and flow control
mechanisms.

Recent works have investigated solutions to enable auto-
scaling mechanisms [2], [3], factors that impact the scaling
delay [4]-[6], and mechanisms relying on SDN to enable
security functions [7], [8]. Other solutions have focused on
the performance evaluation of security VNFs [9]-[13]. To the
best knowledge of the authors, no prior work has been taking
into account ways to enforce security within 5G slices. This
paper proposes and evaluates an architecture that leverages
both SDN/NFV capabilities to enable SECaaS in multi-cloud
environments.

The rest of this paper is organized as follows. Section II
discusses previous works on the subject of this paper. Sec-
tion III presents an overview of the proposed architecture for
enabling SECaaS. Section IV provides the methodology for

our experimental evaluation, and discusses the results. Finally,
Section V concludes the paper.

II. RELATED WORK AND BACKGROUND

A. Performance analysis of security VNFs

Brumen and Legvart [9], White et al. [10], and Cao et
al. [12] have evaluated the performance and security level of
open-source Intrusion Detection/Prevention System (IDS/IPS)
softwares — mostly Snort and Suricata — under different pa-
rameters including: operating systems, hardware configuration,
workload, types of attacks, and signature database. In [9],
the authors perform a comparative analysis of Snort and
Suricata on Windows and Linux, varying the attack types and
using the number of dropped packets as the key performance
metric. Their performance results have shown that the Win-
dows deployment consumed fewer resources but had a higher
drop rate than the Linux deployment. Moreover, they showed
that Snort’s resource consumption was less significant than
Suricata’s, albeit with a higher drop rate. They concluded
that Windows-based solutions were not suitable for both open
sources and that Suricata performed better than Snort. White
et al. [10] compared the performance of Snort and Suricata un-
der default and optimized configurations, e.g., multi-instance
Snort. Their results lead to performance improvements in
Suricata of up to 20x for computer nodes with more than 4
cores, while also showing that a single instance of Suricata
outperforms Snort under all the evaluated configurations.

Cao et al. [12] presented a framework for performance
characterization of different VNFs, using Clearwater, Snort,
and Suricata as case studies. Their experiments showed that
in contrast to Snort, Suricata’s performance scales with the
number of cores: Snort is a single-threaded architecture while
Suricata is a multi-threads architecture. Bujlow et al. [11]
conducted an extensive study comparing different proprietary
and Open Source DPIs. They found that among the open
source tools, nDPI [14] and Libprotoident exhibited the best
performance and that is despite Libprotoident’s inability to
identify Google, Twitter, and Facebook’s flows. They also
did not evalute the DPI’s resource utilization. Jati et al. [13]
proposed a system for the detection of Distributed Denial
of Service (DDoS) attacks using Ntopng. Their evaluation
showed that the detection accuracy was not disturbed by the
traffic load, while the dropped packets rate was less than 1%;
performance-wise, the resource consumption was relatively
stable regardless whether an attack is being launched or not.

~
I‘ RESTHuL g oo
Policies

45/

auto-scaling
Security

Orchestrator

E3 VNF instance
VNF

@ Security VNF instance
VNF

. “\\
—— .
(B8 (R oAy Hests)
VNF ©v§ - -l "ovs| ¢ OYS Wi siicer N
:);) |
- 1
VNF b] G5 [s F |
p AN YN ETIR D :
- _)\\ /x/. . - _7_7__7)/'-"
e s

Fig. 1. Envisioned architecture for enabling Security as a Service.

B. Auto-scaling

The existing scaling solutions of could systems, e.g., Ama-
zon Auto Scaling [15] in Amazon Elastic Compute Cloud,
lack automation as they require users to set a scaling threshold
for each scaling operation, adopting a reactive approach, and
ultimately resulting in a non-optimal resource utilization by
VNFs. Thus, cloud users, e.g., Netflix [16], have to develop
their own predictive auto-scaling solutions.

In the recent literature, different forecasting techniques have
been proposed to enable predictive approaches [2], [3], [17].
In [2], Shariffdeen et al. evaluated different forecasting models
and proposed a new model combining neural networks, an
exponential model, and a naive prediction scheme. Their
experimental results showed that the proposed model per-
formed better than the individual ones. Ren et al. [3] proposed
a dynamic auto-scaling algorithm for 5G mobile networks
taking into account the Virtual Machine (VM) setup time as
well as the capacity of the legacy equipment.

Shen et al. [17] proposed an elastic resource scaling system
for multi-tenant clouds by combining resource demand predic-
tion, conflict prediction and migration to support concurrent
scaling. In the same vein, Mao and Humphrey [5] as well as
Ueda and Nakatani [6] evaluated different cloud infrastructures
in terms of VM startup-time and scale-out time, as well as the
factors that impact those metrics [4].

C. Security in SDN

Yoon et al. [7] explored the feasibility and efficiency of
deploying, at the controller level, security functions as stateful
firewalls, IDS/IPS, and anomaly detection applications. In their
proposed framework, the deployed application examines each
packet separately, then the controller receives instructions on
how to issue the appropriate rule for the flow (e.g., permit,
block, or relay to an IDS for in-depth inspection). Similarly,
Shin et al. [8] demonstrated how each SDN feature can
benefit the network security with example scenarios of NIDS,

Intelligent Honeypot and monitoring applications deployed on
the controller [18].

Both research work rely on the first packet of every flow
unknown to the switches and therefore having its header
relayed to the controller to be examined by the deployed appli-
cations. However, in many cases, the first packet’s header has
insufficient information to determine if a flow is suspicious,
allowing malicious flows to pass undetected provided that their
first packet seems legitimate. Furthermore, since only packet’s
headers are sent to the controller, payload-based attacks go
through undetected.

III. SECURITY AS A SERVICE ARCHITECTURE

The 5G mobile system is expected to support the new
requirements of new vertical industry services, such as massive
Internet of things (mloT), broadband access in dense areas,
and ultra-reliable communications. The envisioned 5G systems
needs then to re-architect the current uniform mobile architec-
ture to allow multiple, logical, self-contained networks on a
common physical infrastructure platform enabling a flexible
stakeholder eco-system that allows technical and business
innovations, integrating network and cloud resources into a
programmable, software-oriented network environment [19].

Network slicing is one of the enabling technologies that will
support 5G services, as it allows each vertical service to have
a dedicated network slice that offers the required resources
for that vertical service. Network slicing is mainly based on
SDN, NFV and cloud computing. ETSI NFV [20] has defined
a reference architecture for enabling NFV orchestration and
VNF management in an efficient manner. The NFV [21]
technology will enable the elasticity and flexibility for cre-
ating different slices across multiple domains. Meanwhile, the
SDN technology will enable the programmability of different
Open Virtual Switches (OVS) and SDN-enabled switches for
ensuring the connectivity between different VNFs in the same
network slice.

The creation of different VNFs in different slices would
create more vulnerability in different VNFs comparing to the
static network [22]. Therefore, ensuring the security within
the same slice can be a challenging problem. Fig. 1 shows
an overview of the proposed architecture that would enable
SECaaS in an inter-domain platform. This architecture will
deploy and manage different security VNFs including IDS/IPS
and Deep Packet Inspection (DPI). The proposed architecture
framework aims to ensure elasticity by dynamically deploying
security VNF instances, monitoring their performance, and
performing predictive auto-scaling based on pre-defined poli-
cies and metrics.

Fig. 1 shows our NFV architecture consisting of four main
parts: 7) Cloud networks, each of which is managed by a
Virtual Infrastructure Manager (VIM; e.g., OpenStack), ii)
VNF Managers (VNFMs) that are responsible for managing
and monitoring a set of VNFs in the same slice during their
run-time, ¢i7) a NFV Orchestrator (NFVO) that is responsible
for creating, managing and orchestrating all VNF instances in
different cloud networks and iv) a distributed SDN controller

that controls and monitors the flows between the VNFs. The
VIM functionality of each cloud provider must run different
virtualization technologies (e.g., KVM, XEN or Containers)
that allow the creation of multiple virtual resources on shared
hardware resource (e.g., Compute, Storage, and Network) [23].
The VIM allows the instantiation of different VNF instances
with different virtual resources using pre-stored VNF images.
Different resources in a cloud network are defined through
a set of flavors, whereby each flavor represents the amount
of virtual resources (i.e., number of Virtual cores - CPU,
memory, and storage) that would be dedicated to a specific
VNF instance [24].

A. Enabling Security as a Service with SDN

In this section, we concentrate on the networking aspects
(i.e., SDN) of network slicing which can be provisioned in
other complementary and orthogonal ways. Indeed, in a full
solution, one would have to take into account NFV resource
management, workload mobility, VNF placement and VNF
security [25]-[27].

We leverage ONOS [28] as SDN controller to enable
SECaaS in our architecture. Indeed, we use the intent concept
of ONOS and create per flow point-to-point intents to route
traffic to specific firewall or IPS instances. We also write
intents that aggregate the output traffic of a firewall instance
and forward it to the correct node/VM in our secured network.

For passive security, e.g., IDS, the ONOS controller can
deploy multi-points to single-point intents in order to forward
traffic to its original destination and mirror it to a specific
IDS instance. Besides, when an IDS detects a malicious flow,
it generates an alert and sends it to the security orchestrator,
which will then take into account the number of received
alerts, as well as the level of severity in order to instruct
the controller to either stop the malicious flow temporarily or
permanently, or constrain its bandwidth to avoid overloading
the network while maintaining a certain level of service.

Algorithm 1 Attack-Response Algorithm

Require:
L: Level of the received alert.
T': Type of the received alert.
F: Flow that triggered the alert.

. NumAlerts[L][T] + NumAlerts[L][T] + 1,

if NumAlerts[L|[T]|> = trigThreshold[L][T] then
triggResponse[F] < triggResponse[F] + 1 ;

end if

L

Furthermore, SDN’s capabilities are mandatory to enable
the auto-scaling support, i.e., need to guarantee that a com-
plete traffic analysis may be supported even during an attack
that would overload the current slice security configuration.
Scaling-out an IDS instance requires splitting the incoming
traffic between the new instance and the existing ones. Ad-

ditionally, network flows need to be managed in a way that
ensures security isolation between slices.

B. Auto-Scaling Mechanism

As shown in Fig. 1, our envisioned security orchestrator
offers a RESTful API that allows the admin user to specify
different management rules and policies for the instantia-
tion and auto-scaling of the VNF instances. Based on these
policies, the security orchestrator enforces the rules for a
specific slice by communicating them to VNFM of the slice,
allowing it to enforce the security rules by communicating
to different security VNFs. The VNFM dynamically launches
security VNF instances in different slices with pre-installed
software in the cloud and monitors their performance metrics
in order to trigger scaling actions according to the predefined
policies. The scaling policies are set according to the VNF’s
performance requirements and behavior depending on traffic’s
load. Moreover, the security orchestrator communicates with
the SDN controller, e.g. ONOS, to provide connectivity for
the different security VNFs and VNF instances together in the
same vertical.

In the proposed architecture, an auto-scaling algorithm is
executed at the VNF Manager of each slice in order to scale-
in or scale-out each security VNF instance according to the
predefined policies, and the performance and features of that
VNE. Furthermore, the auto-scaling solution should take into
account the VM startup time that can vary according to the
cloud platform [5], [6], and can also be impacted by the OS
image and VM type, as well as the number of requested VMs
and data-center load [4].

Lastly, a multi-slice architecture means that concurrency for
resources needs to be managed at the orchestrator level by
setting minimal and maximal resource limits for each slice, as
well as levels of priority matching their service requirements.

Algorithm 2 Scale-Out Algorithm
Require:
VID: ID of the monitored VNF.
VT The type of the VNFE.
FL: Flavor of the VNF.
SID: ID of the slice the VNF is assigned to.
CP: Type of the cloud platform on which the VNF
is deployed.
1. if prediction(t0 + startupTime[VT]|[FL][CP])> =
maxThreshold[VT]|[FL] then
if allocatedInstances[SID]<max Allocate[SID] then

2

3 request Resource(FL);

4 newVID=scaleOut(FL,VT);
5: loadBalance(VID,newVID);
6

7

8

allocatedInstances[SID] + + ;
end if
. end if

To set the appropriate threshold for the aforementioned
policies, we should determine the maximum traffic load that
each security VNF can process given a certain amount of
resources without dropping packets or inducing latency; in
that way, the scaling can be performed in a proactive manner,
thus ensuring continuity of service. In the next section, we
will present the methodology for evaluating the performance
of each security VNF.

IV. METHODOLOGY
A. Evaluated Virtual Network Functions

1) Network Intrusion Detection/Prevention System:
IDS/IPS is a network appliance which captures and analyzes
network traffic, to detect and prevent attacks against the
system. It monitors and logs the traffic for signs of malicious
activity generating an alert upon discovery of a suspicious
event. In this work, we will be using two Open Sources of
IDS:

Snort is a cross-platform signature-based Network IDS
(NIDS) that can be also configured to run as an IPS [29]. The
analysis of packets is performed using a large set of signature-
based rules.

Suricata has been developed by the Open Information
Security Foundation (OISF) as an alternative to Snort [30].
Similarly to Snort, it can act as an IPS and perform packet
inspection in the same way. Snort’s ruleset can be also
imported. An important additional feature compared to snort
is the support for multi-threading, which allows optimal multi-
CPU usage.

2) Deep Packet Inspection: DPI engines inspect network
packets up to the Layer 7. They are used to prevent sophisti-
cated attacks such as viruses and worms. Classified packets can
be redirected, marked/tagged, blocked, rate limited, or reported
to a monitoring system within the network.

Ntopng [31] is a cross-platform Open Source DPI based
on libpcap and the DPI [14] libraries that can analyze and
sort network traffic at the application level according to
different criteria, and produce detailed statistics and reports
of the different application flows. It can also detect suspicious
activities and allows blocking malicious flows.

B. Experimental Evaluation

We evaluated the previously mentioned VNFs using the
hardware described in Table I, whereby our virtualized envi-
ronment was setup over a VMware ESXi Hypervisor on a dual
Intel £3 — 1231 computer node. Using ESXi, we were able
to deploy three configuration flavors for our benchmarking as
detailed in Table II.

TABLE I
TESTBED HARDWARE CONFIGURATION.

Component Configuration

CPU 2 x Intel Xeon CPU E3-1231 (4 Cores) v3 3.40GHz
RAM 16GB

Links 1000Mbps

Hypervisor VMware ESXi6.0.0

As for the software versions we used, they are Snort,
version 2.9.6.0; Suricata, 3.2RC1; and Ntopng, 2.4.170215.
Snort, Suricata, and Ntopng were evaluated on the GNU/Linux
Ubuntu 14.04 Operating System. Furthermore, we vary the
traffic load and measure software’s performance for each rate.
This was carried out leveraging hping3 to send different types
of traffic from multiple hosts and at different rates. Our goal
was to overload the evaluated VNF for each flavor to assess
their performance limitations.

TABLE II
DEPLOYMENT FLAVORS.
Deployment Flavor | Mini | Small | Medium
CPU 1 2 4
RAM (GB) 1 2 4

Based on our bibliographic revision, we chose to evaluate
the computational environment under test using the following
metrics: CPU Usage, Packet Processing Speed, and Packet
Loss. Tt is worth noting that the two latter metrics are crucial
for our evaluation as a slow packet processing speed indicates
that the component is creating a bottleneck in the network
in case of an in-line VNF: in case it is an IDS, the latency
could lead to an important delay in attacks’ detection and
response. On the other hand, if an IDS starts dropping packets
without analyzing them, the rate of false negatives would
highly increase. We were able to measure the aforementioned
metrics using the built-in logging features of Snort, Suricata,
and Ntopng. Memory usage was not considered as a metric
in our evaluation because its value was stable during all the
experiments.

C. IDS/IPS

Fig.2 presents the results of our evaluation. We plot the
mean and 95% Confidence Interval (C.I.) of five executions.
The Y-axis shows the CPU utilization for each of the applica-
tions, while the X-axis shows how much bandwidth we input
in each test.

Fig. 2(a) shows the performance of our reference IDS/IPS’s,
when running in our Mini VM. We conduct our experiment
until all the CPU utilization was at 100%. However, it shall be
noted that this is not an indication that any of this application
dropped packets as we will discuss this later in this section.
Still in Fig. 2(a), our results show that Suricata quickly starts
to consume 99.955% of CPU at 5.5 MB/s, with a 95%
C.I. of 0.394%. Snort increases its CPU usage as fast as
Suricata until it reaches 76.562% at 5.5 M B/s whereas its
95% C.I was 2.858%, reducing its increase rate as it only
consumes 98.985% of CPU at 5.5 M B/s with 95% C.I. of
0.565%. Meanwhile, Ntopng exhibits a linear CPU utilization
profile, reaching 99.955% of CPU usage at 30 M B/s, with
the exception of results for 5.5 M B/s and 12 M B/s, where
its CPU utilization was 50.791% and 52.567%, respectively.

CPU Usage Sum (%)
CPU Usage Sum (%)

CPU Usage Sum (%)

& Ntopng

0 5 10 15 20 25 30 0 10

40 0 10

Traffic Load (MBytes/s)

(a) CPU Usage of Snort, Suricata, and Ntopng on (b) CPU Usage of Snort, Suricata, and Ntopng on (c) CPU Usage of Snort, Suricata, and Ntopng on

the Mini VM.

20 30
Traffic Load (MBytes/s)

the Small VM.

20
Traffic Load (MBytes/s)

the Medium VM.

Fig. 2. Scalability of Snort, Ntopng and Suricata.

Fig. 2(b) presents the results for our small VM flavor. Here,
it can be easily observed that Snort is unable to use the extra
core, while Suricata still saturates one core at 5.5 MB/s.
However, after that point it reduces its increase rate arriving at
200% (2x 100%) at 45 M B/s. Ntopng also reaches 195.966%
of CPU usage at the same input traffic albeit with a more linear
increase rate than the others. Finally, Fig. 2(c) shows that the
initial CPU usage of Suricata only occurs for the one CPU
in the system, as in our experiments with our medium VM it
showed a CPU profile similar to Ntopng.

1) Scalability: The results in Fig. 2 illustrate that scaling-
up resources for Snort does not improve its performance since
it does not support multi-threading and therefore can only use
one CPU at a time. A solution would be then to scale-out
by creating additional Snort instances and performing flow-
based load-balancing between them. However, splitting the
traffic between several instances increases the risk of false
negatives [12]. Indeed, for threshold-based rules, it would
take more time to detect an attack. Moreover, as previously
mentioned, a multi-instance Snort [10] has a worse perfor-
mance than a single-instance Suricata given the same amount
of resources. In contrast with Snort, Suricata scales well when
increasing its CPUs, and that is due to the fact that all the
allocated CPUs are used by creating multiple threads.

2) Efficiency and Responsiveness: Fig. 3(a) shows that
Snort slowly starts dropping packets while its CPU usage
is still comparatively low. On the other hand, Suricata does
not drop packets until its CPU becomes overloaded. The
packet loss rate then increases exponentially. When comparing
computing speed, we can also notice Suricata’s is very close
to the incoming packet’s speed, thus reducing latency.

Another observation is that for four CPUs for example,
Snort starts dropping packets when its CPU usage is at 64,87%
while Suricata starts dropping packets only when its CPU
usage is at 244,84%. This illustrates how important it is to
deploy fine-grained application-specific scaling policies.

D. Ntopng

Similarly to Suricata, Ntopng scales well when adding
CPUs, and the percentage of packet drops remains very low

40 /
< 30 ! ;o
g ! ya
2 ! i
e A
o /
a 1 / === Snort 1 core
S 20]
b I ,/ /// /| — snort 2 cores
% :' ' . ‘ —— Snort 4 cores
o ! —-=- Suricata 1 core
104 — Suricata 2 cores
—— Suricata 4 cores
=== Ntopng 1 core
— Ntopng 2 cores
04 —— Ntopng 4 cores
0 10 20 30 40 50

Traffic Rate (MBytes/s)

(a) Packet Loss Rate.

—=- Snort 1 core

4 = Snort 2 cores
— Snort 4 cores
=== Suricata 1 core
| — Suricata 2 cores
—— Suricata 4 cores

N}
a
o

N
o
5]

-
I
=)

o
o
S

o
o

Packet Processing Speed (Kilo-Packets/s)

T T T T T T T T
0 2 4 6 8 10 12 14
Traffic Rate (MBytes/s)

(b) Packet Processing Speed.

Fig. 3. Efficiency and responsiveness of Snort, Ntopng and Suricata.

until the CPU usage reaches its maximum for all of the tested
flavors.

V. CONCLUSION

In this paper, we proposed an application-aware framework
that enables Security as a Service (SECaaS) within network
slices using SDN and NFV technologies. We evaluated the
performance of different security VNFs. Based on the obtained
results, we concluded that any auto-scaling solution would
need to take into account the specific performance require-

ments and behavior of each VNF, in addition to the instance
startup time and traffic load prediction in order to trigger the
scaling operations. This consideration is even more critical
as a security VNF’s malfunction (e.g., latency and dropped
packets) can compromise the security of the whole system.
Moreover, we showed how SDN can be leveraged to deploy
security applications, ensuring inter-slice isolation as well as
intra-slice traffic control.

ACKNOWLEDGMENT

This work was partially funded by the Academy of Finland
Project CSN under Grant Agreement No. 311654 and also
partially supported by the ANASTACIA project, that has
received funding from the European Union’s Horizon 2020
Research and Innovation Program under Grant Agreement No.
731558 and from the Swiss State Secretariat for Education,
Research and Innovation.

[4]

[5]

[9]

[10]

(1]

[12]

[13]

REFERENCES

“https://www.gsmaintelligence.com/research/?
file=9€927fd6896724e7b26f33t61db5b9d5&download,” Tech. Rep.

R. S. Shariffdeen, D. T. S. P. Munasinghe, H. S. Bhathiya, U. K. J. U.
Bandara, and H. M. N. D. Bandara, “Adaptive workload prediction
for proactive auto scaling in paas systems,” in 2016 2nd Interna-
tional Conference on Cloud Computing Technologies and Applications
(CloudTech), Marrakesh, Morocco, May 2016, pp. 22-29.

Y. Ren, T. Phung-Duc, J. C. Chen, and Z. W. Yu, “Dynamic auto
scaling algorithm (dasa) for 5g mobile networks,” in 2016 IEEE Global
Communications Conference (GLOBECOM), Washington, DC USA,
Dec 2016, pp. 1-6.

Y. Govindaraju and H. Duran-Limon, “A qos and energy aware load
balancing and resource allocation framework for iaas cloud providers,”
in 2016 IEEE/ACM 9th International Conference on Utility and Cloud
Computing (UCC), Shanghai, China, Dec 2016, pp. 410-415.

M. Mao and M. Humphrey, “A performance study on the vm startup time
in the cloud,” in 2012 IEEE Fifth International Conference on Cloud
Computing, Honolulu, HI, USA, June, pp. 423-430.

Y. Ueda and T. Nakatani, “Performance variations of two open-source
cloud platforms,” in Workload Characterization (IISWC), 2010 IEEE
International Symposium on, Paris, France, Dec 2010, pp. 1-10.

C. Yoon, T. Park, S. Lee, H. Kang, S. Shin, and Z. Zhang,
“Enabling security functions with sdn: A feasibility study,” Computer
Networks, vol. 85, pp. 19 — 35, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128615001619

S. Shin, L. Xu, S. Hong, and G. Gu, “Enhancing network security
through software defined networking (sdn),” in 2016 25th Interna-
tional Conference on Computer Communication and Networks (ICCCN),
Hawaii, USA, Aug 2016, pp. 1-9.

B. Brumen and J. Legvart, “Performance analysis of two open source
intrusion detection systems,” in 2016 39th International Convention on
Information and Communication Technology, Electronics and Microelec-
tronics (MIPRO), Opatija, Croatia, May 2016, pp. 1387-1392.

J. S. White, T. Fitzsimmons, and J. N. Matthews, “Quantitative analysis
of intrusion detection systems: Snort and suricata,” in Cyber Sensing
2013, vol. 8757, May 2013, p. 875704.

T. Bujlow, V. Carela-Espaol, and P. Barlet-Ros, “Independent
comparison of popular dpi tools for traffic classification,” Computer
Networks, vol. 76, pp. 75 - 89, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128614003909

L. Cao, P. Sharma, S. Fahmy, and V. Saxena, “Nfv-vital: A framework
for characterizing the performance of virtual network functions,” in
2015 IEEE Conference on Network Function Virtualization and Software
Defined Network (NFV-SDN), San Francisco, CA, USA, Nov 2015, pp.
93-99.

G. Jati, B. Hartadi, A. G. Putra, F. Nurul, M. R. Igbal, and S. Yazid,
“Design ddos attack detector using ntopng,” in 2016 International
Workshop on Big Data and Information Security (IWBIS), Jakarta,
Indonesia, Oct 2016, pp. 139-144.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]
(31]

L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “ndpi: Open-
source high-speed deep packet inspection,” in 2014 International Wire-
less Communications and Mobile Computing Conference (IWCMC),
Nicosia, Cyprus, Aug 2014, pp. 617-622.

Amazon, “Amazon ec2 - virtual server hosting,” 2016. [Online].
Available: https://aws.amazon.com/ec2/

Netflix, “Scryer: Netflixs predictive auto scaling engine,” 2013.
[Online]. Available: http://techblog.netflix.com/2013/11/scryer-netflixs-
predictive-auto-scaling.html

Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic
resource scaling for multi-tenant cloud systems,” in Proceedings of
the 2Nd ACM Symposium on Cloud Computing, ser. SOCC ’11.
New York, NY, USA: ACM, 2011, pp. 5:1-5:14. [Online]. Available:
http://doi.acm.org/10.1145/2038916.2038921

I. Oliver and S. Holtmanns, “Providing for privacy in a network infras-
tructure protection context,” in 2017 20th Conference on Innovations in
Clouds, Internet and Networks (ICIN), Paris, France, March 2017, pp.
79-86.

T. Taleb, A. Ksentini, and R. Jantti, “”anything as a service” for 5g
mobile systems,” IEEE Network, vol. 30, no. 6, pp. 84-91, November
2016.

Network functions virtualisation (nfv); management and orches-
tration. [Online]. Available: http://www.etsi.org/deliver/etsi_gs/NFV-
MAN/001_099/001/01.01.01_60/gs_NFV-MANO001v010101p.pdf

ETSI GS NFV 002, “Network functions virtualization (nfv);
architectural framework v1.1.1,” ETSI, Tech. Rep., October 2013. [On-
line]. Available: http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002
/01.01.01_60/gs_NFV002v010101p.pdf

S. Lal, T. Taleb, and A. Dutta, “NFV: security threats and best practices,”
IEEE Communications Magazine, vol. 55, no. 8, pp. 211-217, 2017.
[Online]. Available: https://doi.org/10.1109/MCOM.2017.1600899

S. Lal, A. Kalliola, I. Oliver, K. Ahola, and T. Taleb, “Securing
VNF communication in NFVIL,” in IEEE Conference on Standards
for Communications and Networking, CSCN 2017, Helsinki, Finland,
September 18-20, 2017, 2017, pp. 187-192. [Online]. Available:
https://doi.org/10.1109/CSCN.2017.8088620

F. Z. Yousaf and T. Taleb, “Fine-grained resource-aware virtual
network function management for S5g carrier cloud,” [EEE
Network, vol. 30, no. 2, pp. 110-115, 2016. [Online]. Available:
https://doi.org/10.1109/MNET.2016.7437032

M. Christodorescu, R. Sailer, D. L. Schales, D. Sgandurra, and
D. Zamboni, “Cloud security is not (just) virtualization security: A short
paper,” in Proceedings of the 2009 ACM Workshop on Cloud Computing
Security, ser. CCSW ’09. New York, NY, USA: ACM, 2009, pp. 97—
102. [Online]. Available: http://doi.acm.org/10.1145/1655008.1655022
I. Oliver, S. Ravidas, L. Hippeldinen, and S. Lal, “Incorporating trust
in nfvi: Addressing the challenges,” in Proceedings of 20th Innovations
in Clouds, Internet and Networks Conference ICIN’2017, Paris, France,
2017, pp. 87-91.

S. Lal, S. Ravidas, I. Oliver, and T. Taleb, “Assuring virtual network
function image integrity and host sealing in telco cloue,” in 2017 IEEE
International Conference on Communications (ICC), May 2017, pp. 1-
6.

P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“Onos: Towards an open, distributed sdn 0s,” in Proceedings of the
Third Workshop on Hot Topics in Software Defined Networking, ser.
HotSDN ’14. New York, NY, USA: ACM, 2014, pp. 1-6. [Online].
Available: http://doi.acm.org/10.1145/2620728.2620744

Snort. [Online]. Available: https://www.snort.org/

Suricata. [Online]. Available: https://suricata-ids.org/

Ntop. [Online]. Available: http://www.ntop.org/

