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Abstract—This paper considers the scenario of Unmanned
Aerial Vehicles (UAVs) acting as flying base stations (UAV-BSs) to
provide network connectivity to ground Internet of Things (IoT)
devices. More precisely, we investigate the issue where a UAV-BS
needs to be replaced by a new one in a seamless way. First, we
formulate the issue as an optimization problem aiming to max-
imize the minimum transmission rate of the served IoT devices
during the UAV-BS replacement process. This is translated into
jointly optimizing the trajectory of the source UAV-BS (the one
to be replaced) and the target UAV-BS (the replacing one), while
pushing the IoT devices to seamlessly transfer their connections
to the target UAV-BS. We therefore consider a target replacement
zone where the UAV-BS replacement can happen, along with IoT
connections transfer. Furthermore, we propose a solution based
on Deep Reinforcement Learning (DRL). More precisely, we
introduce a Multi-Heterogeneous Agent-based approach (MHA-
DRL), where two types of agents are considered, namely the
UAV-BS agents and the IoT agents. Each agent implements
a DQN (Deep Q-Learning) algorithm, where UAV-BS agents
learn optimal policies to perform replacement while IoT agents
learn optimal policies to transfer their connections to the target
UAV-BS. The conducted performance evaluations show that the
proposed approach can achieve near optimal optimization.

Index Terms—Unmanned Aerial Vehicles (UAVs), Cellu-
lar Networks, Deep Reinforcement Learning (DRL), Multi-
Heterogeneous Agent-based DRL (MHA-DRL).

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have been identified
as a key enabler of the next generation mobile networks,
where UAVs equipped with the adequate radio technology,
can act as flying base stations (UAV-BSs) to provide network
connectivity to ground devices of the Internet of Things (IoT).
This would also allow to support and re-establish network
connectivity that has been disrupted due to a natural event
of technical failure. UAV-BSs have attracted a lot of atten-
tions from both scientific and industrial communities, which
have been translated into different research contributions and
implementations/Proof-of-Concepts.

In this paper, we address the issue of replacing UAV-BSs
providing network connectivity to ground IoT devices. This
event can occur due to different reasons, such as running out
of UAV’s energy. In this case, it is very crucial to ensure
that source UAV-BSs can be replaced by target UAV-BSs
seamlessly, so that the services provided by the IoT devices
would not be disrupted. Traditionally, the process of changing
the serving access network is known as handover (HO) in
cellular networks. However, the consideration of UAV-BSs

presents new challenges as the access network is moving
in the air, contrary to the traditional cellular networks. This
underpins other sub-processes, mainly in terms of planning the
trajectory of the two concerned UAV-BSs, while transferring
the connection of the IoT nodes from a source UAV-BS to a
target UAV-BS simultaneously.

The use UAV-BSs to serve ground users has widely been ad-
dressed in the literature [1]–[10]. mainly focus on the optimal
deployment of the UAVs and optimal resource allocation. This
lacks from considering the inevitable scenario of replacing a
UAV-BS by another one in a seamless way. To the best of
the authors’ knowledge, this is the first work to address the
problem of seamless replacement of UAV-BSs serving ground
IoT devices. In this regard, we first propose a formulation
of the problem based on Linear Integer Programming (LIP)
to maximize the minimum transmission rate of the served
IoT during this process. This is translated into jointly opti-
mizing the trajectory of the source and the target UAV-BS,
while pushing the concerned IoT nodes to seamlessly transfer
their connections to the target UAV-BS. We also propose a
solution based on Deep Reinforcement Learning (DRL). More
precisely, we introduce a multi-heterogeneous agent-based ap-
proach (MHA-DRL) where two types of agents are considered,
namely the UAV-BS agents and the IoT agents. Each agent
implements a DQN (Deep Q-Learning) algorithm, where UAV-
BS agents learn optimal policies to perform replacement while
IoT agents learn optimal policies to transfer their connections
to the target UAV-BS.

The rest of the paper is organized as follows. Section II
emphasizes with some related works that use UAVs to provide
aerial connectivity to ground users. Section III presents the
considered system model for the problem of seamless UAV-
BSs replacement. This section also introduces a formulation
of the problem based on linear optimization. Thereafter, we
propose in Section IV a MHA-DRL for the problem of
seamless replacement of UAV-BSs. Performance evaluations
are provided in Section V. Finally, Section VI concludes this
paper.

II. RELATED WORKS

UAV-BS has attracted a lot of attentions in the literature.
In [1], the authors considered UAV-BSs for wireless data
collection from ground IoT devices. Both the deployment of
the UAV-BSs and the beamforming design were addressed in



this paper. In [2], the authors investigated the joint problem
of 3D beamforming design, power allocation, user scheduling
and trajectory design for UAV-BS serving ground users. The
design of millimeter-wave (mmWave) massive multiple-input
multiple-output (MIMO) networks with multiple UAV-BSs has
also been investigated in [3]. The authors in [4] elaborated on
enhancing the spectral efficiency for UAV-BSs by reducing
the communication of command messages used to control the
UAV-BSs. The joint uplink-downlink optimization for UAV-
BSs is investigated in [5], [6]. To this end, the authors proposed
a hybrid-mode multiple access scheme.

The mobility management of a UAV-BS providing connec-
tivity services to a cluster of ground users is investigated in
[7]. The paper considered the cases where the geographical
characteristics of the cluster and the radio environment are
unknown. The joint 3D deployment and power allocation
of UAV-BSs for maximizing the system throughput is in-
vestigated in [8]. The authors proposed a solution based on
DRL to learn the optimal 3D hovering location and power
allocation. In another work [9], the authors proposed an
optimal placement algorithm for UAV-BSs that maximizes the
number of covered users using the minimum transmit power.
The energy-efficient 3D placement of a UAV-BS is investigated
in [10]. The proposed solution attempts to find the optimal
UAV-BS 3D location to support ground users, with minimum
UAV-BS energy consumption.

As mentioned previously, many related works on UAV-BSs
focus on the issues such as optimal deployment and resource
allocation. Unlike existing works, we address the problem of
seamless replacement of UAV-BSs providing connectivity to
ground IoT nodes. To the best of the authors’ knowledge, this
is the first work addressing such an issue. The next section
introduces the system model and the problem formulation.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a UAV-BS scenario to support network con-
nectivity for IoT devices. Let U and V denote the set of IoT
devices and the set of UAV-BSs, respectively. We also denote
by Cv the set of IoT nodes being served by the UAV-BS v ∈ V .
Thus, we have

∪
v∈V

Cv = U , (1)

∀v1, v2 ∈ V; Cv1 ∩ Cv2
= ∅. (2)

We consider replacing one UAV-BS and this process can
also be generalized to several UAV-BSs. We use vs and vt to
denote the source UAV-BS and the target one, respectively.
Here, vs will be replaced by vt. The general process of
replacing UAV-BS is illustrated in Fig. 1. Initially, the source
UAV-BS vs is serving all its IoT nodes (Ct = ∅ at the
beginning). Thereafter, both the UAV-BSs vs and vt start a
process of seamless replacement by jointly moving so vt can
take the place of vs, while transferring the connection of the
IoT devices from vs to vt (Cs = ∅ at the end).

Ensuring seamless replacement of vs is translated into
maintaining enhanced quality-of-service (QoS) for the set of
IoT nodes u ∈ Cvs during this process. The underlying

challenge lies in the fact that UAV-BSs are moving throughout
this process. Let us consider the uplink scenario in which
data is sent from the IoT nodes to the serving UAV-BSs. Let
pu = [pnu]n∈Bb(u)

and huv(t) = [hn
uv(t)]n∈Bb(u)

be the transmit
power and the channel gain vectors between the IoT node
u ∈ Cv and its serving UAV-BS v ∈ V over the subset of
allocated RBs n ∈ Bb(u). The UAV-BSs use an Orthogonal
Frequency Division Multiple Access (OFDMA) technique,
which is translated into neglected intra-cell interference. The
transmission rate between the IoT node u and its serving UAV-
BS v can be expressed as

ruv(t) =
∑

n∈Bb(u)

rnuv(t)

=
∑

n∈Bb(u)

W log2

(
1 +

pnuh
n
uv(t)

Inuv(t) +WN0

)
, (3)

where Inuv(t) =
∑

u′∈U\{u} p
n
u′hn

u′v(t) refers to the interfer-
ence impact from non-served IoT nodes over the same RB, W
is the bandwidth of a resource block (RB), while N0 stands
for the noise power. We therefore formulate the problem of
maintaining enhanced QoS into maximizing the minimum of
the transmission rate of the set of IoT nodes throughout the
replacement process.

The trajectory of the UAV-BSs vs and vt is planned in the
target zone of replacement. We denote by L the set of possible
locations in this zone. In order to plan the trajectory of v ∈
{vs, vt}, we define the boolean variable Z l,l′,t

v as

Z l,l′,t
v =



1 if a direct link is formed from the
location l ∈ L to the location η(l)
for the UAV-BS v ∈ {vs, vt} at
timestamp t ∈ T ,

0 otherwise,

(4)

where η(l) is the set of neighboring locations of l ∈ L. We also
define D(v) and F(v) as the departure and the final locations
of the UAV-BS v ∈ {vs, vt}. We consider that D(vs) = F(vt)
so that vt would replace vs. While the UAV-BSs are moving
from their initial locations to the target ones, the associated
IoT nodes need to seamlessly handover to the target UAV-
BS. In order to characterize the operation of transferring the
connection of the IoT node u ∈ Cvs from vs to vt during the
replacement process, we define the boolean variable X t

u as

X t
u =


1 if the IoT node u hands over from vs to

vt at timestamp t ∈ T ,

0 otherwise.

(5)

Based on (5), we can further characterize the variable X t
u as

follows:

YT
u ≜

T∑
t=0

X t
u =

 0 if T < t̂,

1 if T ≥ t̂,
(6)

where t̂ is the timestamp in which the handover is performed.



(a)
Source UAV-BS is serving the IoT

nodes

(b)
IoT connections are seamlessly being 

transferred to the target UAV-IoT

(c)
Target UAV-IoT is completely

serving the IoT nodes

Source UAV-BS Target UAV-BSIoT nodes 𝑣𝑠 𝑣𝑡

𝑣𝑠 𝑣𝑠
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Fig. 1: Illustration of UAV-BS replacement.

The problem of seamless replacement of UAV-BS providing
connectivity to the IoT can therefore be formulated as

maximize
{X t

u},{Z
l,l′,t
v }

min
u∈Cvs

ῡ
∑
l∈L

∑
l′∈η(l)

∑
t∈T

(
Z l,l′,t

vs (1− Yt
u)ruvs(t)

+ Z l,l′,t
vt Yt

uruvt(t)
)
− ω̄

∑
v∈{vs,vt}

∑
l∈L

∑
l′∈η(l)

∑
t∈T

Z l,l′,t
v ,

(7)

s.t.

∀v ∈ {vs, vt},∀l ∈ L,∀l′ ∈ η(l),∀t ≥ 0; Z l,l′

v ∈ {0, 1}, (8)
∀u ∈ Cvs ,∀t ≥ 0; X t

u ∈ {0, 1}, (9)

∀v ∈ {vs, vt};
∑

l′∈η(D(v))

ZD(v),l′,0
v = 1, (10)

∀v ∈ {vs, vt};
∑
t≥1

∑
l∈η(F(v))

Z l,F(v),t
v = 1, (11)

∀v ∈ {vs, vt};
∑
t≥1

∑
l′∈η(F(v))

ZF(v),l′,t
v = 0, (12)

∀v ∈ {vs, vt},∀l ∈ L;
∑
t≥0

∑
l′∈η(l)

Z l,l′,t
v ≤ 1, (13)

∀v ∈ {vs, vt},∀l ∈ L \ (D(v) ∪ F(v)),∀t ∈ T ;∑
l′∈η(l)

Z l′,l,t
v =

∑
l′′∈η(l)

Z l,l′′,t+1
v , (14)

∀l ∈ L,∀l′, l′′ ∈ η(l),∀t ≥ 0; Z l′,l,t
vs + Z l′′,l,t

vt ≤ 1, (15)

∀u ∈ Cvs
;
∑
t∈T

X t
u = 1, (16)

∀u ∈ Cvs
,∀T ≥ 1; YT

u =

T∑
t=0

X t
u. (17)

The objective of the above optimization problem is to
maximize the minimum transmission rate for the IoT nodes,
while changing the locations of the two UAV-BSs and trans-
ferring the connections from vs to vt (the first hand side
of (7)). This term includes the variable Yt

u, which imposes
that Z l,l′,t

vs (1 − Yt
u)ruvs(t) will be equal to zero after the

handover, while Z l,l′,t
vt

Yt
uruvt(t) will be equal to zero before

the handover. The above objective function also aims to
minimize the paths’ length of the two UAV-BSs (the second
hand side of (7)). ῡ and ω̄ are multi-objective weights used
to control the trade-off between reducing the transmission rate
the paths’ length. Conditions (8) and (9) limit the values of the
boolean variables X t

u and Z l,l′

v to the set {0, 1}. Condition (10)
ensures that at timestamp 0, the UAV-BSs vs and vt will
start from their initial locations, D(vs) and D(vt) respectively.
On the other hand, condition (11) guarantees that the UAV-
BSs vs and vt will reach their target locations, F(vs) and
F(vt) respectively. Condition (12) imposes that the UAV-BSs
will stay in their final locations. As for condition (13), it
ensures that at most one link can be formed between two
locations l and l′ at timestamp t for the two UAV-BSs.
Furthermore, condition (14) guarantees that the formed path
is not interrupted while condition (15) ensures that the two
UAV-BSs vs and vt will not select the same location at the
same time to avoid collision. On the other hand, condition (16)
imposes that the IoT node u will handover one and only one
time to the UAV-BS vt. Finally, condition (17) incorporates
the definition of Yt

u.
The above problem formulation is not linear, which is due

to the objective function (7) that expresses the product of
variables (Z l,l′,t

vs (1−Yt
u) and Z l,l′,t

vt Yt
u). This can be linearized

by defining new variables Ql,l′,t
u and P l,l′,t

u , which will be
imposed to equal Z l,l′,t

vs (1 − Yt
u) and Z l,l′,t

vt Yt
u, respectively,

by the following set constraints:


∀u ∈ Cvs ,∀l ∈ L, ∀l′ ∈ η(l), ∀t ∈ T ; Ql,l′,t

u ≤ Zl,l′,t
vs ,

∀u ∈ Cvs ,∀l ∈ L, ∀l′ ∈ η(l), ∀t ∈ T ; Ql,l′,t
u ≤ 1− Yt

u,

∀u ∈ Cvs ,∀l ∈ L, ∀l′ ∈ η(l), ∀t ∈ T ; Ql,l′,t
u ≥ Zl,l′,t

vs − Yt
u,

(18)


∀u ∈ Cvs , ∀l ∈ L,∀l′ ∈ η(l),∀t ∈ T ; Pl,l′,t

u ≤ Zl,l′,t
vt ,

∀u ∈ Cvs , ∀l ∈ L, ∀l′ ∈ η(l), ∀t ∈ T ; Pl,l′,t
u ≤ Yt

u,

∀u ∈ Cvs , ∀l ∈ L, ∀l′ ∈ η(l), ∀t ∈ T ; Pl,l′,t
u ≥ Zl,l′,t

vt + Yt
u − 1.

(19)



However, the above linear optimization is very complex to
be solved by traditional methods (e.g., branch-and-bound), as
it involves an important number of variable and constraints. In
this paper, we propose a solution based on deep reinforcement
learning. Indeed, DRL models can be trained to learn complex
tasks. More precisely, we introduce a multi-heterogeneous
approach in which both the UAV-BSs and the IoT nodes are
considered as agents. Furthermore, we also use the above LIP
as a baseline solution to the proposed approach.

IV. A MULTI-HETEROGENEOUS AGENT-BASED DEEP
REINFORCEMENT LEARNING APPROACH FOR SEAMLESS

REPLACEMENT OF UAV-BSS

In this section, we propose a DRL solution for the problem
of seamless replacement of UAV-BSs providing network con-
nectivity to ground IoT devices. This solution aims to address
the problem formulation introduced in Section III. More pre-
cisely, we introduce an approach where heterogeneous agents
are considered, namely the UAV-BSs and the IoT nodes. The
general architecture of the DRL framework is provided in
Fig. 2. At a timestamp t, the different agents (i.e., UAV-BS
agents and IoT agents) capture the state of the system st which
will be used to decide actions (step 1 in Fig. 2). Each agent
decides an individual action to be performed, which is reflected
by step 2 in Fig. 2 (atg refers to the action performed by the
agent g ∈ Cvs ∪ {vs, vt}). Thereafter, the agents get the new
state of the system, st, along with the respective reward (step 3
in Fig. 2). Furthermore, each agent g also gets in this step
the action performed by the other agents, at−g, which will be
used to learn optimal strategies. Indeed, implementing DRL
in a multi-agent environment requires sharing/aggregating the
experiences/models between the agents. We also design a
replay memory for each agent to store the experiences which
will be used to train the neural network model (step 4 in
Fig. 2). We detail in what follows the definition of the system
state, action space, the system reward and the learning process.

A. System state
The system state is defined in a way to capture the char-

acteristics of the network that allow to achieve the target
optimization. At a timestamp t, a system state is defined as

st = [pu, huv(t),D(v̂),F(v̂),Lv(t)]u∈U,v̂∈{vs,vt},v∈V , (20)

where Lv(t) is the current location of the UAV-BS v ∈ V .

B. Action space
As mentioned earlier, two types of agents are considered.

The action space would therefore differ accordingly. For an
IoT node u ∈ Cvs , an action to be performed at timestamp t
is defined as

atu ∈ {0, 1}, (21)

which indicates whether this node should handover or not to
the UAV-BS vt. As for a UAV-BS v ∈ {vs, vt}, an action to
be performed at timestamp t is defined as

atv ∈ [1, . . . , η], (22)

Environment
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Fig. 2: MHA-DRL framework: two types of heterogeneous
agents (i.e., UAV and IoT agents).

where η is the maximum number of neighboring locations. atv
therefore allows to select the next location of the UAV-BS v.

C. System reward

The system reward is defined in a way to foster the actions
that maximize the objective function. Note that the target
optimization is multi-objective as it can be seen in (7). The
reward function for an IoT agent u ∈ Cv when applying an
actions atu and at−u (respectively by the agent u and by other
agents than u) on a given state st is described as

Ru(s
t, atu, a

t
−u) = ruv(t). (23)

Therefore, increasing the reward of an IoT agent is translated
into increasing the associated transmission rate. As for a UAV-
BS agent v, the reward function when applying the actions atv
and at−v (respectively by the the agent v and by other agents
than v) is defined as

Rv(s
t, atv, a

t
−v) =


1

|Cv|
∑

u∈Cv
ruv(t) if v reaches

its destination,

ῡ 1
|Cv|

∑
u∈Cv

ruv(t)− ω̄ otherwise.
(24)

As we can see in the above equation, increasing the reward for
a UAV-BS agent is translated into enhancing the transmission
rate of its served IoT nodes while reducing the length of the
path.

D. Learning process

In order to learn optimal actions to be performed by the
agents, each of the latter implements a DQN algorithm. The
underlying objective is to find an optimal policy πg ∈ Πg, for
each agent g ∈ Cvs ∪ {vs, vt}, that maximizes the long-term



(a) Average reward of the IoT agents (b) Average reward of source UAV-BS agent (c) Average reward of target UAV-BS agent

Fig. 3: Evaluation of the proposed MHA-DRL approach.

reward. This can be expressed using the V-function, Vπg(s),
as

V∗g(s) = max
{πg}

Vπg(s), (25)

Vπg(s) = E

[ ∞∑
t=0

τ tgRg(s
t, atg, a

t
−g)|s(0) = s

]
. (26)

In the above equation, the symbol E[.] refers to the expectation
operator while τg ∈ [0, 1] reflects a discount factor. Using the
Bellman equation, the function Vπg(s) can also be written as
follows:

Vπg(s) =
∑

ag∈Ag

πg(ag|s)×(
Rg(s, ag, a−g) + τg

∑
s′∈S

P (s′|(s, ag, a−g)).Vπg(s
′)

)
︸ ︷︷ ︸

Qπg (s,ag,a−g)

,

(27)

where Ag is the set of action space for the agent g (equa-
tions (21) and (22)), ag represents the action taken at the
state s by the agent g, πg(ag|s) refers to the possibility of
taking the action ag when the state is s, while s′ denotes
the possible resulting states after executing ag and a−g. The
function Qπg(s, ag, a−g) reflects the Q-function which defines
the value of the action ag taken by the agent g in the state
s under the policy πg. The optimal policy can therefore
be derived as follows (considering the Bellman optimality
equation):

V∗g(s
t) = max

{at
g}

Q∗(s
t, atg, a

t
−g), (28)

Q∗g(s
t, atg, a

t
−g) = Rg(s

t, atg, a
t
−g)

+ τg max
{at+1

g ,at+1
−g }

Q∗g(s
t+1, at+1

g at+1
−g ). (29)

Furthermore, each agent g implements a deep neural net-
work to estimate the function Qπg(s

t, atg, a
t
−g). This can be

expressed as Qπg(s
t, atg, a

t
−g) ≈ Qπg(s

t, atg, a
t
−g, θ

t
g), such

as θtg refers to the parameters of the models implemented
by the agent g at timestamp t. The parameters of each
model are updated using the gradient decent and the history

of experiences stored in the replay memory Mg. This is
materialized by iteratively minimizing the loss which is given
as

L(θtg) =
∑

(st,at
g,a

t
−g)∈Mg

(
Rg(s

t, atg, a
t
−g)

+ τg max
{at+1

g ,at+1
−g }

Qπg(s
t+1, at+1

g , at+1
−g , θt−1

g )

−Qπg(s
t, atg, a

t
−g, θ

t
g)
)2
. (30)

V. PERFORMANCE EVALUATIONS

This section provides the performance evaluation results
of the proposed solution. The simulation is performed in a
1000m × 1000m area consisting of 4 cells, where each cell
consists of 9 IoT devices served by a UAV-BS. The first cell is
the target zone for UAV-BS replacement. We consider a noise
power N0 of −130dBm and a RB bandwidth of 180kHz. In
addition, the discount factor τg is set to 0.9 and the learning
rate is set to 0.001.

We first evaluate the performance of the proposed MHA-
DRL in terms of learning optimal strategies for performing
the UAV-BS replacement process. The obtained results are
depicted in Fig. 3. As we can see, the different agents are
able to learn strategies allowing to maximize the reward
values. For the IoT agents (Fig. 3 (a)), increasing the reward
value is translated into maximizing the transmission rate of
the corresponding IoTs throughout the UAV-BS replacement
process. Indeed, the reward function for an IoT agent is
expressed based on the transmission rate of the IoT nodes
(See equation (23)). Consequently, the IoT agents learn the
optimal time to perform handover. As for the source and the
target UAV-BS agents (Fig. 3 (b) and Fig. 3 (c), respectively),
increasing the reward values implies reducing the distance to
the target location, while ensuring that the selected trajectory
maintains a increased transmission rate for the IoT devices
connected to this UAV-BS (equation 24 provides the reward
function for a UAV-BS agent). We can also see from this
evaluation that the source and the target UAV-BSs reach less
reward value compared to the IoT agents. This is due to the
fact that reward value for the UAV-BS agents decreases with
the distance taken to reach the target destination (so to avoid
long paths).



(a) MHA-DRL (b) LIP

Fig. 4: Evaluation of the UAV-BS replacement process for the proposed MHA-DRL against LIP (optimal solution).

Furthermore, we compare the proposed MHA-DRL ap-
proach with a baseline solution (optimal solution). The latter
is reflected in the LIP solution proposed in Section III. To this
end, we use Gurobi [11] as a solver. The obtained results
are depicted in Fig. 4. In terms of paths’ length, the two
solutions achieve the same number of waypoints (9 steps
performed throughout 9 timestamps). Furthermore, the two
solutions maintain an average transmission rate, for the set of
IoT in the target zone of replacement, which is similar to the
initial value (111Kbps). This shows that the execution of the
UAV-replacement process has been implemented in a seamless
way and proves that the proposed MHA-DRL achieves near
optimal optimization. Fig. 4 also shows the timestamps in
which the handover operation has been executed for each
of the 9 IoT devices in the target zone (dubbed IoT 0, . . . ,
IoT 8). We can see that the handover is executed at different
timestamps for each IoT node, considering the two solutions.
Indeed, the decision for handover is made to maintain en-
hanced transmission rate for the corresponding IoT node and
is not linked to a specific timestamp. On the other hand, the
execution of the above LIP in the Gurobi solver is translated
into 92955 constraints and 32361 variables. This makes the
proposed MHA-DRL much faster and practical compared to
the LIP optimization. More precisely, the solving the above
LIP in a x86 64 machine with 8 CPUs of 2397.224MHz
requires 3374s, while the execution of one episode of the
HMA-DRL approach in the same machine requires in average
0.7ms.

VI. CONCLUSION

This paper investigated the issue of replacing UAV-BSs
providing connectivity to the IoT. We formulated it as an opti-
mization problem for maximizing the minimum transmission
rate of the served IoT devices by jointly optimizing the trajec-
tory of the UAV-BSs (source and target), while performing IoT
handover. To solve the challenging optimization problem, we
proposed a solution based on DRL, with which we adopted a
Multi-Heterogeneous Agent approach including two types of
agents, i.e., the IoT agents aiming to select optimal handover
time, and UAV-BS agents aiming to select optimal paths. The
performance evaluations show that the agents are able to learn

optimal strategies allowing to execute the process of UAV-
BS replacement in a seamless way. Meanwhile, they also
show that the proposed MHA-DRL achieves similar results
compared to the optimal solution, while being able to be
executed in a short time.

ACKNOWLEDGMENT

This work was supported by the European Union’s Hori-
zon 2020 Research and Innovation Program through the
5G!Drones Project under Grant No. 857031.

REFERENCES

[1] Z. Xiao, H. Dong, L. Bai, D. O. Wu, and X.-G. Xia, “Unmanned
Aerial Vehicle Base Station (UAV-BS) Deployment With Millimeter-
Wave Beamforming,” IEEE Internet of Things Journal, vol. 7, no. 2,
pp. 1336–1349, 2020.

[2] K. Li, X. Zhu, Y. Jiang, and F.-C. Zheng, “Closed-Form Beamforming
Aided Joint Optimization for Spectrum- and Energy-Efficient UAV-
BS Networks,” in 2019 IEEE Global Communications Conference
(GLOBECOM), 2019, pp. 1–6.

[3] L. Zhu, J. Zhang, Z. Xiao, and R. Schober, “Optimization of Multi-UAV-
BS Aided Millimeter-Wave Massive MIMO Networks,” in GLOBECOM
2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–6.

[4] H. Hellaoui, O. Bekkouche, M. Bagaa, and T. Taleb, “Aerial Control
System for Spectrum Efficiency in UAV-to-Cellular Communications,”
IEEE Communications Magazine, vol. 56, no. 10, pp. 108–113, 2018.

[5] H. Zeng, X. Zhu, Y. Jiang, Z. Wei, and Y. Hao, “Hybrid-Mode Mul-
tiple Access for UAV-BS Assisted Communications with UL-DL Rate
Balancing,” in GLOBECOM 2020 - 2020 IEEE Global Communications
Conference, 2020, pp. 1–6.

[6] H. Zeng, X. Zhu, Y. Jiang, Z. Wei, S. Sun, and X. Xiong, “Toward
UL-DL Rate Balancing: Joint Resource Allocation and Hybrid-Mode
Multiple Access for UAV-BS Assisted Communication Systems,” IEEE
Transactions on Communications, pp. 1–1, 2022.

[7] M. G. Khoshkholgh and H. Yanikomeroglu, “RSS-Based UAV-BS 3-D
Mobility Management via Policy Gradient Deep Reinforcement Learn-
ing,” in ICC 2021 - IEEE International Conference on Communications,
2021, pp. 1–6.

[8] M. Zhang, S. Fu, and Q. Fan, “Joint 3D Deployment and Power
Allocation for UAV-BS: A Deep Reinforcement Learning Approach,”
IEEE Wireless Communications Letters, vol. 10, no. 10, pp. 2309–2312,
2021.

[9] M. Alzenad, A. El-Keyi, F. Lagum, and H. Yanikomeroglu, “3-D
Placement of an Unmanned Aerial Vehicle Base Station (UAV-BS) for
Energy-Efficient Maximal Coverage,” IEEE Wireless Communications
Letters, vol. 6, no. 4, pp. 434–437, 2017.

[10] J. You, S. Jung, J. Seo, and J. Kang, “Energy-Efficient 3-D Placement of
an Unmanned Aerial Vehicle Base Station With Antenna Tilting,” IEEE
Communications Letters, vol. 24, no. 6, pp. 1323–1327, 2020.

[11] Gurobi, “Gurobi optimization,” http://www.gurobi.com/, [Online].


