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Abstract—The advancement towards 6G technology leverages
improvements in aerial-terrestrial networking, where one of the
critical challenges is the efficient allocation of transmit power.
Although existing studies have shown commendable performance
in addressing this challenge, a revolutionary breakthrough is
anticipated to meet the demands and dynamism of 6G. Potential
solutions include: 1) semantic communication and orchestration,
which transitions the focus from mere transmission of bits to
the communication of intended meanings of data and their
integration into the network orchestration process; and 2) dis-
tributed machine learning techniques to develop adaptable and
scalable solutions. In this context, this paper introduces a power
allocation framework specifically designed for semantic-aware
networks. The framework addresses a scenario involving multiple
Unmanned Aerial Vehicles (UAVs) that collaboratively transmit
observations over a multi-channel uplink medium to a central
server, aiming to maximise observation quality. To tackle this
problem, we present the Semantic-Aware Multi-Agent Double
and Dueling Deep Q-Learning (SAMA-D3QL) algorithm, which
utilizes the data quality of observing areas as reward feedback
during the training phase, thereby constituting a semantic-aware
learning mechanism. Simulation results substantiate the efficacy
and scalability of our approach, demonstrating its superior
performance compared to traditional bit-oriented learning and
heuristic algorithms.

Index Terms—6G, Wireless Networks, Power Allocation, Deep
Reinforcement Learning (DRL), Machine learning (ML), Seman-
tic Communication (SemCom), Semantic-Aware Orchestration.

I. INTRODUCTION

A myriad of technological advancements synergistically
contributes to the global transition to sixth-generation (6G)
mobile networks. Among these advancements, aerial-terrestrial
networking holds the promise of providing more widespread
access, particularly to previously unconnected regions of the
world [1], [2]. This networking approach integrates aerial
platforms, such as Unmanned Aerial Vehicles (UAVs), with
traditional terrestrial communication infrastructures, thereby
offering flexible and on-demand connectivity in areas where
deploying fixed infrastructure is either challenging or eco-
nomically unfeasible. For example, UAVs can be deployed
to facilitate remote monitoring tasks. Notably, applications
such as wildlife counting [3] and intelligent transportation
systems [4] stand to benefit significantly from this integration.
To optimize performance, especially in diverse and dynamic
environments in which aerial-terrestrial networks operate, a
critical challenge is the efficient allocation of user transmit
power. This involves meticulously adjusting the transmit power

level of each user to ensure that a predefined Quality of
Service (QoS) threshold is achieved at the receiver. The power
allocation process requires a comprehensive analysis of the
communication environment, taking into account factors such
as noise and, particularly, interference from other users sharing
the same channel.

Several noteworthy approaches have emerged among studies
that tackle the transmit power allocation problem in aerial-
terrestrial networks. For instance, Fu et. al. [5] focused on
power control in energy-harvesting UAVs, integrating trajec-
tory management and user association. They proposed an
offline approach based on successive convex approximation,
alongside an online convex-assisted Reinforcement Learning
(RL) method. Alnakhli et. al. [6] explored bandwidth allo-
cation and power control within a multi-UAV network, em-
ploying decomposition and sequential quadratic programming
techniques. Li et. al. [7] examined the joint allocation of
blocklength and power control in uplink UAV-assisted net-
works and proposed a multi-agent RL process. Yuan et. al. [8]
investigated the joint problem of power control and UAV tra-
jectory design, employing dual-primal theory along with me-
chanical rope equilibrium. Lastly, Ning et. al. [9] intended to
optimize joint user association, interference cancellation, and
power control for UAV communications, utilizing inverse soft-
Q learning and successive convex approximation techniques.
Although these approaches demonstrate exceptional results,
they are often overly complex and may not be efficient enough
to meet the substantial demands of 6G networks that require
scalable performance. Furthermore, most of these methods
rely on offline optimization-based techniques, rendering them
rigid in the highly dynamic scenarios characteristic of 6G
environments.

To address the issue of performance scalability, a potential
candidate is the paradigms of semantic communication and
orchestration, which enhance network awareness of content
meaning and purpose [10]. Semantic communication shifts
the focus from merely transmitting raw bits to conveying
the intended meanings and interpretations of data. Semantic
orchestration involves the intelligent coordination of network
resources to ensure that semantic information is effectively
utilized across the entire network. These paradigms dramat-
ically improve resource utilization efficiency by compressing
transmitted data and facilitating semantic-aware resource shar-
ing [11]. To address the adaptability issue (while maintain-
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ing scalability), state-of-the-art distributed Machine Learning
(ML) techniques can be employed, which enable centralized
training with decentralized execution. This approach allows
agents to learn from a collective experience while operating in-
dependently in their respective environments. These distributed
methods are particularly pertinent in complex scenarios, such
as the Metaverse, where rapid changes and diverse data sources
necessitate a balance between scalability and the efficiency of
learning solutions [12], [13].

In light of this context, this paper focuses on investigating
the problem of semantic-aware distributed power allocation in
multi-channel wireless networks. The use case being examined
involves multiple UAVs engaged in area coverage, whereby a
group of UAVs navigates over a designated region and col-
laboratively transmits their observed scenes to a central server
connected to all ground BSs. To address this problem, we
implement a customized version of the Semantic-Aware Multi-
Agent Double and Dueling Deep Q-Learning (SAMA-D3QL)
algorithm, which was developed in our previous research
efforts [11]. This approach leverages a Deep Reinforcement
Learning (DRL) framework in which the reward structure is
designed to reflect the data quality of all observation areas,
while the state space incorporates metrics such as the shared
coverage degree. This effectively constitutes a semantic-aware
learning mechanism, promoting optimal power allocation and
enhancing overall system performance. Using SAMA-D3QL,
UAVs dynamically and distributedly adjust their transmission
power to construct the highest possible quality image on the
server, learning to manage observation overlaps effectively to
minimize unnecessary interference.

The remainder of this paper is organized as follows. Section
II presents the system model and problem formulation. Section
III elucidates the proposed solution, encompassing SAMA-
D3QL elements and learning architecture. In Section IV,
we present and analyze numerical results for several envi-
ronmental attributes. Finally, Section V concludes the paper
with a summary of our findings and closing remarks on the
implications and potential future research directions.

II. PROBLEM STATEMENT

A. System Model

This paper focuses on an aerial wireless network character-
ized by B ground BSs and N UAVs, denoted as B and N,
respectively. Fig. 1 illustrates a sample scenario with B = 1
and N = 2. We exclusively consider uplink transmissions
from UAVs to BSs, and the data rate for each UAV i over a
set C of C channels is calculated using the Shannon-Hartley
theorem, as follows:

ṙti =
∑
c∈C

log2

(
1 + γt

i,c

)
=

∑
c∈C

log2

(
1 +

pti,c · ht
i,bti∑

j∈N\{i}
ptj,c · ht

j,bti
+ σ2

c

)
. (1)

Observation AreaTrajectory PathUpload Link

Fig. 1. A simple scenario featuring a single BS and two UAVs hovering in
circular paths, transmitting their observations to the BS.

In this formulation, the following variables and parameters are
defined:

• γt
i,c denotes the Signal-to-Interference-plus-Noise Ratio

(SINR) of UAV i at BS bti during time slot t on channel
c. SINR is a critical metric that quantifies the quality
of a wireless communication link, measuring the ratio of
the desired signal power to the sum of interference power
from other transmitting sources and the background noise
power.

• pti,c denotes the transmit power of UAV i at time slot t
on channel c, and P ∈ RN×C×T represents the vector
encompassing the transmit power of all UAVs at all
channels and all time slots.

• ht
i,bti

signifies the channel-independent path gain between
UAV i and BS bti at time slot t. We consider Free Space
path gain between UAV i located at lti = (xt

i, yti , z)
and BS b located at l̄tb = (x̄t

b, ȳtb, z̄) during time slot t,
therefore:

ht
i,b =

(√
(xt

i − x̄t
b)

2 + (yti − ȳtb)
2 + (z − z̄)2

)−α

. (2)

For the purposes of this study, it is assumed that each
UAV is connected to the BS with the highest path gain.

• σ2
c represents the noise power on channel c.

Assuming that UAVs’ trajectories are predetermined and
treated as input for our system model, we consider that each
UAV observes a square area during each time slot t. The side
length of this square area observed by UAV i is denoted as
di. Therefore, the data quality of each UAV is calculated as
follows, where Λ(.) is the mapping of UAV rates per square
meter to image qualities, as follows:

qti = Λ
( ṙti
d2i

)
. (3)

Λ(.) is not known in advance; therefore, it needs to be learned
by UAVs. We assume that each range of supported data rates
corresponds to a specific bit rate for image quantization. In
other words, higher data transmission rates allow for higher
bit rates in image quantization, which in turn results in better-
quality images. To evaluate the quality of the transmitted
images, we compare the Peak Signal-to-Noise Ratio (PSNR)
metric between the quantized image and the original image.
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Fig. 2. At time t = 0, three UAVs—denoted as i, j, and k—create a total of
seven observing segments, such as S0

i,k . The dashed red line represents the
circular trajectory of UAV i, illustrating its path while observing the area.

The PSNR serves as a measure of image quality (i.e., function
Λ(.)), where higher PSNR values indicate a closer resemblance
between the quantized image and the original, thus reflecting
better transmission quality.

Since the coverage areas of UAVs overlap, we define a
set of segments S = {S ⊆ N}, where each segment S is
associated with a specific group of UAVs that cover that area.
An example of this concept is illustrated in Fig. 2. The data
quality of each segment is determined by the UAV within
that segment that produces the highest quality image. This is
formally expressed in (4). The rationale behind this approach
is that the BSs prioritize images captured by UAVs with the
highest data transmission rates, as these are more likely to
correspond to superior image quality.

Qt
S = max

i

{
qti |i ∈ S

}
(4)

B. Problem Formulation

Defining the performance of each individual UAV in (3),
the overall system performance can be characterized by the
data quality of all the observing areas over time, which we
denote as OT , that is

OT =
∑
t∈T

∑
S∈S

χt
S ·Qt

S

(3), (4)
=

∑
t∈T

∑
S∈S

χt
S ·max

i

{
Λ(

ṙti
d2i

)|i ∈ S
}
, (5)

where T = {1, . . . , T }, and χt
S is the size of segment S (per

square meter). The sizes of the segments are calculated using
straightforward numerical methods, such as basic geometric
calculations, that take into account the corners of the coverage
areas of UAVs.

Now, we can formulate the problem SPACE, which stands
for Semantic-aware Power Allocation for area CoveragE.
The goal of this problem is to optimize the overall system
performance by adjusting the transmit power of UAVs. In
doing so, we must take into account the constraints related
to their data transmission rates as well as the limits on their

transmit power, defined by Pmin (minimum power) and Pmax
(maximum power).

SPACE: max
P
OT s.t. Rate Constraints (1)

where: Pmin ≤
∑
c∈C

pti,c ≤ Pmax ∀i ∈ N,∀t ∈ T

C. Complexity Analysis

SPACE is demonstrated to be NP-hard through a reduction
from the well-known NP-hard Knapsack problem. In SPACE,
the objective is to maximize the overall system performance
of UAVs while satisfying specific rate constraints and power
limitations. Each UAV’s power allocation can be compared to
selecting items in the Knapsack problem, where each item
(represented by a UAV) has an associated value (the data
quality achievable at a particular transmit power) and a weight
(the power consumption of that UAV). The constraints in
SPACE, specifically Pmin ≤

∑
c∈C pti,c ≤ Pmax, restrict the

total transmit power utilized by UAVs, analogous to the weight
limit imposed on selected items in the Knapsack problem.
By finding an optimal power allocation strategy in SPACE
that maximizes data quality, we fundamentally provide a
solution to the Knapsack problem as well. Since the Knapsack
problem is established as NP-hard, this reduction confirms
that SPACE is likewise NP-hard, indicating that it is unlikely
that a polynomial-time algorithm exists to solve it efficiently.
This motivates us to adopt learning algorithms, particularly
multi-agent learning algorithms, to address the dual aims of
scalability and adaptability.

III. PROPOSED SOLUTION

This section explains the fundamental components of our
Multi-Agent Deep Reinforcement Learning (MADRL)-based
algorithm, built upon Semantic-Aware Multi-Agent Double
and Dueling Deep Q-Learning (SAMA-D3QL) [11] and cus-
tomized to solve SPACE in a distributed and dynamic manner.
This exposition will cover discussions on action and state
spaces, reward mechanisms, and the architecture of the learn-
ing process.

1) Action Space: The joint action space of all UAVs is
specified in (6). In this set, the action for UAV i involves
selecting transmitting power for each of the C channels from
a discrete set of valid power levels denoted with PQ, subject
to the minimum and maximum sum constraints across all
channels1.

α =

{
αi :

{
pi,c ∈ PQ|Pmin ≤

∑
c∈C

pi,c ≤ Pmax
}∣∣∣∣i ∈ N

}
(6)

2) State Space: Global system state at time slot t entails
histories (with length H) of UAVs’ local observations of their
path gains and their locations in the grid, in addition to a

1For instance, with PQ = [0, 5, 10], C = 2, Pmin = 0 and Pmax = 10,
possible actions for each user is [[0, 0], [0, 5], [5, 0], [5, 5], [0, 10], [10, 0]].



parameter dubbed shared coverage degree (denoted with z̄ti
for UAV i, defined as the average number of observing UAVs
in St

i ). Remarkably, all observation elements are normalized
to their maxima.

Ot
i = {ht

i,b|b ∈ B} ∪ {z̄ti} ∪ {lti}

St =

{
sti :

{
Oh

i |h ∈ {t−H, . . . , t− 1}
} ∣∣∣∣ i ∈ N

}
(7)

3) Reward: As we consider a cooperative application in
which all UAVs strive to maximize the data quality of all
observing areas, the system reward is empirically defined as
the objective function of SPACE, defined in (5). Structuring
the reward in this manner effectively constitutes a semantic-
aware learning mechanism, as the reward system is intricately
linked to the semantic understanding of the data, instead of
merely optimizing for raw performance metrics, such as data
rate.

4) Architecture: SAMA-D3QL is grounded in the Value
Decomposition Network (VDN) framework [14] with CTDE
strategy. This approach operates on the assumption that during
the training phase, there is complete access to the global
system state, while user decisions are made by their local
information. In our approach, the training process involves
a centralized server that connects to all BSs, where the
policies for UAVs are being developed. However, it is assumed
that BSs periodically update and distribute policies to UAVs
via high-bandwidth and low-latency dedicated communication
channels. UAVs autonomously select their actions on transmis-
sion powers based on their respective policies and individual
observations. Using Q-learning, the summation of individual
user Q-values is employed to compute the total Q-value within
VDN, precisely calculated using the following equation:

Qtot(S
t,αt) =

∑
i∈N

Qi(s
t
i, α

t
i) (8)

With the above definition, the policy update function for all
agents, represented as W = {Wi | i ∈ N}, can be expressed
as follows:

Wt+1 =Wt +

σ[Y t
D3QL −Qtot(S

t,αt;Wt)]∇Wt ·
Qtot(S

t,αt;Wt), (9)

where the target value (Y t
D3QL) is determined using the D3QL

algorithm, which is an extension of the original DQL algorithm
that incorporates both dueling and double mechanisms [11].
Our approach is outlined in Algorithm 1, wherein lines 5-
11 pertain to the decentralized execution of actions by UAVs
during training and test (or inference) phases, while lines
14-19 depict the centralized training conducted at the server
during only the training phase. Etrain and Etest refer to sets
of training and test episodes, respectively.

Algorithm 1: Semantic-aware Dynamic and Distributed
Power Allocation
Input: T ,Etrain,Etest, UAV and BS locations (L)

1 W ← 0, W− ← 0, ϵ← 1, memory ← {}
2 foreach ep in Etrain ∪ Etest do
3 foreach t in T do
4 ⋆ Decentralized Execution (5-11)
5 foreach i in N do
6 ζ ← generate a random number from [0 : 1]
7 if ζ > ϵ then
8 αt

i ← argmaxα∈αi
Q(sti, α,Wi)

9 else
10 select a random αt

i from αi

11 observe ṙti and construct st+1
i acc. to (7)

12 if ep ∈ Etrain then
13 ⋆ Centralized Training (14-19),
14 calculate Rt according to (5)
15 memory ← {Rt} ∪ {(sti, αt

i, s
t+1
i )

∣∣ i ∈ N}
16 choose a batch of samples from memory
17 train the agent according to (9)
18 if ϵ > ϵ̃ then
19 ϵ← ϵ · ϵ′

IV. EVALUATION

A. Setup

In this section, we present a numerical analysis of the
proposed SAMA-D3QL-based solution using the parameters
detailed in Table I. We investigate four scenarios: first, analyz-
ing how the number of channels (as an indicator of interference
boundedness) impacts performance; second, examining the
effect of UAV count on performance to evaluate scalability;
third, assessing system performance by varying UAV veloci-
ties to measure dynamicity; Finally, evaluating how different
evaluation metrics influence performance. Evaluation planes
are six aerial images selected from the DOTA dataset [15],
one of which is depicted in Fig. 3, along with its quantized
versions with different bits2. In the simulations, each data rate
range corresponds to a single quantized image. Higher data
rates lead to higher-quality images, but also more interference
with other UAVs.

For the purpose of comparison, we employ two benchmarks.
First, the Bit-Oriented (BO) method, indicated by a blue
line, operates based on the SAMA-D3QL algorithm but lacks
semantic awareness. This method aims to maximize the total
transmission rate of the UAVs without considering the quality
of the reconstructed image on the server. Additionally, it does
not account for the shared coverage degree in its observations
(i.e., the term z̄ti in (7)). This method is a relaxed version
of the approaches proposed by Fu et al. [5] and Li et al.

2The IDs of image displayed in the figure along with five others are P1056,
P0028, P0034, P0051, P0084 and P0121. These images were chosen for their
high quality and extensive coverage area.



TABLE I
SYSTEM MODEL PARAMETERS.

Parameter Value
Network area 2D: 100m× 100m

Noise power (σ2) 10−9

Power levels (PQ) [0, 5, 10] W
Default number of UAVs, BSs 8, 2

Default number of channels 3
Default UAV velocities U(10, 20) m/s

Observation side length (d) U(20, 40) m
LSTM history size (H) 4 experiences

Capacity of experience memory 1000 experiences
Batch size 64

Discount factor (γ) 0.8
Learning rate 0.001

Exploration parameters ϵ̃, ϵ′ 0.001, 0.9995

Approximator model
LSTM with 64 units

+ fully-connected layers
with 128 and 64 units

Target network update frequency Every 20 steps

[7], representing an upper bound for their results in the
current analysis. Second, a centralized heuristic algorithm
(HU) illustrated by a orange line, serves as another benchmark
by assigning each channel to the user with the highest path
gain in a greedy fashion. Notably, in all scenarios, the upper
bound i.e., the highest possible reconstructed image quality on
the server without any system interference, is equal to one.

Moreover, it is worth noting that we did not restrict the
problem formulation to specific UAV trajectories; in our
simulation, we assume the UAVs hover along circular paths
at designated velocities and directions, resulting in circles of
varying radii, as illustrated in Fig. 2. Importantly, the algorithm
operates independently of the UAVs’ future locations, ensuring
that it does not depend on trajectory management.

B. results

1) Number of Channels: Interference is the primary source
of performance degradation in wireless networks, as it can
significantly hinder the ability of devices to communicate
effectively. By varying the number of available channels
(denoted as C), we can assess how the bounds of interference
affect system performance. As illustrated in Fig. 4-(A), a
reduced number of channels leads to increased interference,
which inhibits the UAVs’ capacity to transmit high-quality
images to the server. However, our approach demonstrated
a considerably diminished negative impact in comparison
to other methods. This resilience is attributed to the task-
sharing strategy employed among UAVs that have overlapping
observation areas. When UAVs collaborate effectively, sharing
the burden of data transmission, they can mitigate the effects
of interference.

2) Number of UAVs: As noted earlier, more UAVs can
negatively impact performance evaluations due to heightened
interference and the complexity of managing a larger fleet.
Nevertheless, as shown in Fig. 4-(B), this increase has a
smaller adverse effect on our approach, akin to findings
from the previous experiment. This robustness stems from

the task-aware mechanisms within our framework, allowing
UAVs to share responsibilities and optimize transmissions
amid competing signals. Such characteristics highlight the
scalable nature of our method, demonstrating its adaptability
and capacity to maintain performance in dynamic environ-
ments with varying UAV numbers.

3) UAV velocities: In this experiment, we modify the
velocities of UAVs, directing them to complete a full circle
during each episode. This adjustment indicates that increasing
the velocities results in larger trajectory circles. Consequently,
increased UAV velocities can be viewed as reflecting a higher
level of dynamicity within the system, leading to states that
are less similar across episodes and adding complexity to
the learning process. Nevertheless, our approach continues to
demonstrate high performance, indicating its adaptability to
these changing dynamics. This resilience is illustrated in Fig.
4-(C).

4) Choice of Evaluation Metrics: Throughout this paper,
we utilized the PSNR metric to evaluate our scheme’s per-
formance, demonstrating how task-oriented communication
policies are influenced by the selected evaluation metric. In
this experiment, we trained the algorithm using the default
parameters in Table I, first with PSNR-based rewards and
then with Structural Similarity Index Measure (SSIM)-based
rewards. Evaluation of the trained models with PSNR metric
revealed that the first model achieved an average output of
0.80, while the SSIM-based model only reached 0.62. This
discrepancy suggests that the SSIM-trained model did not ef-
fectively learn the necessary features for optimal performance,
highlighting the importance of careful metric selection in our
analysis.

V. CONCLUSION

This paper leveraged the synergy among transformative
technologies of 6G, to propose a dynamic and distributed
power allocation scheme for semantic-aware networks, specif-
ically focusing on multi-UAV area coverage as a use case. Our
formulation and algorithm design accounted for the quality of
observations while considering overlapping user observation
areas. In this context, users are interconnected not only through
interference but also through their source data. In future work,
we will explore the problem further, including the prediction of
image quality based on user data rates, which will facilitate the
development of more efficient and sustainable power allocation
algorithms. Additionally, we will draw upon our findings
in [16] related to fairness and explainability. Implementing
more advanced multi-agent learning algorithms that integrate
global system information during training will also enhance
system performance. Finally, predicting and orchestrating the
required computational resources for 6G-based services [13],
[17], [18], particularly Deep Neural Network (DNN)-based
semantic encoding, enables a more comprehensive system
view.



Fig. 3. Selected Image from the DOTA dataset [15], and its quantized versions with different bits.

BO HUSAMA-D3QL
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C

Fig. 4. Average PSNR values for observation scenes of UAVs per (A) Number
of channels (B) Number of UAVs (C) UAV velocities. Each line is an average
of results over 6 plane images. Shaded areas represent the standard deviation
of the values.
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