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Abstract—The ETSI’s Zero touch network and Service Man-
agement (ZSM) framework is a prominent initiative to tame the
envisioned complexity in operating and managing 5G and beyond
networks. To this end, ZSM framework promotes the shift to-
wards full Automation of Network and Service Management and
Operation (ANSMO) by leveraging the flexibility of SDN/NFV
technologies along with Artificial Intelligence, combined to the
portability and reusability of model-driven, open interfaces.
Besides its benefits, each leveraged enabler will bring its own se-
curity threats, which should be carefully tackled to make ANSMO
vision a reality. This paper introduces the potential ZSM’s attack
surface and recommends possible mitigation measures along with
some research directions to safeguard ZSM system security.

Index Terms—5G, ZSM, AI, ML, Security, SDN, NFV

I. INTRODUCTION

The upcoming fifth generation of mobile communication
networks (5G) are envisaged to notably improve network ca-
pabilities by providing ultra-low latency, ultra-high bandwidth,
ultra-reliability, seamless coverage and greater connection
density. 5G capabilities will pave the way for new use cases
(e.g., virtual reality, autonomous vehicles, etc.), unlocking new
business models. To meet the diverse and varying requirements
of the foreseen use cases, 5G networks are being designed
as highly programmable, extremely flexible and holistically-
managed infrastructures that are service- and context-aware.
For this purpose, emerging enablers such as Software Defined
Networking (SDN), Network Function Virtualization (NFV)
and Multi-access Edge Computing (MEC) are identified as
the foundational pillars for designing 5G network architecture.
However, the increased level of flexibility, programmability
and efficiency brought by these enablers will come at the price
of higher complexity in operating and managing 5G networks.
To tame this complexity, a shift towards full Automation of
Network and Service Management and Operation (ANSMO)
is imperative. One prominent initiative to make the vision of
full automation a reality is undertaken by the ETSI’s Zero
touch network and Service Management Industry Specification
Group (ZSM ISG). The main goal of the ETSI ZSM ISG
is to specify a reference architecture that supports zero-
touch end-to-end smart network and service management in
next-generation networks. The ZSM framework will lever-
age SDN/NFV technologies and Artificial Intelligence (AI)
and Machine Learning (ML) techniques to empower self-
managing functionalities (e.g., self-configuration, self-healing,
self-optimization and self-protecting). To meet this goal, a
set of architectural principles is directing the design of the
ZSM framework, that are being service-based, policy-driven,
modular, extensible, scalable, and resilient to failures [1].

The full ANSMO envisaged by ZSM will give rise to
several benefits, including lower OPerating EXpenses (OPEX),
accelerated time-to-value, and reduced risk of human error.
Meanwhile, a major challenge facing ANSMO is to protect
networks, services and data against theft and attacks. Indeed,
the risk of full automation is the ability to broadly and
rapidly replicate a small isolated error, putting the entire
ecosystem into peril. The ANSMO attack surface is broad as it
relies on several technologies and concepts (e.g., virtualization,
programmability, automation, AI/ML); each of them bringing
its own security threats, which need to be carefully addressed.

This paper presents the potential security threats that may
hinder a ZSM system and the best practices to cope with them.
The rest of the paper is organized as follows. Section II briefly
describes the ZSM reference architecture. Section III discusses
the main security risks associated with the different ZSM’s
key enabling technologies, and illustrates some possible attack
scenarios. Section IV recommends a set of best practices
to safeguard ZSM system security, while highlighting some
research directions. Finally, the paper concludes in Section VI.

II. ZSM ARCHITECTURE

The ZSM framework’s reference The ZSM framework’s
reference architecture [1] is devised to empower full au-
tomated network and service management in multi-domain
environments that include operations across legal operational
boundaries. As depicted in Fig. 6, the framework architecture
integrates multiple management domains (MDs), an End-to-
End service MD, intra- and cross-domain integration fabrics
and cross-domain data services.

Each MD is in charge of smart automated management
of resources and services within its scope. The End-to-End
service MD deals with the management of end-to-end ser-
vices across multiple administrative domains. The separation
between MDs and the End-to-End service MD fosters system
modularity and enables their independent evolvement. Each
MD, including the E2E service MD, consists of several man-
agement functions grouped into logical groups (e.g., domain
collection services, domain intelligence services, domain an-
alytics services, domain control services and domain orches-
tration services) and exposes a set of management services
via service interfaces. Services local to MD are provided and
consumed inside the domain using the intra-domain integra-
tion fabric. Meanwhile, services exposed cross-domains are
consumed through cross-domain integration fabric. Data in
Cross-domain Data Services can be leveraged by intelligence
services within MDs and End-to-End service MD to empower
domain-level and cross-domain AI-based closed-loop automa-
tion, respectively.
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Fig. 1: The ZSM Reference Architecture [1].

III. ZSM ATTACK SURFACE

In this section, we discuss the main security threats stem-
ming from the different ZSM’s key enabling technologies and
illustrate some possible attack scenarios.

A. Open APIs’ Security Threats

Application Programming Interfaces (APIs) are an emerging
technology for integrating applications using web technology.
APIs are a key enabler for ZSM framework allowing com-
munication and interfacing between framework’s components
and services. ETSI ZSM ISG recommends Open APIs as an
architecture principle of the ZSM framework [1].

APIs play an integral part during provisioning, management,
orchestration and monitoring of the services running in the
ZSM framework, which makes them a perfect target for
attackers. According to Gartner [2], API abuses will be the
most-frequent attack vector by 2022. An attacker may try
to exploit insecure APIs for accessing or tampering ZSM’s
services and/or databases. The attacker can be a compro-
mised MD, a compromised E2E service MD or a digital
storefront malicious customer. APIs-based attacks can lead
to data loss/leakage, identity theft, system compromise, as
well as service unavailability. Potential API-based attacks
against ZSM framework include parameter attacks, identity
attacks, Man-In-The-Middle attacks and (Distributed) Denial
of Service attacks.

1) Parameter attacks: Parameter attacks exploit the data
sent into an API, including URL, query parameters, HTTP
headers and/or post content. An example of such attacks is the
injection attacks (e.g., SQL, NoSQL, JSON, code). Improperly
validated parameters within the URL, header and body of the
APIs may lead to injection attacks.

One potential target of injection attacks in the ZSM frame-
work is the Common Data Services component. This latter
holds management data (e.g., performance monitoring data,

assurance data, configuration data, and network/service topol-
ogy data) received from the Management Domains (MDs)
including the E2E service MD in the ZSM framework. Data
in the Common Data Services are used to different aspects
of automated E2E optimization as well as automation of
management and operation of the whole ZSM framework [1].
The prominent role played by the Common Data Services in
automation process makes it a valuable target for attackers.
In fact, the exposed interface to query the “Common Data
Services” can be source of injection attack. Indeed, if a
malicious query is passed directly into the “Common Data
Services” without input sanitization, the data will be subject
to different security threats; such as unauthorized data access,
data manipulation (i.e., insertion, modification and deletion),
and Denial of Service (DoS). For instance, an attacker can
manipulate the network/service topology data to insert fake
links and/or malicious nodes or services in the topology. If we
assume that the attacker is a malicious MD, the injection attack
may allow him to access the detailed data of another MD.
A DoS attack could be triggered by injecting a script in the
malicious query, whose execution can make the Common Data
Services unresponsive. Note that the aforementioned threats
are also valid for Data Services of a given MD.

2) Identity attacks: Identity attacks exploit flaws in authen-
tication, authorization and session tracking. Many applications
publishing APIs require clients to use an API key to access to
their functionality. However, it is worth noting that an API key
does not identify a user nor a unique instance of an application.
Moreover, API keys are simply not authoritative, as the key
itself is typically obfuscated in compiled code and so subject
to extraction by any skilled developer. Thus, using API keys as
credentials can result in identity-based attacks; such as identity
theft.

For instance, if the interface of the Domain orchestration
service or the E2E service orchestration service is not secured,
an attacker may gain access to capabilities for the network and
service management without authorization. The attacker may
change configuration of E2E service instance to fail its SLA.
The attacker may also create E2E service instances demanding
significant network resources in order to exhaust the network
resources and potentially occasion the network unavailability.

3) Man-In-The-Middle attacks: Unencrypted transmission
of API messages introduces the risk of Man-In-The-Middle
(MITM) attack where an attacker is secretly positioned be-
tween the API consumer and provider. The attack leads to the
interception of API messages, which can reveal confidential
information, as well as to the their manipulation.

4) (Distributed) Denial-of-Service attacks: APIs are poten-
tially vulnerable to Denial of Service (DoS) and Distributed
Denial of Service (DDoS) attacks that can make an API out
of order by submerging it with a massive amount of requests.

B. Intent-based Interfaces’ Security Threats

The use of Intent-based technologies is identified as a
mean for automation [3]. Moreover, Intent-based interfaces
are introduced as one of the ZSM architecture’s principles [1].
Indeed, Intent-based interfaces expose high-level abstractions
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allowing to decouple from underlying technology- and vendor-
specific details and hide complexity from the user. They spec-
ify policies rather than mechanisms of how to realize them.
Thus, Intents are about “What”, not “How”. Decoupling the
How and What of the service gives the controller/orchestrator
more freedom in design and implementation choices. Note
that JSON is one of the candidates for autonomic network
Intent format. The potential threats related to use of Intent-
based interfaces include information exposure, undesirable
configuration and abnormal behavior.

1) Information exposure: Intents can vehicle information
about the desires of the application such as connecting with
peers, advertising services or content, and regulating network
traffic. Thus, intercepting such information by an unauthorized
entity can compromise system security objectives (e.g., pri-
vacy, confidentiality) and result in launch of other attacks.

2) Undesirable configuration: The workflow sent to a “Do-
main orchestration service” is defined in a domain service
model (i.e., blueprint) which can be consumed. The domain
service model describes all required infrastructure resources
and consumed services, their configuration, their topology,
their policies and their placement in the network [1]. Some
aspects of the service models can be intent-based and require
a mapping of the intent (e.g., a security level) to one or
more orchestration actions (e.g., security VNFs selection and
chaining). For example, a high level of security is mapped
to a service chaining of a firewall, a DPI, and IPS VNFs
as illustrated in Fig. 2a. Meanwhile, a low level of security
is translated to instantiation of only a firewall VNF. Let us
assume a scenario where the following intent-based service
model is sent to a “Domain orchestration service”: “HTTP
traffic from slice X to Internet has a high security level”.
Thus, if an attacker maliciously tampers the Intent by changing
the security level from “high” to “low” (see Fig. 2b), an
undesirable security level will be set to slice X, making the
slice vulnerable to security threats.

Domain Orchestration

Intent Engine
“Intent”: {
      “id”: “intent_1”,
      “objects”: [“Slice_X”, “Internet”],
      “operations”: [“HighSec_policy”]
}

“policy”: {
      “id”: “HighSec_policy”,
      “action_type”: “gothrough”,
      “action_data”: [
            {“parameter”: “vFW”},
            {“parameter”: “vDPI”},
            {“parameter”: “vIPS”} ] 
}

Slice X

vFW vDPI vIPS

(a) Legitimate Intent.

Domain Orchestration

Intent Engine
“Intent”: {
      “id”: “intent_1”,
      “objects”: [“Slice_X”, “Internet”],
      “operations”: [“LowSec_policy”]
}

“policy”: {
      “id”: “LowSec_policy”,
      “action_type”: “gothrough”,
      “action_data”: [
            {“parameter”: “vFW”} ] 
}

Slice X

vFW

Attacker

(b) Tampered Intent.

Fig. 2: Intent Tampering Illustrative Example.

3) Abnormal behavior: A malformed Intent sent to a
“Domain orchestration service” may result in an abnormal

behavior from this service during the Intent rendering. For
instance, the “Domain orchestration service” may be aborted
or rebooted, leading to Denial of Service (DoS). Alternatively,
the “Domain orchestration service” may map the intent to a
policy that could result in network mis-configuration, causing
network outage or security vulnerabilities.

C. Security threats driven by Closed-Loop Networked Au-
tomation

The Closed-Loop management automation is a feedback-
driven process that seeks to achieve a set of objectives (e.g.,
self-optimization, enhanced use of network resources, and
automated service fulfillment and assurance) without further
human intervention. The pairing of feedback loops with
telemetry data, analytics and orchestration services empowers
intent-based network services.

The closed loop management automation is one of the ZSM
architecture’s principles. Fig. 3 depicts a closed-loop example
based on ZSM system. The example shows a legitimate
scenario where a fault event collected by the “Domain Data
Collection” triggers the closed-loop process by publishing the
fault event, which will be consumed by the “Domain Intelli-
gence”. This last determines that the link is bad and requests
the “Domain Control” to change the router configuration to
reroute the traffic.
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Fig. 3: Closed-Loop Illustrative Example.

The networked closed-loop control system is prone to
several security threats, such as DoS, MITM attacks, and
Deception attacks. An attacker can influence the communi-
cation channels in the control system in order to observe,
hide, create or change information in the attacked network
channel. A deception attack intends to tamper transmitted data
packages, by replaying e.g. past data, causing false feedback
information. For example, an attacker may send a fake fault
event to the “Domain Data Collection” telling that “VNF X is
not responding” (even if it is not). As part of the closed loop
at the domain level, the “Fault events service” of the “Domain
Data Collection” publishes the faked fault event, which will
be consumed by the “Domain Intelligence” services. The VNF
unresponsiveness may be due to several causes:
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• The “Domain Intelligence” may determine that the link
is bad and then a “Configure Resource” query is made to
“Domain Control” to change the switch configuration for
traffic rerouting. If the attacker can hijack the response of
that query to reroute the traffic via an attacker-controlled
switch, the attacker’s switch can then act as a Man-In-
The-Middle. This scenario is illustrated in Fig. 4.
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Fig. 4: Attack driven by Closed-Loop Automation.

• The “Domain Intelligence” may determine that the VNF
is under heavy load and then a query is sent to “Domain
orchestration” services to scale the VNF’s resources or
to instantiate new VNFs to handle the increased load.
In both cases, more resources will be allocated to this
network function, which can lead to exhaustion of in-
frastructure resources (i.e., DoS).

D. AI/ML-based Attacks

The combination of an intent-driven approach and AI/ML
techniques for network and service management will result
in substantial increases in service effectiveness and effi-
ciency through objectives fulfillment in optimal and reduced
management time and in functionality by unlocking new
business models. AI/ML techniques play an important role
in empowering functionalities such as self-planning, self-
optimization, self-healing, and self-protecting. For instance,
the use of Deep Learning (DL) is recently gaining momentum
in enabling intelligent network management and operation
capabilities, such as traffic classification, traffic forecasting,
mobility prediction, resource allocation, and network secu-
rity [4]. However, the growing enthusiasm for AI/ML adop-
tion in the management of next-generation networks could
be dampened if security concerns related to use of AI/ML
techniques are not tackled. In fact, the use of AI/ML and other
data analytics technologies introduces new attack vectors.
Barreno et al. [5] provided a taxonomy of attacks targeting
the training phase (i.e., poisoning attacks), as well as the test
phase (i.e., evasion attacks). In poisoning attacks, an attacker
focuses on tampering the training data, by injecting carefully
crafted malicious samples, to influence the learning outcome.

Meanwhile, an evasion attack attempts to bypass the learned
model by introducing small perturbations to the test instances.
Such perturbations are called adversarial examples. Recently,
new attacks have emerged, particularly targeting ML-as-a-
Service (MLaaS), namely: model inversion attacks [6] and
model extraction attacks [7]. Leveraging the outputs of the
targeted ML model, the former aims to infer the training data,
while the latter focuses on stealing the model parameters to
reproduce a (near)-equivalent ML model. The attacks may
violate training data privacy or facilitate evasion attacks.
Biggio et al. [8] and Fredrikson et al. [7] showed that neural
networks are prone to evasion attacks and model inversion
attacks, respectively. Deep neural networks can be exposed to
model extraction attacks [7]. Several studies (e.g., [6], [7])
proposed successful model extraction and inversion attacks
against MLaaS platforms, such as Amazon ML, Microsoft ML
and BigML. Pattanaik et al. [9] demonstrated the vulnerability
of Deep Reinforcement Learning to adversarial attacks. It has
also been shown in [10] that Federated Learning is vulnerable
to poisoning attacks.

Attacks against ML can be classified according to three
properties, namely [5]: influence, specificity and security vi-
olation. The influence property indicates the attacker’s capa-
bilities. In this case, an attacker can launch causative attacks
if he/she is able to influence the training data, or exploratory
attacks if he/she is only able to tamper the learning outcomes.
The specificity relates to the attack’s target. Thus, an attack
is targeted if it focuses on the misclassification of a specific
sample or class of samples, while it is indiscriminate if it
aims to break down the trained model’s performance by mis-
classifying any sample. From security violation perspective,
an attacker may aim to cause either integrity, availability or
privacy violation. Integrity attacks result in indecision, delayed
decisions, poor or even wrong decisions [11]. However, avail-
ability attacks seek to considerably increase the classification
errors that the system becomes effectively unusable. The
privacy attacks aim to obtain private information about the
system, its users or data by reverse-engineering the learning
algorithm. The attacks against ML can be also divided into two
categories based on the attacker’s knowledge [12], namely:
(i) White-box attacks, which assume that the attacker has
complete knowledge about the training data, the algorithm
and its hyper-parameters. (ii) Black-box attacks, which assume
that the attacker has no knowledge about the algorithm and
its hyper-parameters. In this case, the attacker first observes
the ML-based system response to its query and then uses
this outcome to craft adversarial examples. Note that the ML
transferability property allows to convert white-box adversarial
attacks into black-box attacks.

The ZSM’s E2E service intelligence provide services that
enable both decision-making and predictions capabilities [1].
The decisions making leverage information obtained from
domain data collection services and common data services.
Thus, an adversary may craft inputs to fool the ML model used
by the E2E service intelligence services into making wrong
decisions or predictions, potentially resulting in performance
degradation and financial loss, as well as endangering SLA
fulfillment and security guarantees. For instance, an adversary
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can inject crafted samples that let the E2E service intelligence
services wrongly forecast the future resource requirements of
an E2E service, or to trigger an inappropriate management
policy (e.g., reconfiguration, scaling) of an E2E service. In
another attack scenario, an adversary may generate crafted
samples that result in misclassifying a malicious or anomalous
traffic as normal traffic. The illustrative example depicted in
Fig. 5 shows how a ML model trained to detect malicious
traffic generated by a DoS attack can be fooled by adversarial
samples to wrongly identify the malicious traffic as benign
traffic, allowing the DoS attack to succeed. Note that domain
intelligence services are prone to the same attacks.

Malicious Traffic

ML Model

Noise

Benign traffic

0 1 1 0 0 0 1 1 
1 0 1 1 0 1 0 1  

ML Model

Adversarial sample

0 1 1 0 0 0 1 0 
1 0 1 0 1 1 0 1 =

Malicious traffic

0 1 1 0 0 0 1 0 
1 0 1 0 1 1 0 1 

0 1 1 0 0 0 1 1 
1 0 1 1 0 1 0 1  

SDN Controller

vSwitch1 vSwitch2

SDN Controller

vSwitch1 vSwitch2
MAC@ IP@ Port Action Stats

46:E4:3C:A4:17:c8 192.168.2.2 * Drop #N

... ... ... ... ...

Se
nd

 “
D

ro
p

” 
p

o
lic

y 

to
 c

o
n

tr
o

lle
r

Fl
o

w
 r

u
le

Flow Table1

MAC@ - 46:E4:3C:A4:17:C8
IP@ - 192.168.2.2

Attacker

Victim

Attacker

Victim

Fig. 5: Illustrative Example of an Adversarial Attack against
ML Model.

E. Attacks due to Adoption of Programmable Network Tech-
nologies

The ZSM framework is based on the programmable net-
working approach by leveraging SDN and NFV technologies.
While SDN and NFV technologies offer benefits to create
automated, scalable and customizable networks, they unleash
new attack vectors. Open Network Foundation (ONF) [13]
identified the security threats associated to the different SDN
layers (i.e., control, data and application layers). The identified
threats were classified into six categories, namely spoof-
ing (e.g., openflow switch and/or controller impersonation),
tampering (e.g., configuration data), repudiation, information
disclosure, DoS, and privilege escalation, following Microsoft
STRIDE model. Yoon et al. [14] have listed 22 attack vec-
tors (e.g., DoS, malformed control message injection, unau-
thorized network-view manipulation, unauthorized network
control, and eavesdropping) stemming from the design and
implementation weaknesses of the existing SDN controller
platforms. In the other side, ETSI [15] has identified the threat
surface of NFV as the union of generic virtualization threats
(e.g., memory leakage, interrupt isolation), generic networking

threats (e.g., flooding attacks, routing security), and the threats
due to combining virtualization technology with networking
(e.g., introspection attacks). As software components, VNFs
are vulnerable to software vulnerabilities including design,
implementation and configuration flaws. Thus, compromised
VNFs could provide wrong monitoring data that can mislead
the analytics and intelligence services in ZSM framework.

IV. POTENTIAL MITIGATION MECHANISMS

In this section, we present the potential mitigation measures
and best practices that should be adopted to make a ZSM
system resilient to the aforementioned security threats. We also
highlight some research directions.

A. API Security

API security is a cornerstone to ensure that only envisaged
consumers (e.g., digital storefront or services in the MD, the
Common Data Services and the E2E Service MD) are allowed
to interact with ZSM’s APIs in an authorized way. To this end,
several security measures can be leveraged, including authen-
tication, authorization, communication encryption and input
validation. Authorization can be empowered using OAuth2.0
or JWT tokens, which allow to achieve least privilege require-
ment. Role Based Access Control (RBAC), Attribute Based
Access Control (ABAC) and Access Control Lists (ACLs) are
also recommended to enforce fine-grained authorization that
limit access to APIs and operations in the API. Signed JWT
tokens and OpenID Connect are means to accomplish authen-
tication. API messages must be encrypted to prevent manipula-
tion, eavesdropping and Man-In-The-Middle (MITM) attacks.
Transport Layer Security (TLS) protocol, with at least version
1.2 and using certificates compliant with IETF RFC 5280,
is recommended. TLS provides integrity and confidentiality
of APIs messages including access tokens. When associated
with certificates, it also provides consumer-side authentication.
All data within the URL, query parameters, HTTP headers
and content of ZSM APIs should be properly validated to
thwart injection attacks. As Open APIs are based on JSON
format, the input validation of JSON schema should also be
enforced to prevent unknown parameters from being exposed
to ZSM services. The mitigation of brute force and API-
specific (D)DoS attacks can be achieved through throttling/rate
limiting the usage of APIs. As a result, API requests will
be blocked when the usage rate limits are reached, allowing
the availability of services. A common practice to provide the
API security measures recommended above is the use of API
gateways and microgateways to enforce north-south and east-
west security, respectively [2]. The ZSM’s Intra- and Inter-
domain integration fabrics can be used to deploy the API
gateways and microgateways.

The growing number of services, the variety of APIs and
the high volume of API traffic in an envisioned ZSM system
will make the identification and mitigation of API threats
using traditional measures a complex and inefficient task.
To overcome this limitation, a new direction to complement
and strengthen the aforementioned security capabilities is the
application of AI and ML techniques. Indeed, AI-based API
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security provides proactive monitoring and detection of API
threats and empower their automatic mitigation. However, the
integration of an AI engine in an API security solution will
bring its own vector attacks as we already mentioned in the
previous section.

B. Intent Security

The information passed by an intent-based interface is sen-
sitive and consequently have to be accessed and manipulated
only by authorized entities. Authentication (e.g., OpenID Con-
nect, signed JWT tokens) and authorization (e.g., OAuth2.0,
RBAC) mechanisms are needed to ensure, respectively, mutual
authentication between intent producer and intent consumer,
and controlled access to intent-based interface. The exchange
of intents through a secure transport protocol, such as TLS 1.2,
is necessary to foster both intent integrity and confidentiality,
and consequently prevent Intent tampering and sniffing, re-
spectively. To deal with malformed and/or conflicting intents,
Intent engine should provide the capabilities to validate the
Intent format and detect/resolve potential conflict situations.

C. AI/ML Security

Adversarial Machine Learning (AML) [16] is an emerg-
ing research discipline that aims to make ML techniques
resilient to adversarial attacks. It is intended for assessing
the vulnerability of ML algorithms to attacks and designing
appropriate countermeasures which yield more robust learning.
Potential defenses against adversarial attacks include input
validation, adversarial training, defensive distillation, defense
Generative Adversarial Networks (GANs) and concept drift.
Input validation consists in validating the input samples before
they are fed into the ML model. In adversarial training, the
model is explicitly trained on adversarial examples in order to
learn how to resist them. Defensive distillation is the process
of using knowledge derived from an ML model to enhance its
own robustness to adversarial samples. While both adversarial
training and defensive distillation have proven their effective-
ness against white-box attacks, they fail to counter black-box
attacks. Defense GANs seek to denoise adversarial examples
by projecting input samples onto the range of the GAN’s
generator before injecting them to the ML model. It is worth
noting that defense GANs are resilient to both white-box and
black-box attacks. Concept drift faces adversarial attacks by
detecting drop in ML model performance. To mitigate model
inversion and model extraction attacks, various solutions have
been proposed, ranging from restricting information provided
by ML APIs, adding noise to the ML predictions, to adding
noise to execution time of the ML model. While AML has
attracted much interest in computer vision field, only very few
contributions (e.g., [12], [11]) have addressed ML security
in the context of service and network management. Usama
et al. [12] highlight the importance of tackling adversarial
attacks against cognitive self-organizing networks. As a proof
of concept, white-box evasion attacks against Convolutional
Neural Network were designed to demonstrate how a malware
classifier can be escaped. Han et al. [11] explored the resis-
tance of Reinforcement Learning (RL) to different forms of

causative attacks in the context of autonomous cyber-defense
in SDNs. Realizing the importance of AI/ML security, ETSI
has very recently initiated a new Industry Specification Group
on Securing Artificial Intelligence (ISG SAI) 1. The group
aims to develop technical specifications to mitigate threats
caused by the deployment of AI in ICT field. The security of
ML models is paramount to their integration in a service and
network management platform for next-generation networks.
Thus, more research efforts need to be devoted to master how
adversarial attacks can be launched and countered in network-
ing environment. Another research direction is to propose a
certification framework to assess the security properties of ML
techniques.

D. SDN/NFV Security

Several solutions (e.g., [13], [14]) have been recommended
to mitigate attacks against SDNs. Mutual authentication should
be enforced to prevent impersonation of SDN applications,
SDN controllers and switches. Authorization mechanisms
(e.g., RBAC) are necessary to control the access level and
avoid privilege abuse which is a primary cause for various
attacks, such as DoS and data leakage. Confidentiality and
integrity of messages exchanged on communication channels
(i.e., North-South and East-West interfaces) must be preserved
to prevent information disclosure and tampering. To this
end, encryption, digital signature, and Message Authentication
Code (MAC) algorithms could be leveraged. Tamper-proof
devices, such as Trusted Platform Module (TPM), are recom-
mended to shelter sensitive data, encryption keys, password
and certificates. To tackle DoS/DDoS attacks and guarantee
availability, potential mitigation solutions include, among oth-
ers, malicious traffic monitoring, limiting the number of flow
requests, resource usage monitoring and restrictions, using
distributed SDN controller architecture.

To deal with NFV security issues, ETSI NFV Security
Group comes out with a set of best practices and recommen-
dations [17]. TPM and virtual TPM are potential enablers to
foster VNF boot integrity and empower remote attestation. To
establish VNF confidentiality and integrity at run time, Trusted
Execution Environments (e.g., Intels Software Guard Exten-
sions (SGX), AMDs Secure Encrypted Virtualization (SEV))
are acknowledged as a promising solution. Indeed, TEEs are
hardware-based solutions that have been specifically designed
for providing total integrity and confidentiality even in the
presence of a high privileged malicious operator or a malicious
hypervisor. Traffic monitoring and filtering using Intrusion De-
tection System (IDS) and firewalls is a key technique to detect
and mitigate DoS/DDoS attacks. Resource isolation and usage
limitation are further measures to guard against DoS/DDoS at-
tacks based on resource exhaustion. Strong authentication and
authorization mechanisms are required to thwart NFV MANO
hijacking attack. The establishment of secure communication
channel between NFV MANO and NFVI is mandatory to
defeat traffic eavesdropping and modification, as well as
MITM attacks. The exploitation of software vulnerabilities,
brought on by NFV components (i.e., VNFs, VMs, containers,

1https://www.etsi.org/committee/1640-sai
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hypervisors, etc.), can be countered by establishing secure soft-
ware patching procedures and applying recommended system
hardening techniques, such as removing unnecessary services,
customizing default configurations, enabling OS-level access
and confinement controls (e.g., SELinux, sVirt).

The main security threats discussed above as well as their
potential mitigation measures are summarized in Table I.

Enabler Security Threats Mitigation Measures
Open API Parameter attacks Input validation

Identity attacks

Tampering attacks

MITM attack

Authentication and authorization controls

Secure communication

(D)DoS Throttling/rate limiting the usage of APIs

Intent-based Interfaces
Information exposure

Intent tampering

Authentication and authorization controls

Secure communication

Malformed Intent Intent format validation

Conflicting Intents Conflict detection/resolution

AI/ML

Adversarial attacks

Input validation

Adversarial training

Defensive distillation

Defense GANs

Concept drift

Model extraction attacks

Model Inversion attacks

Control information provided by ML APIs

Add noise to ML prediction

Add noise to execution time of the ML model

SDN/NFV
Spoofing

Privilege escalation

Information disclosure

Tampering

Authentication and authorization controls

Secure communication

TPM, vTPM

DoS

Malicious traffic monitoring

Limiting the number of flow requests

Resource monitoring and usage limitation

Resource isolation

Distributed SDN controller architecture

Introspection Attacks TEE

Software vulnerabilities
Secure software patching procedures

System hardening techniques

TABLE I: ZSM security threats and mitigation measures.

After discussing the potential countermeasures that should
be provided to mitigate the possible security threats brought
by the ZSM’s enablers, we propose a security-enhanced ZSM
architecture where the key security functional components are
introduced into the ZSM reference architecture to empower
the security of a ZSM system as a whole. Fig. 6 shows the
recommended security-enhanced ZSM reference architecture
at a management domain level, including the E2E service man-
agement domain. Integrating the API gateway/microgateway
ensures that management services and data are consumed
only by authenticated and authorized parties. Moreover, it
prevents parameter attacks by validating the API’s content.
All communication between ZSM components and/or with
domain managed infrastructure resources are encrypted, en-
abling protection of data in motion. To handle model extraction
and inversion attacks against ML models, we suggest to
incorporate an “ML APIs Control’ component at the API
gateway/microgateway offering mitigation capabilities, such as
restricting information provided by ML APIs. Data encryption
and integrity capabilities should be provided by data services
to guarantee the protection of data at rest. The “policy manage-
ment” supporting service recommended in the ZSM reference
architecture can play the role of the ”intent engine” to handle
the intent malformation and conflicts problems. Following
the vision of a ZSM system, the attacks against the ZSM’s
components (i.e., management functions) and data should be

proactively and autonomously detected and mitigated. To this
end, security-related analytics and intelligence services should
be provided. For instance, the anomalies in AI/ML model
performance can be monitored by the “AI model performance
evaluation” service. This service can be leveraged by the
“AI model assessment” service to take the most appropriate
decision in order to mitigate the detected anomaly. Similarly,
it is crucial to introduce “API analytics” and “AI engine
for API security” services into domain analytics and domain
intelligence, respectively, in order to detect security anomalies
against APIs. Those services can be leveraged for instance
by the “throttling/rate limiting” component to mitigate the
(D)DoS attacks against APIs. To close the loop, the security
functions related to ZSM’s components and data are managed
by the “domain security orchestration” services in compliance
with the defined security policies.

MF

Domain
Intelligence

MF

Domain
Orchestration

Domain
Data

Services

MF

Domain
Analytics

MF

Domain
Control

Integration Fabric

MFMF

Domain Managed Infrastructure Resources
(Physical/Virtual/XaaS)

Management Domain

API Gateway/Microgateway

AuthorizationAuthentication Throttling/Rate limiting Input validation

API 
Analytics

AI model 
assessment

AI model 
perform. 

evaluation

ML APIs Control

AI engine
for 

API security

Policy Mgmt

Domain
Data

Collection

SF

Domain
Security 
Orchestration

Legend

Authentication/Authorization

Secure communication

SF Security related function

Fig. 6: Security-Enhanced ZSM Reference Architecture.

V. DOMAIN INTELLIGENCE SECURITY: PRACTICAL STUDY
OF ATTACKS AND DEFENSES.

Considering the key role that AI/ML techniques will play
in empowering the intelligent full ANSMO envisioned by
ZSM, this section presents a practical study demonstrating the
vulnerability of Deep Learning (DL) models to adversarial
attacks as well as the effectiveness of adversarial learning
defense. To this end, a DL-based DoS detection model is built
using Multi Layer Perceptron (MLP) algorithm. The proposed
model is trained on the recent intrusion detection dataset,
CICIDS2017 2, where only network flows corresponding to
normal traffic and DoS/DDoS attacks are used. 70% of the
dataset’s flows are used to train the model and the remaining
30% flows are used as a test set to assess the model’s perfor-
mance on unseen data. The model is implemented using the
Pythons DL library Keras running on a TensorFlow backend.
It achieved an accuracy of 99.65% on the test set.

The attacker is assumed to have a full-knowledge (i.e.,
white-box attack) on the targeted model to generate adversarial
flows that will be misclassified by the model (i.e., (D)DoS
flow classified as normal flow or vice versa). Three attacks
are considered: Fast Gradient Sign Method (FGSM), Basic
Iterative Method (BIM) and Jacobian-based Saliency Map
Attack (JSMA). FGSM generates adversarial examples by

2https://www.unb.ca/cic/datasets/ids-2017.html
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performing a one step gradient update in the direction of
the gradient’s sign of the loss function relative to the input.
The input is than altered by adding a perturbation that can
be expressed as: η = ε.sign(5xJ(θ, x, y)), where x is a
sample (i.e., network flow), y is the label of x, J(θ, x, y)
is the loss function used to generate the adversarial example
and ε is the perturbation magnitude. BIM extends FGSM by
applying it multiple times with small step size and clipping the
values of the adversarial example after each step such that they
are within an ε-neighborhood of the original sample. JSMA
creates an adversarial example by perturbing the minimal
number of features of the original sample based on Saliency
map. The attacks are carried out using the Cleverhans library 3

to craft adversarial examples from the test set. We investigated
the effectiveness of adversarial training to counteract the
implemented attacks. The adversarial training is performed
based on adversarial examples generated using FGSM and
BIM attacks. Fig. 7 shows the accuracy of the original model
and its adversarially trained variant on adversarial flows for
different values of ε. For the three attacks, we observe a
significant drop in the original model’s accuracy that is above
58% and can reach 86.83% under BIM attack. It is worth
mentioning that the advantage of JSMA over FGSM and BIM
lies in reducing the number of perturbed features, making
the generation of adversarial network flows more feasible. In
fact, only 14% of features on average are modified by JSMA
compared to 78% for FGSM and BIM. The results show also
that the model’s robustness is significantly improved when the
model is trained with adversarial examples generated by the
same attack (i.e., FGSM-FGSM, BIM-BIM). In the case of
JSMA, we notice that BIM-based adversarial training (i.e.,
JSMA-BIM) yields a more robust model to the JSMA attack.
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Fig. 7: The accuracy of DL-based DoS detection model and
its adversarially trained variant under FGSM, BIM and JSMA
attacks.

VI. CONCLUSION

This paper identified the threat surface that may be in-
troduced by a ZSM system. To enable full ANSMO, the
ZSM framework relies on several emerging enablers (e.g.,
SDN/NFV, AI/ML and model-driven interfaces), bringing new

3https://github.com/tensorflow/cleverhans

security threats and broadening the attack surface. We shed
lights on potential security risks that may hinder the realization
of the full ANSMO vision. We then recommended several
countermeasures to resist these attacks, considering existing
security solutions or advising the development of new ones.
Needless to say, AI will be a game-changer for advancing man-
agement operations and providing efficient resiliency to attacks
in next-generation networks. Nevertheless, the adoption of AI
is challenged by properly addressing its own security issues.
Thus, investigating the AI’s capability in building up effective
mitigation measures and tackling the AI security issues in a
networking environment are potential future research topics.
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