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Abstract—The industrial Internet of Things (IIoT) involves the

integration of Internet of Things (IoT) technologies into industrial
settings. However, given the high sensitivity of the industry to
the security of industrial control system networks and IIoT,
the use of software-defined networking (SDN) technology can
provide improved security and automation of communication
processes. Despite this, the architecture of SDN can give rise
to various security threats. Therefore, it is of paramount im-
portance to consider the impact of these threats on SDN-based
IIoT environments. Unlike previous research, which focused on
security in IIoT and SDN architectures separately, we propose an
integrated method including two components that work together
seamlessly for better detecting and preventing security threats
associated with SDN-based IIoT architectures. The two compo-
nents consist in a convolutional neural network-based Intrusion
Detection System (IDS) implemented as an SDN application and
a Blockchain-based system (BS) to empower application layer
and network layer security, respectively. A significant advantage
of the proposed method lies in jointly minimizing the impact
of attacks such as command injection and rule injection on
SDN-based IIoT architecture layers. The proposed IDS exhibits
superior classification accuracy in both binary and multiclass
categories.

Index Terms—Blockchain, Industrial IoT, SDN, Deep learning,
Intrusion detection system, and Security.

I. INTRODUCTION

The Internet of Things (IoT) has been increasingly adopted
across various fields, including agriculture, manufacturing, and
industry [1]. The Industrial Internet of Things (IIoT) is an
application of IoT in manufacturing and industry that aims
to automate industrial processes and achieve effective and ap-
propriate products through data exchange and digitization [2].
IIoT offers advantages over traditional Supervisory Control
and Data Acquisition (SCADA) systems, such as productivity,
scalability, and data analysis [3], but the increase in connected
devices and the lack of security design in older control systems
make factories vulnerable to cyber-attacks. Industrial Control
Systems (ICS), which include SCADA, Remote Terminal Unit
(RTU), and Programmable Logic Controllers (PLCs), play a
crucial role in various industrial infrastructures such as nuclear
technology.

IIoT security research has increased due to the inadequacy
of conventional methods such as access control mechanisms,
firewalls, and encryption against multiple attacks such as
denial of service (DoS) [4]. Machine learning methods have
been used to detect intrusions, but they often fail to detect
unknown and new security threats due to poor feature selection
and classification [4], [5]. This approach is also not scalable

for large volumes of data, and incorrect classification can have
catastrophic consequences [6] such as a nuclear disaster in a
nuclear power plant.

Ensuring accurate classification of attacks is crucial for
timely analysis [6], [7]. Unbalanced datasets from ICS, which
are usually in a stable and normal state, may affect machine
learning algorithms [6]. To detect attacks quickly and ac-
curately, Deep Learning (DL) methods [4], [6] have shown
advantages over traditional machine learning methods, such
as the ability to learn features from original data and manage
high-dimensional data to extract valuable patterns. Leveraging
the potential of DL, this study aims to eliminate the afore-
mentioned limitations by implementing anomaly detection and
attack classification using a DL-based IDS.

Besides security, current IIoT architectures suffer from
issues such as scalability, monitoring, data management, and
flexibility (since operators must manually configure devices
whenever a device update request is received) [8]. Integration
of SDN into IIoT architecture addresses these challenges [8].
In fact, SDN technology decouples the data plane and control
plane, allowing for centrally and intelligently control of net-
work behavior [9]. In addition, SDN programmability enables
the integration of advanced services for managing the net-
work, including its security. Driven by its benefits, this study
uses SDN for two primary reasons. Firstly, it leverages its
programmability feature to facilitate the timely detection and
mitigation of attacks through the IDS; which is implemented
as an SDN application. Secondly, it facilitates monitoring, data
management, and flexibility in IIoT architectures.

Nevertheless, besides its advantages, SDN architecture is
also prone to several vulnerabilities that can be exploited by
attackers, such as man-in-the-middle (MITM) attacks [10].
Therefore, strengthening SDN security is crucial to reap its
benefits in creating a reliable communication infrastructure
for IIoT environments. Blockchain technology is a promising
candidate to meet this goal, owing to its inherent features of
transparency, immutability, traceability, and decentralization
[11]. It operates as a distributed ledger, which is immutable
and tamper-proof, and stores data on a peer-to-peer network.

Extensive research work has been engaged, investigating the
security challenges in both SDN and IIoT technologies (e.g.,
[4], [6], [12], [13]) as well as leveraging SDN in IIoT for its
perceived benefits (e.g., [8], [14]). However, none of existing
contributions has comprehensively addressed security concerns
in both technologies in an integrated way. Specifically, there
is a lack of research that addresses security issues holistically,
rather than separately, with the aim of mitigating the impact of979-8-3503-1090-0/23/$31.00 © 2023 IEEE



attacks on the various layers of SDN-based IIoT architecture
simultaneously.

It is important to clarify that our objective is not to propose
a method that is superior to previous research in terms of
IDS accuracy or Blockchain overhead. Rather, the primary
differentiator of our approach from related work lies in the
proposal of a novel and improved integrated method that
aims to minimize the effects of IIoT security attacks and
SDN security attacks on the various layers of an SDN-based
IIoT architecture. This is achieved through the use of two
security components – a DL-based IDS and a Blockchain-
based system (BS) – that are integrated in a manner that
allows them to work together and complement each other,
resulting in a more comprehensive security approach. As a
DL algorithm, a convolutional neural network (CNN) is used.
Because the selected dataset (version 3) [15] is supervised and
classification-oriented, CNN has been chosen for its capacity
to automatically extract relevant features. The results of our
evaluation also showed that CNN outperformed some machine
learning algorithms in detecting and classifying attacks. This
has been the motivation for pursuing the following:

• Introducing a SDN-based IIoT system that combines the
benefits of both technologies to improve flexibility and
scalability while also addressing security concerns.

• Proposing a novel method that utilizes two security
components. Through this improved approach, the impact
of security attacks across multiple layers of the SDN-
based IIoT architecture will be minimized.

• Presenting and implementing a system model and attack
model about SCADA network attacks and attacks specific
to SDN networks.

• Evaluating the efficiency of the proposed solution against
the attacks outlined in the attack scenario.

The rest of this paper is organized as follows. Section II
categorizes existing articles related to the field. In Section
III, the proposed method, system model, and intended attack
model are presented. Sections IV and V present implementa-
tion details and evaluation results, respectively. Finally, Section
VI concludes this paper and highlights some of our future work
in this area.

II. RELATED WORK

Three categories of related research are reviewed in this
section, namely: IoT/IIoT Security and IDS-based solu-
tions, SDN-based IoT/IIoT Security, and SDN Security and
Blockchain-based solutions.

A. IoT/IIoT Security and IDS-based Solutions

Balil et al. [3] discussed classification and mitigation solu-
tions for IIoT attacks. In [4], a two-step detection system is
proposed: a machine learning-based anomaly detection module
is used in the first step for binary classification. The output
of the first step is used as the input for the CNN-Long short-
term memory (LSTM) algorithm for multiclass classification
in the second step. A 2D CNN algorithm is introduced in
[6] to identify anomalies in industrial traffic. The idea is

to convert one-dimensional traffic data into two-dimensional
images representing specific traffic classes. As a result, CNN
is capable of classifying these images effectively in order to
detect anomalies. Rakas et al. [16] reviewed recent articles
on SCADA security using IDS, and Alotaibi et al. [17] used
stacked deep learning to detect malicious attacks targeting IoT
devices in smart homes and smart grids. Gao [18] designed
a SCADA anomaly-based IDS with different algorithms, such
as Decision Tree (DT).

B. SDN-based IoT/IIoT Security

The use of SDN and blockchain in IIoT is proposed to
enhance smart grid flexibility, energy optimization, and secu-
rity against attacks in various articles, including [8], and [14].
In [8], SDN detects vulnerabilities and attacks and facilitates
continuous IoT device monitoring. The authors leveraged
Blockchain to secure Cloud data, counter Distributed DoS
(DDoS) attack threats, and guard against distributed controller
attacks. Machine learning-based models and clustering algo-
rithms are also suggested to optimize resource consumption
and prevent attacks. SDN technology is used in [19] and [20]
to prevent MITM and DDoS attacks and enhance scalability
and flexibility in IoT networks. Haseeb et al. [21] proposed
a SDN-enabled security model using machine learning to
improve network consumption and delivery of the Internet of
Medical Things (IoMT) services on time. SDN clusters the
nodes and optimizes routing performance using the unsuper-
vised learning algorithm. Moreover, the intelligent centralized
SDN controller protects data, minimizes power consumption,
and manages critical infrastructure effectively, safeguarding
against malicious users and unauthorized requests.

C. SDN Security and Blockchain-based Solutions

Liu et al. [10] reviewed different types of attacks on
SDN. Scott et al. [22] investigated vulnerabilities in software-
based networks and suggested security solutions. Derhab et al.
[12] used a distributed controller and a blockchain between
controllers to prevent flow rule injection attacks, and Boss et
al. [13] prevent DDoS attacks using blockchain technology.

A number of articles investigated the issue of SDN security
and IIoT networks, emphasizing the demand for an integrated
solution to ensure network security and avoid additional costs.
The work in [14] introduces a Random Subspace Learning
(RSL)-based IDS method for IIoT attacks and a blockchain-
based method for SDN attacks, but does not demonstrate how
to implement detection based on the blockchain, and the role
of SDN is not clearly defined. In contrast, our work outlines
a novel approach for detecting SDN attacks based on the
southern interface and emphasizes the role of SDN as a key
component in detecting IIoT-related attacks through the use of
an IDS. We make use of SDN’s programmability feature to
achieve this goal.

III. METHODOLOGY

This section describes the proposed approach, the attack
model, and the system model of the desired architecture.



Fig. 1. Layered architecture of SDN-based IIoT networks.

A. System Model

The proposed system model, illustrated in Fig. 1, uses SDN
technology at the network layer to transmit environmental in-
formation from sensors to industrial controllers and ultimately
to the control room. The SDN-based network is responsible for
transmitting information and making decisions based on data
received from the sensors. Two security components, namely
blockchain and IDS, are located within the system to enhance
its security.

Fig. 1 shows the blockchain consisting of two nodes; an
SDN controller/a block generator and a Detection Node (DN).
The block generator has read and write access, while the DN
can only read the block. In addition, the IDS is also placed
as an application on the SDN controller - the IDS is trained
by CNN algorithm. The blockchain plays a crucial role in
our work by supporting the DN in more accurately detecting
attacks.

B. Attack Model

Fig. 2 depicts a proposed attack model considering MITM
attacks at the network layer, involving the injection of flow
rules into switches’ flow tables and command injection at-
tacks at the application layer (the control room). Two types
of attacks are considered: purple attacks modifying packet
payload and red attacks changing packet header. Purple attacks
alter actuator performance, while red attacks redirect packets
to unintended destinations, causing chaos in the network.
The control room’s command could reach the wrong actuator
and unintentionally perform an undesired action due to such
attacks.

C. Method Suggested

In this method, both the packet payload and header are
examined to ensure that neither command injection nor flow
rule injection has taken place.

The first assumption is that a packet enters the switch.
The switch performs an action on a packet if it is defined
in its flow table, otherwise it sends it to the controller. Before
considering any action, the controller forwards the packet to
the IDS for detection of the malicious payload. If the IDS

Fig. 2. Attack model.

detects a malicious payload, the controller blocks the attacker,
but if the packet payload is safe, the header is checked by
the BS which includes a controller node and a DN. Thus, the
BS is activated once the IDS has confirmed that the packet
payload is safe.

Due to this, once the IDS has determined that the packet
payload is normal, the controller decides on the packet by
sending a flow rule to the switches in order to update their
flow tables. Simultaneously, the blockchain is used to transmit
the same flow rule to the DN. The DN stores the flow rules
received from the controller via the blockchain in a file and
requests the switch logs for analysis. Following that, DN saves
the switch logs in another file. As a result, DN compares these
two files to ensure that the flow rule has not been changed
along the way (i.e., southern interface) due to a possible MITM
attack. When the DN detects a change in the values sent by
comparing these two files, it will generate an attack warning
for the controller, otherwise, it will generate a warning for
safe flow for the controller (the packet header is also safe).
Consequently, by sending a malicious packet payload or a false
flow rule, the attacker is not able to reach his target in this
case. Therefore, neither the command sent from the controller
room to change the performance of the actuators nor the
packet headers to get the packet to the wrong destination have
changed. A description of the proposed method is provided
in Fig.3. In Fig.3, the arrows specified in the “Sending flow
rules” section with the “*” sign occur simultaneously.

IV. IMPLEMENTATION

The proposed method is implemented using the Python
programming language and the Numpy 1.18.5, Pandas 3.8.10,
Keras1.1.2, and Sklearn 0.22.2 libraries to implement the IDS
based on the CNN algorithm. Additionally, the MultiChain
private blockchain is implemented using the Savoir library.
Mininet 2.3.0, OpenFlow 1.3, and Ryu Controller are used
as simulators, southbound interface, and SDN controller, re-
spectively. In addition, two Ubuntu 20.04 virtual machines are
used and the specifications of the systems and programs that
are installed on them are listed in Table II.



Fig. 3. Flow chart of the proposed method.

This study uses a dataset in the field of natural gas pipelines
[15]. The dataset contains 27 features. It includes 8 classifi-
cations, one of which is designed for normal mode and seven
for the attack. The specific classifications of the natural gas
pipeline dataset are shown in Table I. More details on the
description and classification of these features are in [23].

The CNN-based IDS is implemented after performing data
pre-processing operations to clean the input data and improve
accuracy. Features with only one value are removed, reducing
the number of features from 27 to 18. Data grouping is used to
balance the data in each of the eight classifications, resulting
in four classifications: normal, injection attack, reconnaissance
attack, and DoS attack. This is achieved by grouping five types
of injection attacks into one attack group and defining one type
of attack as an injection attack. It is worth mentioning that the
DoS attack detected by the IDS in this study is a false state
injection, not a flooding attack.

The dataset is split into three parts: 70% for training, 15%
for validation, and 15% for testing. The data is then normalized
using the MinMaxScalar, which places the values between 0
and 1.

Afterward, the CNN model is defined. It has 2 layers of

TABLE I
ATTACK CLASSIFICATION IN THE DATA SET.

Abbreviation Label Label type
Normal 0 Normal Behaviour
NMRI 1 Naive Malicious Response Injection
CMRI 2 Complex Malicious Response Injection
MSCI 3 Malicious State Command Injection
MPCI 4 Malicious Parameter Command Injection
MFCI 5 Malicious Function Code Injection
DoS 6 Denial of Service

Recon 7 Reconnaissance

TABLE II
SPECIFICATIONS OF SYSTEMS USED IN RESEARCH.

System Operating System RAM Installed Program
1 Ubuntu 20.04 8 GB Mininet 2.3.0, Ryu 4.34
2 Ubuntu 20.04 4 GB Multichain 2.2

1D-convolution, 1 layer of Max-pooling, 1 layer of Average-
pooling, and 2 Fully connected layers. The filter size in the
convolution layer is 3, while in the max-pooling layer, it is 2.
The Relu activation function is used in the convolution layer,
sigmoid for binary classification, and softmax for multi-class
classification in the last layer. The batch size is set at 100,
with SGD as the optimization function. The learning rate and
momentum are set as 0.01 and 0.8, respectively.

It is important to note that the selection of hyperparameters,
including the number and type of layers, optimizer function,
and learning rate, were determined through a process of trial
and error. We tested various learning rates of 0.1 and 0.01 as
well as momentum values of 0.8, 0.9, and 0.99. Ultimately,
we found that the combination of a learning rate of 0.01 and
momentum of 0.8 by SGD produced the most optimal results.
However, due to space constraints, in this paper, we are only
able to present the results of the model trained with SGD using
a learning rate of 0.01 and momentum of 0.8.

Following the initial steps and defining the model using
the aforementioned values, the model is implemented with
30 training epochs and then evaluated according to metrics.
Section V presents the results of this evaluation based on
the considered metrics. Following the implementation of IDS,
each of the systems listed in Table II will be described.

A. System 1 Operation in Implementation

The system is simulated using Mininet and Ryu controller,
with a network topology consisting of 2 switches, 3 hosts,
and 1 controller with communication links. The presented
topology uses a host called Client for legal communication,
a host called Attacker for sending the false flow rules, and
a host called Server for receiving requests from users. After
implementing the topology in Mininet and its connection to
the controller, it is possible to send packets with a specific
payload. The trained CNN-based IDS model is saved in a file
and called on the Ryu controller. An IDS Python application is
created to receive packet payload, read its specifications, call
the corresponding IDS, define flow rules sent by the controller,
and perform blockchain operations.
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Fig. 4. Model’s accuracy and loss at every epoch in binary-class classification.
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Fig. 5. Model’s accuracy and loss at every epoch in multi-class classification.

B. System 2 Operation in Implementation

The controller sends a flow rule to the switch after the
client hosts send a normal payload and the IDS verifies it.
The DN (system 2) receives a copy of the same flow rule via
Savoir, which is transmitted to the switch. The DN compares
the switch flow table with the flow rule received from the
blockchain. A MITM occurs when the number of flow table
rows received from the switch does not match the number
of flow table rows received from the controller. If the rows
match in both files but the content does not, it suggests a
modification in the flow rule at the switch. This is reflected in
the ”Hard age” feature of the switch flow table, which records
the time since the entry was last modified. Hence, Hard age
can be used to detect flow table changes. Whenever a flow rule
injection attack is detected, the DN notifies the controller that
the packet is malicious, indicating that the flow rule sent from
the SDN controller to the switch has been tampered with.

V. EVALUATION

This section evaluates the IDS before calling in the Ryu
controller, and in the next step, we evaluate the IDS after
calling in the Ryu controller and the BS.

A. IDS Evaluation Before Calling in Ryu

The proposed IDS is evaluated using four performance
metrics: accuracy, precision, recall, and F1-score.

The accuracy represents the overall performance of the
classifier. Precision and recall ensure that the results were not
distorted by too many normal samples (unbalanced dataset).
Finally, F1-score acted as a reconciler between precision and
recall.

Fig. 4, Fig. 5, Table III and Table IV present the evalua-
tion results of the proposed algorithm based on the above-
mentioned metrics. Fig. 4 as well as Fig. 5 illustrate the

TABLE III
BINARY CLASSIFICATION PERFORMANCE RESULTS.

Class Precision Recall F1
Normal 94.17% 98.3% 96.6%
Attack 96.39% 89.65% 92.90%

Average results 95.28% 93.84% 94.48%

TABLE IV
MULTI-CLASS CLASSIFICATION PERFORMANCE RESULTS.

Class Precision Recall F1
Normal 94.11% 98.04% 96.3%
Injection 95.32% 88.29% 91.67%

DoS 98.67% 69.13% 81.30%
Reconnaissance 100% 100% 100%
Average results 97.02% 88.86% 92.31%

loss (a) and accuracy (b) of the binary-class and multi-
class classification models during training, respectively. An
evaluation of the model was done with a learning rate of 0.01
and momentum of 0.8 in 30 epochs.

As previously mentioned, the accuracy of the model was
tested using various hyperparameters and optimization func-
tions. The accuracy of the model in the binary-class mode
reached 93.50% with the learning rate of 0.1 and the momen-
tum of 0.8. With the learning rate of 0.01, it reached 94.75%.
In the multiclass mode, the model accuracy reached 93.30%
with the learning rate of 0.1 and the momentum of 0.8. It
reached 94.65% with the learning rate of 0.01. Model accuracy
in the binary-class and multi-class modes reached 63% when
the learning rate was set to 0.1 and the momentum was set to
0.99.

Based on the evaluations, it is demonstrated that the model
trained using a learning rate of 0.01 and momentum of 0.8 by
SGD outperforms other models. Table III shows the outcomes
of binary classification, while Table IV demonstrates the
results of multi-class classification.

To assess the effectiveness of the proposed algorithm, in
comparison to the algorithms presented in [14] and [18], we
utilize DT method and the RSL-K-Nearest Neighbor (KNN)
approach to evaluate their accuracy performance in detecting
SCADA attacks. Table V presents the outcomes of binary and
multi-class classification based on the accuracy metric. We
experimented RSL-KNN [14] with different K – the number
of nearest neighbors – values of 5 and 10, but the best accuracy
achieved was below 91.9% in both binary and multi-class
classification. The accuracy of the DT method in both binary
and multi-class classification was 92.3%, as well. We can
observe that CNN outperforms RSL-KNN and DT under both
classification tasks.

B. IDS Evaluation in the Form of an SDN Application

After ensuring that the controller is properly prepared,
packets containing the desired payloads are sent through the
server. The effectiveness of the IDS application in detecting
both malicious and normal payloads is then assessed through
careful evaluation. The attacker system sends a request with
a malicious payload to the server, which is then sent to the
controller for a decision as there is no appropriate action in
the switch flow table. The controller forwards the packet to the



TABLE V
ALGORITHM COMPARISON RESULTS.

Algorithms Accuracy in binary Accuracy in multi-class
class classification classification

CNN 94.75% 94.65%

RSL-KNN [14] (K = 10) 90% (K = 10) 90.2%
(K = 5) 91.9% (K = 5) 91.9%

DT [18] 92.3% 92.3%

IDS application, which announces a value of 1 if the packet
contains a detected malicious payload. The IDS application
then sends a command to the controller to block the source
system.

After that, the IDS application is tested by sending normal
payloads to the server. The flow rule between the client and
server is sent to the switches via the SDN controller, and a
copy of the controller flow rule sent to the switch is collected.
The collected flow tables are sent to the DN (system 2) using
the Savoir module as a block. The DN receives the block and
stores the results in a file. The DN then saves the content of
the switch flow table in another file. The existence of different
number of rows in flow tables in the two files when compared
by DN indicates a MITM attack. The system also reports a
modification when the switch flow table contains Hard age
and the number of rows is equal.

VI. CONCLUSION

This research utilizes CNN-based IDS and blockchain as
complementary components to enhance the security of SDN-
based IIoT architecture. SDN’s programmability, centralized
controller, and network-wide view make it a crucial factor in
ensuring IIoT security. The study achieved 94.75% accuracy in
binary classification and 94.65% in multi-class classification,
along with satisfactory precision, recall, and F1-score metrics.
The proposed method effectively detects malicious payloads
and prevents their occurrence, as well as detects flow rule
injection attacks. Future work could involve using balancing
methods and alternative algorithms to improve classification
metrics and multi-controllers can be implemented to prevent
system bottlenecks. ACKNOWLEDGMENT
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