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Abstract—One important objective of 5G mobile networks is to
accommodate a diverse and ever-increasing number of user equip-
ment (UEs). Coping with the massive signaling overhead expected
from UEs is an important hurdle to tackle so as to achieve this
objective. In this paper, we devise an efficient tracking area list
management (ETAM) framework that aims to find optimal distri-
butions of tracking areas (TAs) in the form of TA lists (TALs) and
assigning them to UEs, with the objective of minimizing two con-
flicting metrics, namely paging overhead and tracking area update
(TAU) overhead. ETAM incorporates two parts (online and offline)
to achieve its design goal. In the online part, two strategies are
proposed to assign in real time, TALs to different UEs, while in the
offline part, three solutions are proposed to optimally organize TAs
into TALs. The performance of ETAM is evaluated via analysis
and simulations, and the obtained results demonstrate its feasibil-
ity and ability in achieving its design goals, improving the network
performance by minimizing the cost associated with paging and
TAU.

Index Terms—5G, LTE, convex optimization, game theory.

I. INTRODUCTION

O NE OF the main challenges of the upcoming 5G net-
works is to accommodate the high demand of data raised

from the increasing number of devices. In this vein, deploying
small cells should be considered with high interest to overcome
this issue. 5G networks would deploy densely self-organizing
low-cost and low power small base-stations. However, deploy-
ing high number of small cells would increase the signaling
overhead caused by the tracking and paging of User Equipment
(UE). Combined with the high number of UEs and Machine
Type Communication (MTC) devices [1], [2], the use of small
cells will introduce a major challenge in term of signaling over-
head for 5G networks. In order to tackle the increased data
rate expected from the usage of the envisioned 5G network, the
signaling overhead should be minimized as much as possible.

Usually, the Radio Access Network (RAN) of a mobile oper-
ator is organized into a set of cells (including small cells)
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that covers several geographical areas. UEs in a specific area
are attached to a base station (eNodeB), which manages their
access to the mobile core network. UEs are usually in idle mode
and have no call activity for some duration. When a connection
request comes for a UE in idle mode, the Mobility Management
Entity (MME) sends a signaling message, namely paging, to all
eNodeBs to find the UE’s location (i.e., cell) in the network.
Accordingly, in case a high number of UEs need to be paged,
a massive number of downlink signaling messages have to be
transmitted, resulting in high signaling overhead and wasting
scarce resources of the mobile network. To overcome this issue,
the Tracking Area (TA) concept has been introduced in Release
8 of the 3GPP mobile network specifications (i.e., replacing
the Routing Area concept in previous releases). The key idea
beneath the TA principle consists in grouping several cells or
sites into one TA. MME keeps record of the location of UEs
in idle mode at the TA granularity. Thus, when a connection
setup request comes for a UE in idle mode, the UE in question
is paged only within its current TA, which would mitigate the
overhead of paging in the network.

Each time a UE moves to a new location and connects to a
new cell not belonging to its current TA, the UE sends an uplink
message, namely Tracking Area Update (TAU), to MME, which
subsequently updates the TA of the UE. In this vein, it is worth
noting that a TA is also defined as an area where the UE can
move without transmitting TAU messages to MME. Despite the
advantages of the TA concept in minimizing the paging over-
head, it has the following limitations on the TAU signaling: (i)
many TAU signaling messages might be generated due to ping-
pong effect, i.e, a UE keeps hopping between two adjacent cells
belonging to different TAs, which could be exacerbated in case
of densely deployed small cells; (i i) the mobility signaling con-
gestion due to a large number of UEs having a similar behavior,
e.g. massive number of UEs simultaneously moving from one
TA to another TA (train scenario); (i i i) the use of TA strategy
has the symmetry limitation: If two cells are in the same TA,
then neither of them can be in any other TA. To overcome this
limitation, Release 12 introduces the Tracking Area List (TAL)
concept in order to simplify the TA configuration. The TAL con-
cept aims for reducing the TAU signaling messages by grouping
several TAs in one TAL and allowing the overlapping of TAs.
Each time a UE visits a new TA that does not belong to its TAL,
a TAU message is sent to the MME. Upon receiving the TAU
message, MME assigns a new TAL to the UE. The new TAL
should include the visited TA. Furthermore, Release 12 allows
network operators to include up to 15 TAs in each TAL and the
MME always adds the last visited TA to the list to overcome the
problem of frequent updates due to ping-pong situations. Given

1536-1276 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



4118 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 6, JUNE 2016

Fig. 1. The tradeoff between TAU and paging overhead in 4G and beyond mobile networks.

that TALs are overlapped, the above-mentioned limitations of
conventional TAs, defined in Release 8, can be accordingly mit-
igated. However, the current LTE specifications do not provide
any details on how to define TALs and allocate them to UEs.

Each time a UE moves to a new location and connects to
a new TA not belonging to its current TAL, the UE sends a
TAU message to MME. On the other had, when a connection
request comes for a UE, the MME sends a paging message to
all TAs (i.e., TAL) where the UE is registered. An increase in
TALs size leads to a rise in paging signaling messages and a
decrease in TAU signaling messages. Fig. 1 shows the trade-
off between TAU and paging overheads when forming TALs. In
the figure, we assume that the network contains four TAs along
a railway path, in which each TA has two other neighboring
TAs on the left and the right sides. From Fig. 1(a), we observe
that the organization of each TA in a separate TAL causes many
TAU signaling messages in the network, which are generated
and forwarded from the RAN to the evolved packet core (EPC).
Whereas Fig. 1(b) and Fig. 1(c) show that increasing TAL size
reduces TAU overhead and increases paging overhead. Fig. 1(c)
shows that the TAU overhead can be ignored if all TAs are
organized in the same TAL.

Several research works have been conducted to solve the
TAL problem, whereby the aim is to capture the tradeoff that
mitigates the overhead of TAU and paging messages when con-
structing and assigning TALs to UEs. Most of these solutions
formulate the problem using a multi-objectives optimization
technique to achieve a fair tradeoff between signaling mes-
sages overhead of TAL and paging, i.e. minimize both signaling
messages due to TAU and paging. In this paper, we devise
an efficient tracking area list management (ETAM) framework
for 5G cloud-based mobile networks [3], [4]. The proposed
framework consists of two independent parts. The first part is
executed offline and is responsible of assigning TAs to TALs,
whereas the second one is executed online and is responsible of
the distribution of TALs on UEs during their movements across
TAs. For the first part, we propose three solutions, which are:
(a) F-PAGING favoring the paging overhead over TAU, (b) F-
TAU favoring TAU over paging, and (c) FOTA (i.e., Fair and
Optimal Assignment of TALs to TAs) for a solution that uses
bargaining game to ensure a fair tradeoff between TAU and pag-
ing overhead. For the second part, two solutions are proposed to
assign TALs to UEs. The computation load is kept lightweight
in both solutions not to downgrade the network performance.
Furthermore, both solutions do not require any additional new
messages when assigning TALs to UEs. The first solution takes

into account only the priority between TALs. As for the sec-
ond one, in addition to the priority between TALs, it takes into
account the UEs activities (i.e., in terms of incoming communi-
cation frequency and mobility patterns) to enhance further the
network performance.

The remainder of this paper is organized as follows.
Section II introduces some related research work. Section III
presents the envisioned network model and formulates the
target problem. It also presents an overview of the ETAM
framework. Section IV presents the online part of the ETAM
framework for assigning TALs to UEs. The three solutions pro-
posed for the offline part of the ETAM framework are described
in Section V. Section VI details a Markov-based analytical
model for the three offline solutions. Besides the numerical
results obtained by solving the Markov model, Section VII
presents the simulation setup to evaluate the performance of
ETAM and discusses the obtained results. Finally, the paper is
concluded in Section VIII.

II. RELATED WORK

Mitigating signaling overhead, due to UE mobility in cellu-
lar mobile networks, has attracted high attention during the last
years. As stated earlier, in the Evolved Packet System (EPS),
MMEs keep records of UEs’ positions in order to adequately
forward their relevant incoming connections. For this purpose,
3GPP introduced two types of signaling messages to support
UE mobility: (i) paging messages from the network, namely
MME, in order to find the locations of UEs in idle mode; (i i)
TAU messages from UEs to MME to update their positions. A
TAU message is sent each time a UE enters into a new loca-
tion (cell) that does not belong to its current TA. Conventional
TA assignment procedures whereby the network assigns only
one TA for different UEs is not sufficient when UEs are highly
mobile. Indeed, high number of TAU messages could be sent by
UEs as they frequently cross their corresponding TA borders.
An enhancement to the conventional procedure was envisioned
to reduce TAU overhead by i) grouping several cells (i.e.,
eNodeBs) in one TA or i i) introducing delays between TAU
messages sent by UEs. Another solution to reduce the impact
of TAU messages on the network was proposed in [5] whereby
queuing models and buffer information at eNodeBs are used to
delay the TAU frequency.

To further alleviate the effect of TAU messages on the
network performance, 3GPP has introduced the concept of
TAL in Long Term Evolution (LTE), wherein each cell



BAGAA et al.: EFFICIENT TRACKING AREA MANAGEMENT FRAMEWORK FOR 5G NETWORKS 4119

Fig. 2. The proposed framework for tackling TAU and paging overhead in 4G and beyond mobile networks.

(eNodeB) assigns different TALs to UEs [6], [7]. Since TALs are
overlapped, the number of UEs performing TAU when crossing
TA border drastically decreases. Besides reducing the num-
ber of TAU messages, TAL prevents the ping-pong effect, i.e.,
frequent TAU messages when a UE keeps hopping between
adjacent TAs. Nevertheless, the current LTE specifications do
not provide any details on how to define TALs and allocate them
to UEs. To address this open issue, several solutions have been
proposed. In [8], Chung et. al. proposed a solution that orga-
nizes cells into rings, where UEs in each ring use the same TAL.
Solutions, proposed in [9] and [10], use the same concept as in
[8] by assigning the same TAL to different UEs when visiting a
cell in the network. However, all these solutions [8]–[10] have
not fully explored the advantage of TAL against the conven-
tional TA approach. In [7] and [11], Razavi et. al. overcome this
limitation by allowing UEs residing in the same cell to regis-
ter with different TALs. Indeed, in [7] they proposed a solution
for congestion mitigation along a railway path. On the other
hand, in [11] an extension of the former work is proposed with
two new aspects: i) the solution is generalized for any arbitrary
network instead of only train scenario; i i) a new solution that
handles the extenuation of paging signaling messages via TAL
management is proposed.

Generally speaking, assigning TALs to UEs shall depend on
the mobility patterns of UEs as well as on their geographi-
cal distribution and density. MME may group, under the same
TAL, a large number of TAs in an area that has low density
to reduce the impact of TAU overhead on the network perfor-
mance. Similarly, MME may group under the same TAL a small
number of TAs serving a highly densed area. Indeed, to alleviate
the impact of paging messages on the network performance, it is
worth assigning more than one TAL to the same TA. To the best
knowledge of the authors, most existing solutions focus only on
the offline part for assigning the TAs to TALs. Moreover, they
consider only the TAU overhead and ignore the paging over-
head. The only research work that addressed both constraints is
presented in [11], wherein Razavi et al. proposed two separate
solutions, addressing the impact of TAU and paging overhead,
respectively. Both solutions are based on multi-objectives opti-
mization techniques for assigning the TAs to TALs. The first
one tries to minimize the TAU overhead while setting paging as
a constraint, and the second one minimizes the paging overhead
while fixing the TAU overhead as a constraint.

In contrast to the existing works, in this paper, we propose a
framework optimizing the management of TALs and consist-
ing in: (i) an offline part that assigns TAs to TALs; (i i) an
online part that assigns TALs to UEs. Two solutions are pro-
posed to achieve the aim of the online part. The first one takes
into account only the priority between TALs, whereas the sec-
ond one, in addition to the priority between TALs, takes into
account the UE behavior in terms of mobility and connection
frequency. Regarding the offline part, we have devised three
solutions, which differ from the existing ones on their way to
cope with the problem. Indeed, most existing solutions assign
the same TAL: i) to the same TAs in a static manner [8]–[10]; or
i i) with the same probability [7], [11]. In contrast, the devised
solutions dynamically assign the same TAL to different TAs
with different probabilities. The first one, dubbed F-PAGING,
is proposed for a network known with a high rate of paging
(i.e., for voice call as well as for IP-based web applications) in
comparing to the mobility rate. This solution maybe designated
for small cities with high-density populations. The second one,
dubbed F-TAU, is proposed for a network which is known with
a high mobility rate compared to the paging rate. Such kind
of solution maybe useful for a network known with low-density
populations and/or high mobility. The last one, dubbed FOTA, is
proposed to be generic for any kind of networks. It takes advan-
tage of both previous solutions, jointly addressing the overhead
due to both TAU and paging messages. FOTA uses Nash bar-
gaining game to ensure a fair tradeoff between both conflicting
overhead, i.e., TAU and paging signaling messages.

III. ENVISIONED NETWORK MODEL AND FRAMEWORK

OVERVIEW

A. ETAM Framework Overview

Fig. 2 depicts a general overview of the ETAM framework.
We assume that the network is subdivided into N TAs, N =
{1, 2, · · · N }. Each TA consists of a set of cells, whereby a cell
is managed by an eNodeB (i.e., base station). As depicted in the
figure, the geographically close eNodeBs can be grouped in the
same TA, using any existing algorithm [12], [13], to optimize
the network performance in terms of paging overhead. Initially,
the ETAM framework starts by an inefficient solution and then
converges, through iterations, to the optimal one. As depicted
in Fig. 2, ETAM framework starts by considering each TA as
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a separated TAL. Then it executes, repetitively, two steps to
converge to the optimal solution. The first step is the offline-
assignment of TAs-to-TALs, whereas the second one is the
online-assignment of TALs-to-UEs. To efficiently map between
TAs and TALs, the information about TAU and paging signal-
ing messages are transferred from the online step to the offline
one. The latter enhances the mapping between TALs and TAs
and then provides the former with the new mapping to optimize
further the network performance. The online step is executed
during a specified period D, where all the information about
the TAU and paging overhead are gathered from the network to
be transferred to the offline step. The duration D may be fixed
by the network operator, but it can be changed when there is a
noticeable update in the network.

Since there is no exact indication on the trajectory of UEs,
during the online-assignment of TALs-to-UEs, we use a proba-
bility strategy to assign TALs to UEs. In each visited TA, TALs
are assigned to visiting UEs with different probabilities. Indeed,
the TAL that reduces more the TAU and paging signaling mes-
sages would have more priority to be assigned to a UE. There
is a tradeoff between TAU and paging signaling messages.
Clearly, the smaller the size of TALs is, the higher the TAU
overhead is, but the smaller the paging overhead becomes. For
the online-assignment of TALs-to-UEs, we consider two solu-
tions. The first one takes into account only the priority between
TALs that was learned from the offline step. Whereas, the sec-
ond one, in addition to the priority between TALs, takes into
account the UEs behavior, in terms of incoming communica-
tion frequency and mobility patterns. For the offline-assignment
of TAs-to-TALs, we consider three different solutions, which
define the core of our ETAM framework. It is worth recalling
that (i) the first solution favors the paging overhead when form-
ing TALs; (i i) the second one favors the TAU overhead; and
(i i i) the third solution uses the bargaining game theory to dis-
tribute TALs among TAs by capturing a fair tradeoff between
TAU and paging overhead. The TAL that exhibits the high-
est fairness in the TAU and paging overhead has the highest
probability to be assigned to a UE.

B. Network Model and Notations

Let � denote the set of all possible TALs in a mobile net-
work, and let �A denote the set of possible TALs that can be
assigned to UEs in TA A. As mentioned earlier, each time a UE
visits a new TA that does not belong to its TAL, a TAU message
is sent to the MME. Upon receiving the TAU message, MME
computes and sends a new TAL to the UE. The new TAL should
include the visited TA. From Release 12 of the 3GPP specifi-
cations, the operator can specify for each TAL a list of up to
15 TAs and the MME always adds the last visited TA to the list
to prevent the risk of ping-pong updates. For this reason, � is
formed by considering the different possible combinations of
TAs, such that the length of each element in � should be higher
or equal to one and less than 16, i.e. each TAL i ∈ � should
contain at least 1 TA and at most 15 TAs to allow the MME to
add the last visited TA.

Throughout the paper, we will refer to the example depicted
in Fig. 3 in order to show how � should be constructed. In
this example, we assume that the network consists of five

Fig. 3. An example illustrating how to construct neighboring graphs G from an
LTE network.

TAs, named A, B, C , D and E . The blue arrows between
TAs denote the movement of different UEs in the network.
The movement of UEs can be deduced from the handover
statistics of different eNodeBs or from the handover command
messages sent by MME. To form �, we begin by forming
the neighboring graphs G from the network as depicted in
Fig. 3(b). An edge between two vertices (i.e., TA) A and B
exists, if there is a TAU possibility between them. In Fig. 3(b),
an edge is generated between the vertices A and B, if there
is a blue arrow between TAs A and B in Fig. 3(a), which
means the possibility of UEs movement between these TAs. In
Fig. 3(b), we do not construct an edge between vertices A and
E since a direct blue arrow does not exist between them; UEs
cannot move from A to E without passing by another TA (i.e.,
B or D). Finally, �A is formed from the neighboring graph
G. Indeed, the different elements of �A are those having all
vertices of all sub-graphs of G that contain the vertex A and
their length do not exceed 15. Thus, the vertices of a sub-graph
of G that contain the vertex A are considered as one element
in �A. From Fig. 3, �A = {{A}, {A, B}, {A, D}, {A, B, C},
{A, B, D}, {A, B, E}, {A, D, E}, {A, B, C, D}, {A, B, C, E},
{A, B, D, E}, {A, B, C, D, E}}. Finally, � is formed from
different �i as follows: � = ⋃

i∈N
�i . An element of �i is a

set, i.e. {A, B} and {B, A} are considered as the same ele-
ment in �. From Fig. 3, � = {{A}, {B}, {C}, {D}, {E}, {A, B},
{A, D}, {B, C}, {B, D}, {B, E}, {C, E}, {D, E},{A, B, C},{A,

B, D}, {A, B, E}, {A, D, E}, {B, C, D}, {B, C, E},{C, D, E},
{A, B, C, D} , {A, B, C, E}, {A, B, D, E}, {A, B, C, D, E}}.

We assume that each UE has a specific probability to be
called/paged (i.e., for voice call as well as for IP-based web
applications). Further, each UE follows a different mobility pat-
tern, hence the number of sites (cells) visited by each UE is
different. In the online-assignment of TALs-to-UEs step, the
network is monitored in order to track the number of signaling
messages (i.e., TAU and paging) sent and received by different
UEs. We denote by α = {α1, α2 · · · } and β = {β1, β2 · · · } the
probability of paging and TAU of UEs in the network, respec-
tively. In other words, in the offline-assignment step, we have
the information about different existing UEs in the network. We
denote by ϒ the different UEs. For each UEu ∈ ϒ , we have its
probability αu to send a TAU message and its probability βu to
be called (i.e., cause a paging). We denote by γ = {γ1, γ2, · · · }
the overhead of mobility and paging ratio of different UEs. γu

denotes the overhead of mobility and paging ratio of UEu , i.e.
the ratio between the paging and the TAU of a UEu . Formally,

γu is computed as follows: γu = ραu

ραu + τβu
, where τ and ρ

are the amount of overhead of one TAU operation and one
paging message, respectively. Intuitively, the values of τ and
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TABLE I
NOTATIONS USED IN THE PAPER.

ρ depend on the “radio system” [14]. Knowing that γu ∈ [0, 1],
the higher the value of γu is, the higher the number of paging of
UEu becomes in comparison to TAU messages. Accordingly, γu

represents an important parameter to consider when designing
TALs to assign to UEs. Indeed, when a UE has a high value of
γu , meaning that it generates more paging messages than TAU
messages, it is better to assign a TAL with a few number of
TAs to reduce the paging overhead. However, if a UE has a low
value of γu , meaning that it generates more TAU messages than
paging, it is more appropriate to assign to it TALs with more
TAs to reduce the TAU overhead.

Moreover, in the online-assignment of TALs-to-UEs step, we
can deduce the number of UEs hi, j that moved from each TA i
to another TA j . We define by H the matrix that represents the
number of UEs that moved from different TAs. Each entry in
the matrix H at row i and column j , denoted by hi, j , indicates
the number of UEs that moved from TA i to TA j . The value
of hi, j can be deduced from the handover statistics of differ-
ent eNodeBs or from the handover command messages sent by
MME. Furthermore, each UEi spends different times in differ-
ent TAs. Let M denote the matrix that represents the duration
spent by different UEs in different TAs. The rows in M repre-
sent the UEs, whereas the columns represent the different TAs
in the network. The element Mi, j denotes the duration spent by

UEi in TA j . Note that, ∀i ∈ ϒ,
N∑

j=1
Mi, j = D.

For the sake of readability, the notations used throughout the
paper are summarized in Table I.

IV. ONLINE-ASSIGNMENT OF TALs-to-UEs

The mapping between TAs and TALs is represented through a
matrix S, where the rows are the different TAs and the columns
are the different TALs. An element Si	, in the matrix S, repre-
sents the probability to assign TAL 	 in TA i to different UEs.
Matrix S is first generated during the offline step and is used

Fig. 4. TALs �A and their probabilities PA at TA A: an example.

then in the online step. Indeed, offline step generates Matrix S

in a way that the TAL that optimizes more the network perfor-
mance has a higher probability to be assigned to different UEs.
From above, �i , for ∀i ∈ N, can be also defined as follows:

�i = {	, Si,	 �= 0 for ∀	 ∈ � ∧ i ∈ 	}
accordingly, when a UE visits a TA i , MME will assign to
this UE a TAL from �i . We denote by �i the sorted element
of �i . TALs in �i are sorted according to the number of TAs
in each TAL, such that TALs having the smallest number of
TAs are placed in the tail. �i (	) represents the 	th TAL of �i .
We denote by Pi (	) the probability to assign TAL �i (	) by
TA i to different UEs. Pi (	) can be deduced from the matrix
S. Fig. 4 shows an example of �A and PA. In this example,
�A(1) = {A, B, C, D, E} and �A(2) = {A, B, C, D}.

The assignment of TALs to UEs should be lightweight in
terms of computational cost and communication overhead. In
this vein, the proposed solutions for this part are designed to be
simple and easy to deploy. When a UE u visits a new TA A, the
MME selects a new TAL �A(	) from �A according to the set of
probability PA. The TAL that has the highest probability would
have more chance to be elected than the others. Then, the MME
adds the last visited TA to �A(	), to prevent the risk of ping-
pong updates, before assigning it to UE u. It is worth noting
that �A(	) should be also assigned to each UE according to its
mobility and paging features. Indeed, some UEs exhibit high
mobility, while others are called more often. For this reason,
unlike all existing works, in this paper we consider both the
probability of each TAL PA(	) and the features of UEs when
assigning TALs to different UEs. In this paper, two strategies
are considered as explained below.

A. Assigning TALs to UEs Without Prioritization

In this strategy, we use only the probability of each TAL
PA(	); i.e. no prioritization among UEs is considered. All UEs
have the same priority to obtain any TAL from the visited TAs.
This strategy could be used to reduce the involvement of UEs
(and hence associated overhead and battery consumption) in the
TAL assignment process. In this case, when a UE u visits a new
TA A, the MME generates a random variable V1 ∈ [0, 1] using
a uniform distribution. Then, TAL 	 is assigned to UE u as the
one that satisfies the following condition:

	−1∑
k=1

PA(k) < V1 ≤
	∑

k=1

PA(k)

Using the example depicted in Fig. 4, if V1 = 0.38, then TAL
3 would be assigned to UE u. By using this strategy, we
ensure that TALs having higher probabilities will be more likely
assigned to UEs. From above, we observe that the assignment
of TALs to UEs without prioritization is light weighted. In fact,



4122 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 6, JUNE 2016

it is in the order of the generation of a random value V1 that
follows a uniform distribution.

B. Assigning TALs to UEs With Prioritization

In this strategy, UEs exhibiting higher mobility rate than pag-
ing rate, should get TALs that have large number of TAs to
mitigate the effect of TAU signaling. Employing the example
depicted in Fig. 3, TAL {A, B, C, D, E} is assigned to UEs
that exhibit higher mobility features than paging, and that is to
reduce the overhead of TAUs. Whereas, TAL {A} is assigned to
UEs having more paging than being highly mobile, and that is
to reduce the impact of paging on the network performance. As
discussed earlier, when a UE u visits a new TA T Au , the MME
in charge of T Au , has the following information: (i) the matrix
S and (i i) the overhead of mobility and paging ratio γu . We
recall that the higher the value of γu is, the higher the number
of paging is, i.e., in comparison to TAU (mobility).

To prioritize among UEs without impacting the probabilities
of TALs, we define F(ν = x, k) as the cumulative distribu-
tion function of Poisson distribution until k, where ν is the
mean value. Fig. 5 depicts F(ν = x, k) according to ν and
k. When UE u visits TA A, MME computes for this UE its

νu as νu = � 1

γu
�. Since γu ∈ [0, 1], then νu ≥ 1. Afterwards,

a random variable V2 ∈ [0, 100] is generated using a uniform
distribution. Now, TAL 	 is assigned to UE u as the one that
satisfies the following condition:

	−1∑
k=1

PA(k) < F(ν = νu, V2) ≤
	∑

k=1

PA(k)

From above, high values of γu mean that UEu receives more
paging messages than it issues TAU messages (due to mobility).
For this UE, it is preferable to assign a TAL with small number
of TAs. Note that large values of γu means small values of νu .
From Fig. 5, UE u will have high probability to get a value in
the vicinity of 1 and will be hence assigned TALs from the tail
of �A (i.e., TAL 	 with small size). Whereas, when γu is small
(i.e., UE u has high mobility features than paging), its νu will
be large. Then, UE u has high probability to be assigned a TAL
	 from the head of �A (i.e., TAL 	 with large size). The assign-
ment of TALs to UEs with prioritization is also in the order of
the generation of a random value V2 that follows a uniform
distribution.

Theorem 1: TAL 	 having the highest value of PA(	), has
higher probability to be selected for different UEs.

Proof: Let T AL	 denote the TAL that has the high-

est value of PA(	) at TA A. Formally, PA(	) =
	∑

k=1
PA(k) −

	−1∑
k=1

PA(k). We have two cases: (i) Assigning TALs from T AL A

to UEs without prioritization and (i i) Assigning TALs from
T AL A to UEs with prioritization. In the first case, a random
probability V1 ∈ [0, 1] is generated to select TALs. Whereas, in
the second case, a random number V2 ∈ [0, 100] is generated
and then F(ν = νu, V2) is computed. As TAL 	 has the highest

Fig. 5. The impact of ν values on the cumulative distribution function of
Poisson.

value of PA(	), for both cases it is more likely that V1 (resp.,

F(ν = νu, V2)) is in [
	−1∑
k=1

PA(k),
	∑

k=1
PA(k)]. Therefore, in both

cases TAL 	 that has the highest value of PA(	) is more likely
to be selected by UEs. �

Theorem 2: When assigning TALs to UEs via prioritization
strategy, a UE u having higher speed (i.e., highly mobile) than
paging ratio γu , is more likely to be assigned a TAL with large
size to mitigate the effect of TAU.

Proof: Based on the above, the UE which has higher
speed than paging ratio, has the smallest value of γu , and then,
the highest value of νu . From Fig. 5, it is more likely to get
F(ν = νu, V2) in the vicinity of zero, and consequently select
a TAL from the head of �A that has a large size. �

V. OFFLINE-ASSIGNMENT OF TAs-to-TALs

As discussed in Section III, this step is executed offline to
allow the mapping between different TAs and TALs. At the end
of this step, a matrix S is generated, whereby the rows repre-
sent the different TAs N and the columns represent the TALs
�. An element Si j in the matrix S refers to the probability that
TA i assigns TAL j to different UEs. The sites (cells) belonging
to the same TA i use the same row i in the matrix S to assign
TALs to different UEs. As mentioned in Section III, the result of
this step is used by the online step of our framework to assign
different TALs to different UEs. In what follows, we present
three problem formulations for optimizing TALs distribution in
LTE and beyond networks. The two first optimizations are lin-
ear programs, whereas the last one is a convex optimization.
As it is well known in the literature [15], the linear program
and convex optimization have polynomial time complexity. It
shall be noted that the result of the three solutions is the same
matrix S, however, with different elements Si j . The latter are
considered as the variables for the problem optimizations. In
the first optimization problem, we assume that the TAU over-
head is dominator and we then propose a solution to optimize
the network performance that favors TAU on paging. In the
second solution, we propose an optimization problem whereby
the paging overhead is dominator. Finally, we introduce FOTA,
which aims at capturing the tradeoff between the TAU and pag-
ing overhead when assigning TALs to TAs (Fair and Optimal
Assignment of TALs to TAs - FOTA), and ultimately to UEs.
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In FOTA, a bargaining game is used to capture the tradeoff
between TAU and paging.

A. Optimizing the Network Performance via the Reduction of
TAU Overhead

In this subsection, we propose the solution, named F-TAU,
that favors TAU when assigning TAs to TALs. In F-TAU, we
seek the optimal distribution of TALs by applying the min-
max approach. The aim is to minimize the maximum number
of TAU messages. Formally, we aim to minimize the maxi-
mum aggregate number of TAU messages sent by UEs between
any two TAs in the network. In this solution, we denote by
P AG I N Gmax the maximum number of paging messages tol-
erated by the network. Its value could be fixed according to the
capacity of MMEs in the network. Otherwise, P AG I N Gmax

can be fixed to ∞. In this case, the optimal solution would con-
verge to putting all TAs into the same TAL in order to reduce
the TAU overhead. At this point, the optimization model which
aims at reducing the TAU overhead can be formulated according
to the following linear program ((1). . .(6)):

min max
∀i, j∈N∧i �= j

τ

⎛
⎝ ∑

	∈�i ∧	/∈� j

hi j Si	 +
∑

	∈� j ∧	/∈�i

h ji S j	

⎞
⎠ (1)

S.t,

∀	 ∈ �,∀i ∈ N ∩ 	, Si	 ≥ 0 (2)

∀	 ∈ �,∀i ∈ N ∩ 	, Si	 ≤ 1 (3)

∀i ∈ N,
∑
	∈�

Si	 = 1 (4)

∀	 ∈ �,∀i /∈ N ∩ 	, Si	 = 0 (5)

ρ
∑
	∈�

∑
i∈	

Si	

( ∑
k∈ϒ

αkMki

)⎛
⎝ ∑

j∈	∧ j �=i

η j

⎞
⎠ ≤ PAGINGmax

(6)

In the objective function (1), the number of UEs that transited
from TA i (resp., j) is scaled by the variable Si	 (resp., S j	),
which represents the proportional use of TAL 	 by TA i (resp,
j). It shall be also noted that the condition,“	 ∈ �i ∧ 	 /∈ � j ⇔
∀i, j ∈ N, i �= j,∀	 ∈ � : i ∈ 	 ∧ j /∈ 	”, aims at reducing the
number of UEs moving between different TAs that do not
belong to the same TALs. The first three constraints ((2)–(4))
are used to ensure that each TA i ∈ N can select its TAL from
Si with a fixed probability. The fourth constraint (5) ensures
that a TA delivers TALs to UEs only if it belongs to this TALs.
The last constraint (6) ensures that the sum of all paging over-
head in the network should not exceed a predefined threshold
P AG I N Gmax . For any TAL 	, the overhead caused by pag-
ing UEs residing in TA i ∈ 	 (by sending paging messages to
all TAs j ∈ 	 ∧ j �= i) is the number of sites η j in these TAs,
scaled by

∑
k∈ϒ

αkMki and a variable Si	. Note that
∑

k∈ϒ

αkMki

is a constant that represents the paging overhead at TA i and
Si	 represents the proportional use of i . Formally,

∑
k∈ϒ

αkMki is

defined as the sum of the probabilities of paging of each UE k
scaled by its residence time in TA i .

B. Optimizing the Network Performance via the Reduction of
Paging Overhead

In this subsection, we introduce F-PAGING, which favors the
paging overhead when assigning TAs to TALs. As in F-TAU,
we use the min-max approach as depicted in the linear program
((7). . .(8)). In this linear program, the goal (7) is to optimize the
network performance seeking the optimal distribution of TALs
that minimizes the paging overhead. In this solution, we set the
maximum amount of TAU overhead tolerated by the network to
T AUmax . Its value could be defined according to the capacity of
MMEs in the network. Otherwise, T AUmax can be fixed to ∞.
In this case, the optimal solution would converge to putting each
TA in a separate TAL in order to reduce the paging overhead.
The linear program is formulated as follows:

min ρ
∑
	∈�

∑
i∈	

⎛
⎝Si	

( ∑
k∈ϒ

αkMki

) ∑
j∈	∧ j �=i

η j

⎞
⎠ (7)

S.t,

(2)−(5) and

∀i, j ∈ N ∧ i �= j :

τ

⎛
⎝ ∑

	∈�i ∧	/∈� j

hi j Si	 +
∑

	∈� j ∧	/∈�i

h ji S j	

⎞
⎠ ≤ T AUmax

(8)

The first fourth constraints ((2). . .(5)) are similar to the first
linear program presented in the precedent section. The last con-
straint ensures that the total number of TAU messages sent by
UEs when transiting between any two adjacent TAs i ∈ N and
j ∈ N should not exceed the threshold T AUmax .

C. Trading off TAU Against Paging Using Nash Bargaining

In contrast to the conventional techniques (eg., weighted-sum
method) used to solve the multi-objectives problems, which
may not ensure a fair tradeoff between the conflicting objec-
tives, FOTA uses a Nash bargaining game to achieve this
tradeoff. As we have mentioned in Fig. 1, an increase in the size
of TALs reduces the TAU signaling messages, however it has a
negative impact on the paging signaling messages. Meanwhile,
reducing TALs size has a negative impact on TAU signaling
messages and positive impact on the paging signaling mes-
sages. The UE’s mobility and call ratio have a great impact
on the total number (i.e., TAU and paging) of signaling mes-
sages in the network. For a network characterized by a high
mobility, we have to favor the reduction of TAU overheads in
order to reduce the number of total signaling messages in the
network. Whereas, for a network characterized by a high call
ratio, the reduction of paging signaling messages significantly
reduces the total signaling messages. In FOTA, TAU and paging
overhead represent the conflicting objectives and are considered
as two players in the bargaining game. The two players (i.e.,
TAU and paging signaling messages) would like to barter goods
(i.e., total signaling messages). It was theoretically proven in
[16] that the use of Nash bargaining game ensures a fair trade-
off between the players according to the network characteristics
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in terms of UE’s mobility and call ratio. FOTA will favor the
reduction of TAU overhead for a network characterized by a
high mobility, whereas it will favor the reduction of paging
overhead for a network characterized by a high call ratio. In
what follows, some background on the Nash bargaining game
is introduced and then FOTA solution is presented.

1) Nash Bargaining Model and Threat Value Game: Nash
bargaining model can be viewed as a game between two players
who would like to barter goods. This model is a cooperative
game with non-transferable utility. This means that the utility
scales of the players are measured in non-comparable units.
This model is adopted in our proposed FOTA scheme to find
a Pareto efficiency between the paging and TAU overhead. In
our case, the players are the paging and TAU overhead which
do not use the same unit. This model is based on two elements,
assumed to be given and known to the players. First, the set of
vector payoffs P achieved by the players if they agree to coop-
erate. P should be a convex and compact set. Formally, P can be
defined as P = {(u(x), v(x)), x = (x1, x2) ∈ X}, whereby X is
the set of strategies of two players, and u() and v() are the util-
ity functions of the first and second users, respectively. Second,
the threat point, d = (u∗, v∗) = (u((t1, t2)), v(t1, t2)) ∈ P,
which represents the pair of utility whereby the two players
fail to achieve an agreement. In Nash bargaining game, we aim
to find a fair and reasonable point, (u, v) = f (P, u∗, v∗) ∈ P

for an arbitrary compact convex set P and point (u∗, v∗) ∈ P.
Based on Nash theory, a set of axioms are defined that lead
to f (P, u∗, v∗) in order to achieve a unique optimal solution
(u, v):

1) Feasibility: (u, v) ∈ P.
2) Pareto Optimality: There is no point (u(x), v(x)) ∈ P

such that u(x) ≥ u and v(x) ≥ v except (u, v). In other
words, if P is symmetric about the line u(x) = v(x), and
u∗ = v∗, then u = v.

3) Independence of irrelevant alternatives: If T is a closed
convex subset of P, and if (u∗, v∗) ∈ T and (u, v) ∈ T ,
then f (P, u∗, v∗) = (u, v).

4) Invariance under change of location and scale:
If T = {(u′(x), v′(x)), u′(x) = α1u(x) + β1, v′(x) =
α2v(x) + β2 f or(u(x), v(x)) ∈ P}, where α1 > 0,

α2 > 0, and B1 and B2 are given numbers, then
f (T, α1u∗ + β1, α2v∗ + β2) = (α1u + β1, α2v + β2).

Moreover, the unique solution (u, v), satisfying the
above axioms, is proven to be the solution of the following
optimization problem:⎧⎪⎪⎨

⎪⎪⎩
max(u(x) − u∗)(v(x) − v∗)
s.t.

(u(x), v(x)) ∈ S
(u(x), v(x)) ≥ (u∗, v∗)

A general geometric interpretation of the Nash bargaining
game is shown in Fig. 6.

2) Fair and Optimal TALs Assignment: We denote by d =
(T AUworst , P AG I N Gworst ) the threat point of our bargaining
game that solves FOTA. In contrast to conventional bargaining
game, the utility function of each player, (i.e., TAU and pag-
ing overhead) in our model, is the opposite of its cost. In other
words, (T AUworst , P AG I N Gworst ) ≥ ( f (S), g(S)),∀S ∈ X ,
where f () and g() are the utility functions of TAU and paging

Fig. 6. The geometric interpretation of the Nash bargaining game.

overhead players, respectively. The tradeoff problem between
TAU and paging overhead can be modeled as a convex opti-
mization problem ((9). . .(13)).

max (T AUworst − f (S))(PAGINGworst − g(S)) (9)

S.t,

(2)−(5) and

∀i, j ∈ N ∧ i �= j :

τ

⎛
⎝ ∑

	∈�i ∧	/∈� j

hi j Si	 +
∑

	∈� j ∧	/∈�i

h ji S j	

⎞
⎠ ≤ f (S)

(10)

ρ
∑
	∈�

∑
i∈	

Si	

( ∑
k∈ϒ

αkMki

)⎛⎝ ∑
j∈	∧ j �=i

η j

⎞
⎠ ≤ g(S) (11)

f (S) ≤ T AUworst (12)

g(S) ≤ P AG I N Gworst (13)

In the optimization problem, in addition to matrix S, we added
two variables f (S) and g(S) that represent the maximum
values of TAU and paging overheads in the network, respec-
tively. The use of Nash bargaining game in FOTA ensures
fairness among the players (TAU and paging overheads) and
produces a Pareto optimal solution. From the second and the
third axioms of the bargaining game, we can deduce that
FOTA yields a fair Pareto optimal solution according to the
threat point (T AUworst , P AG I N Gworst ), which represents the
performance thresholds of TAU and paging overheads, respec-
tively. Let ST AU and SP AG I N G be the optimal solutions of the
linear programs ((1). . .(6)) and ((7). . .(8)), respectively. Then,
we can define P AG I N Gworst , P AG I N Gbest , T AUworst and
T AUbest as follows:

1) P AG I N Gworst = ρ
∑
	∈�

∑
i∈	

((∑
k∈ϒ

αkMki

)
∑

j∈	∧ j �=i
η jS

T AU
i	

)

2) P AG I N Gbest = ρ
∑
	∈�

∑
i∈	

((∑
k∈ϒ

αkMki

)
∑

j∈	∧ j �=i
η jS

P AG I N G
i	

)

3) T AUworst = max
∀i, j∈N,i �= j

(
τ

( ∑
	∈�i ∧	/∈� j

hi j Si	

+ ∑
	∈� j ∧	/∈�i

h ji S P AG I N G
j	

))
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4) T AUbest = max
∀i, j∈N,i �= j

(
τ

( ∑
	∈�i ∧	/∈� j

hi j Si	

+ ∑
	∈� j ∧	/∈�i

h ji ST AU
j	

))

It is easily noticeable that P AG I N Gbest ≤ P AG I N Gworst

and T AUbest ≤ T AUworst . Fig. 7 illustrates the physical inter-
pretation of the trade-off between TAU and paging overheads.
From this figure, we can observe that a reduction in TAU
signaling messages increases the number of paging signaling
messages, and vise versa. FOTA aims at finding the Pareto opti-
mal point ( f (S), g(S)) between TAU and paging overhead. The
slope of P would vary according to the network characteris-
tics, in terms of UE’s mobility and paging ratio, which have an
impact on the Pareto optimal point ( f (S), g(S)).

The values of P AG I N Gbest , P AG I N Gworst , T AUbest

and T AUworst are obtained by updating the linear programs
((1). . .(6)) and ((8). . .(8)) as follows:

min f (S) (14)

S.t,

(2)−(5) and

∀i, j ∈ N ∧ i �= j :

τ

⎛
⎝ ∑

	∈�i ∧	/∈� j

hi j Si	 +
∑

	∈� j ∧	/∈�i

h ji S j	

⎞
⎠ ≤ T AUbest

(15)

ρ
∑
	∈�

∑
i∈	

Si	

(∑
k∈ϒ

αkMki

)⎛⎝ ∑
j∈	∧ j �=i

η j

⎞
⎠ ≤ P AG I N Gworst

(16)

P AG I N Gworst ≤ P AG I N Gmax (17)

T AUbest ≤ f (S) (18)

min g(S) (19)

S.t,

(2)−(5) and

∀i, j ∈ N ∧ i �= j :

τ

⎛
⎝ ∑

	∈�i ∧	/∈� j

hi j Si	 +
∑

	∈� j ∧	/∈�i

h ji S j	

⎞
⎠ ≤ TAUworst

(20)

ρ
∑
	∈�

∑
i∈	

Si	

(∑
k∈ϒ

αkMki

)⎛⎝ ∑
j∈	∧ j �=i

η j

⎞
⎠ ≤ PAGINGbest

(21)

PAGINGbest ≤ g(S) (22)

TAUworst ≤ TAUmax (23)

The optimization problem shown in the linear program
((9). . .(13)) is non-convex. Using the approach proposed in
[17], the problem can be transformed to convex-optimization
problem without changing the solution. The key idea is to
introduce the log function which is an increasing function.

Therefore, the optimization problem is reformulated as follows:

max log((T AUworst − f (S)))+log((P AG I N Gworst −g(S)))

(24)
S.t,
(2)–(5) and

∀i, j ∈ N ∧ i �= j :

τ

⎛
⎝ ∑

	∈�i ∧	/∈� j

hi j Si	 +
∑

	∈� j ∧	/∈�i

h ji S j	

⎞
⎠ ≤ f (S)

(25)

ρ
∑
	∈�

∑
i∈	

Si	

(∑
k∈ϒ

αkMki

)⎛
⎝ ∑

j∈	∧ j �=i

η j

⎞
⎠ ≤ g(S) (26)

f (S)) ≤ TAUworst (27)

g(S)) ≤ PAGINGworst (28)

Theorem 3: The optimization problem ((24). . .(28)) is con-
vex and admits a unique solution.

Proof: To prove the unicity of the solution, we have to
show that the optimization problem in ((24). . .(28)) is convex.
It shall be stated that for an optimization problem to be convex,
the objective function should be convex, the equality con-
straints should be linear, and the inequality constraints should
be convex [15]. For our optimization problem ((24). . .(28)),
the equality and the inequality constraints are linear. This also
means that the inequality constraints are convex. Thus, to show
that the optimization problem in ((24). . .(28)) is convex, it is
sufficient to prove that the objective function is convex. In the
optimization problem ((24). . .(28)), we have T AUworst and
P AG I N Gworst as constant values, whereas f (S) and g(S)

are variables. For the sake of simplicity, we denote T AUworst ,
P AG I N Gworst , f (S) and g(S) by A, B, x and y, respec-
tively. Thus, the objective function becomes max log(A − x) +
log(B − y). Based on [15], the convex optimization problem
should be minimized. For this reason, the objective func-
tion is transformed, without changing the solution as follows:
min P = −(log(A − x) + log(B − y)). To prove that the opti-
mization problem ((24). . .(28)) is convex, it is sufficient to
show that the Hessian matrix H of P is positive definite.(

∂2 P
∂2x

∂2 P
∂x∂y

∂2 P
∂y∂x

∂2 P
∂2 y

)

Computing the different components of the Hessian matrix, we
obtain

∂2 P

∂x∂y
= ∂2 P

∂y∂x
= 0

∂2 P

∂2x
= 1

(A − x)2
> 0

∂2 P

∂2 y
= 1

(B − y)2
> 0

It follows that the Hessian matrix is diagonal with positive
eigenvalues. Therefore, the Hessian matrix is positive definite,
the optimization problem is thus convex and admits a unique
solution. �
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Fig. 7. The geometric interpretation of the tradeoff between TAU and paging
overhead using Nash bargaining game.

VI. ANALYTICAL MODEL

In this section, we introduce a Markov-based model for
analyzing the three offline solutions, F-TAU, F-PAGING and
FOTA. We use the same intuition to model the three solu-
tions, since the main difference between these solutions is
the output matrix S. To ease the explanation of the pro-
posed analytical model, let us consider the network topology
depicted in Fig. 8. The possible TALs for Fig. 8 is � =
{{η1}, {η2}, {η3}, {η1, η2}, {η1, η3}, {η2, η3}, {η1, η2, η3}}. We
numerate the elements in � from 1 to 7, respectively. Now,
we consider the following matrix S, which can be produced via
F-TAU, F-PAGING or FOTA:

S =
⎡
⎣ 0.3 0 0 0.2 0.5 0 0

0 0.3 0 0.3 0 0 0.4
0 0 0 0 0.1 0.4 0.5

⎤
⎦

We denote by H the expected probability of movement of a UE
in the network. H can be deduced from H. Each element h̄i, j
in H can be computed as follows:

∀i ∈ N, h̄i, j = hi, j∑
∀ j∈N

hi, j

Considering the example of Fig. 8, H is:

H =
⎡
⎣ 0 0.1 0.9

0.5 0 0.5
0 1 0

⎤
⎦

Let M denote the expected duration of a UE in each TA.
Formally, M is a vector with a size L . Each element Mi in M
represents the time that the UE can spend in TA i . Mi can be
computed as follow:

∀i ∈ N, Mi =

∑
∀ j∈ϒ

Mi, j

|ϒ |
In our analysis, we assume that Mi , for ∀i ∈ ϒ , are indepen-
dent and each Mi follows an exponential distribution of rate μi .

1
|N|

∑
i∈N

αi denotes the average arrival traffic of UEs in the net-

work. Assuming that this traffic follows a Poisson process of
rate λ, the inter arrival time between two consecutive calls is
a random variable T that follows an exponential distribution of
rate λ.

Fig. 8. An illustrative example network used in the analysis.

Fig. 9. The way to construct the embedded Markov chain used in the analysis.

These assumptions lead us to model the system using a
Markov Chain X = {Xt , t ≥ 0} on the state space � defined by
� = {(i, k),∀k ∈ � ∧ ∀i ∈ k ∧ Sik �= 0}. In this model, Xt =
(i, k) indicates that at instant t , TAL k is assigned to UEs when
visiting TA i . According to this description, it is obvious that we
are dealing with a Continuous-Time Markov Chain (CTMC).
In what follows, rather than the CTMC, we will use the corre-
sponding Embedded Markov Chain (EMC), which is depicted
in Fig. 9(a). From this figure, we notice two events that lead to
leave a state (i, k) in EMC. The first one is when an incoming
call arrives for a UE before it leaves its current TA i , whereas
the second event is when the UE moves from its TA to another
one before the incoming call arrives. As Mi ∼ Exp(μi ) and
T ∼ Exp(λ), the probability for the first and the second events
to be occurred can be defined as follows:

• For an incoming call to arrive before the UE leaves its

state i , the probability is Ci = P(T < Mi ) = λ

λ + μi
.

• For the UE to leave its TA i before the incoming
call arrives, the probability is 1 − Ci = P(Mi ≤ T) =

μi

λ + μi
.

Let j1, · · · , jN be the neighboring TAs of TA i . As depicted
in Fig 9(a), when a UE exists its TA i , it has to move to
its neighboring TA j according to the matrix H . Furthermore,
when it moves to TA j , it has to select its TAL k according to
the matrix S. The EMC depicted in Fig. 9(a) can be reduced by
grouping its states to a new EMC as shown in Fig. 9(b). Indeed,
when a UE, assigned TAL l, moves from TA i to another TA j ,
two types of events can happen: (i) the first one corresponds to
the case where TA j belongs to TAL k; (i i) the second one is
when TA j does not belong to TAL k, in this case a TA update
process should be accomplished to assign a new TAL k to the
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Fig. 10. An illustrative example of Embedded Markov Chain.

UE. Let denote by Ai, j,k and Bi, j,k the probability of the first
and the second events, respectively. In fact, Ai, j,k and Bi, j,k

represent the probabilities of moving from TA i to another TA j
and then selecting TAL k.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ai, j,k = Pr(T > Mi )h̄i, jS jk .

∀i, j ∈ N,∀k ∈ �, i �= j and i, j ∈ k
Bi, j,k = Pr(T > Mi )h̄i, jS jk .

∀i, j ∈ N,∀k ∈ �, i �= j, j ∈ k and i /∈ k
Ci = Pr(T < Mi ). ∀i ∈ N

Hence,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ai, j,k = μi

λ + μi
h̄i, jS jk .

∀i, j ∈ N,∀k ∈ �, i �= j and i, j ∈ k

Bi, j,k = μi

λ + μi
h̄i, jS jk .

∀i, j ∈ N,∀k ∈ �, i �= j, j ∈ k and i /∈ k

Ci = λ

λ + μi
.∀i ∈ N

Fig. 10 shows the corresponding Embedded Markov
Chain of the network topology depicted in Fig. 8.
The balance equations of EMC can be written accord-
ing to the following formulas: ∀( j, k) ∈ � : π j,k =
C jπ j,k + ∑

i∈N∧i �= j∧Sik=0∧h̄i, j �=0
(Bi, j,k

∑
	∈�∧Si	 �=0

πi,	) +∑
i∈N∧i �= j∧Sik �=0∧h̄i, j �=0

Ai, j,kπi,k Where π j,k denotes the

probability at steady state to assigning TAL k to UEs in TA i .
The following equations show the balance equations of the

illustrative example shown in Fig 10:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1,1 = C1π1,1 + B2,1,1(π2,2 + π2,4 + π2,7)

π1,4 = C1π1,4 + B2,1,4(π2,2 + π2,7) + A2,1,4π2,4
π1,5 = C1π1,5 + B2,1,1(π2,2 + π2,4 + π2,7)

π2,2 = C2π2,2 + B1,2,2(π1,1 + π1,4 + π1,5)

+B3,2,2(π3,5 + π3,6 + π3,7)

π2,4 = C2π2,4 + B1,2,4(π1,1 + π1,5) + A1,2,4π1,4
×B3,2,4(π3,5 + π3,6 + π3,7)

π2,7 = C2π2,7 + B1,2,7(π1,1 + π1,4 + π1,5)

×B3,2,7(π3,5 + π3,6) + A3,2,7π3,7
π3,5 = C3π3,5 + B1,3,5(π1,1 + π1,4) + A1,3,5π1,5

+B2,3,5(π2,2 + π2,4 + π2,7)

π3,6 = C3π3,6 + B1,3,6(π1,1 + π1,4 + π1,5)

+B2,3,6(π2,2 + π2,4 + π2,7)

π3,7 = C3π3,7 + B1,3,7(π1,1 + π1,4 + π1,5)

+B2,3,7(π2,2 + π2,4) + A2,3,7π2,7

Let NT AU and Npaging denote the expected numbers of TAU
and paging generated in the network, respectively. Their values
are obtained as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
NTAU = ∑

i-k∈�

(
πi,k

∑
j-	∈�∧	 �=k∧i �= j

Bi, j,	

)

Npaging = ∑
i-k∈�

πi,kCi
∑

j∈k∧i �= j
η j

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the three
offline solutions FOTA, F-TAU and F-PAGING, by solving the
analytical model. Then, we evaluate ETAM framework through
simulation. Throughout this section, we fix the overhead of a
single TAU, τ , to be ten times the value of ρ [14]. All solutions
(i.e. FOTA, F-TAU and F-PAGING) are evaluated in terms of
the following metrics:

1) TAU overhead: the overhead of TAU messages (UP-Link)
generated by UEs when visiting new TALs.

2) Paging overhead: the overhead of paging packets sent
from MME to locate UEs during the call establishment.

3) Total overhead: the generated overhead due to both pag-
ing and TAU. The aim of this metric is to show the
Pareto-efficiency between the TAU and paging overhead.

To evaluate ETAM, we divided the deployed area into a
set of TAs, where each TA has a rectangular shape with a
specific length and width. Note that TAs may have different
surfaces according to their length and width. The mobility of
UEs is modeled according to the Random Waypoint Mobility
Model [18] with the pause-time sets to zero. Initially, we start
the evaluation by placing each UE in a given TA. During the
evaluation, each UE chooses a random destination (TA) in
the deployed area and a speed that is uniformly distributed
between [avgSpeed − �, avgSpeed + �], where avgSpeed
is the average speed of different UEs and � is the variation in
the speed between UEs. In the evaluation, we set � to 5 km/h.
The UE then travels toward the newly chosen at the selected
speed. This process is repeated until the evaluation time fin-
ishes. In the evaluation, we executed the online and the offline
steps 10 times. The numerical results were obtained by solving
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Fig. 11. Performance of the proposed solutions as a function of λ.

Fig. 12. Performance of the proposed solutions as a function of μ.

the Markov model corresponding to network model of Fig. 10,
while the simulation were obtained through Matlab. Indeed, the
simulator tool was implemented on top of Matlab and CVX (a
package for disciplined convex optimization and geometric pro-
gramming) [19]. In our evaluation, the sites (i.e., eNodeBs) are
randomly deployed over the network. Without any loss of gen-
erality, we assume that the sites are already organized into TAs
through any solution in the literature. The grouping of different
sites into TAs is outside the scope of this paper.

A. Numerical Results

In this subsection, we present the numerical results, focusing
on the impact of TAU and paging overhead on each solution by
varying μi and λ. μi is the exponential distribution rate of the
sojourn times of UEs in TA i , whereas λ is the average ratio of
calls for a UE in the network. λ can be also defined as the expo-
nential distribution rate of the inter arrival time between two
consecutive calls for a UE. The latter refers to the percentage
of time that a UE is called. Here, the term “call” refers not only
to the classical voice call but also to data connection, such as
VoIP and web applications. This parameter allows us to model

the user activity in terms of active connections. Whereas,
1

μi
refers to the average time spent by a UE (i.e., sojourn time) in
each TA. Increasing the values of μi corresponds to an increase
in UEs’ speeds and/or a decrease in the size of cells (micro-cell
for 5G network) in the real world. Two scenarios are consid-
ered: (i) we vary λ from 1 to 10 while μi is fixed to 5; (i i) we
vary μi from 1 to 10 while we fix λ to 5.

The TAU, paging and total overhead for each solution are
evaluated using the following formulas:

⎧⎨
⎩

OverheadTAU = τ NTAU

Overheadpaging = ρNpaging

TotalOverhead = τ NTAU + ρNpaging

Fig. 11 and Fig. 12 show the performance of the proposed

solutions against increasing values of λ and
1

μ
, respectively.

As shown in Eq. 6, the increase of transitions probability of
type “B” in EMC, reduces the sojourn time at each state in
EMC. This results in a negative impact on TAU overhead and
a positive impact on paging overhead, respectively. Whereas,
the increase of transitions probability of type “C” in EMC,
increases the sojourn time at each state in EMC. The latter has a
positive impact on TAU overhead and a negative impact on pag-
ing overhead, respectively. The rise on λ values increases (resp.,
decreases) the transition probability of type “C” (resp., “B”),
whereas the rise on μ values increases the transition probabil-
ity of type “B” and decreases the transition probability of type
“C”.

For this reason, as depicted in Fig. 11(a) and Fig. 11(b), the
increase of average arrival traffics (λ) has a negative impact on
the paging overhead and a positive impact on the TAU over-
head. Fig. 12(a) and Fig. 12(b) show that the increase of the

sojourn time (
1

μ
) in each TA has also a negative impact on

the paging overhead and a positive impact on TAU overhead.
Fig. 11(a) and Fig. 12(a) show that F-PAGING exhibits better
performance than FOTA and F-TAU in terms of TAU overhead
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regardless the values of λ and
1

μ
. This is attributable to the fact

that the key objective of F-PAGING is to minimize paging over-
head without tacking into account the TAU overhead. Whereas,
Fig. 11(b) and Fig. 12(b) show that F-TAU exhibits better per-
formance than FOTA and F-PAGING in terms of TAU overhead

regardless the values of λ and
1

μ
. This is obvious as F-TAU

is designed to optimize the TAU overhead without tacking into
account the paging overhead.

Fig. 11(c) and Fig. 12(c) show the total overhead due to

both paging and TAU for different values of λ and
1

μ
, respec-

tively. FOTA achieves a tradeoff between the two conflicting
objectives, i.e; reduction of both TAU and paging overhead.
We observe from these figures that: (i) F-TAU has better per-
formance in terms of total (i.e., paging and TAU) overhead
when the values of λ and μ are below 5; (i i) F-PAGING
has better performance when the values of λ and μ exceed 5.
Indeed, the performance of FOTA is always between F-TAU

and F-PAGING, whatever the values of λ and
1

μ
. FOTA has

performance similar to that of F-TAU when values of λ and μ

are below 5 and similar to that of F-PAGING when values of λ

and μ exceed 5. Thus, FOTA always finds an optimal tradeoff
between TAU and paging overhead by maintaing the total over-
head near to the optimal value regardless the UEs’ behavior.
This demonstrates that it successfully achieves the key objective
of its design.

B. Simulation Results

In this subsection, the proposed schemes are evalu-
ated through simulations. We used the proposed framework
(ETAM) to evaluate through simulation the three solutions
(F-PAGING, F-TAU and FOTA) of offline step and the two
solutions of online step. Formally, we have six possible combi-
nations of protocols. The same trajectory logs of UEs are used
to evaluate the different combinations of protocols. The infor-
mation of handover between different TAs is forwarded from
the online to the offline step. During the movement of a UE, a
TAU message is generated and sent to MME every-time a UE
crosses a TA that does not belong to its TAL in the online step.
The optimization problems are solved considering different val-
ues of the average speed avgSpeed of UEs and the average ratio
of calls of each UE in the network. The average speed of UEs
shows the impact of TAUs signaling on the different optimiza-
tion problems. In the simulation evaluation, we evaluate two
scenarios: (i) we vary the average speed avgSpeed of UEs and
fix the average call ratio to 50 calls/h for each UE in the net-
work; (i i) we vary the average call ratio of UEs and fix the
average speed avgSpeed of UEs to 50 km/h. In contrast to the
analysis part, the two solutions of online part are considered
in the simulation evaluation: (i) UEs pick their TAL without
any prioritization; (i i) each UE picks a TAL with prioritization,
according to its behavior, to reduce the overhead of TAU and
paging signaling.

Fig. 13 and Fig. 14 show the resilience of FOTA, F-
TAU and F-PAGING against increase in UEs’ speed and

call ratio, respectively. We clearly observe that assigning
TALs to UEs with prioritization (e.g., per UE’s activities -
mobility and call ratio) has a positive impact on the per-
formance of the three solutions. From Fig. 13(c), for the
speed of UEs equals to 70 km/h, we observe that the selec-
tion of TALs with prioritization reduces the total overhead
from 13060 to 12340 (an enhancement with more than
5.51%) for F-TAU, and for FOTA the total overhead is
reduced from 14460 to 13321, which means an enhancement
exceeding 7.87%. Meanwhile from Fig. 14(c), we observe
that when the call ratio equals to 90 call/h, the selection
of TALs with prioritization reduces the total overhead of
FOTA from 18556 to 16336, which means an enhancement
exceeding 11.96%.

Fig. 13(b) and Fig. 13(c) show that the speed of UEs has a
negative impact on TAU and total overhead, respectively. This
behavior is expected as highly mobile users perform frequently
handoff between TAs and ultimately generate high TAU mes-
sages. Thus, the higher the speed of UEs is, the higher the TAU
overhead becomes. Further, we remark from Fig. 13(b) that F-
TAU exhibits better performance than FOTA and F-PAGING in
terms of TAU overhead regardless the speed of UEs. This is
attributable to the fact that the key objective of F-TAU is to
minimize TAU overhead without tacking into account the pag-
ing overhead. Whereas, Fig. 14(a) and Fig. 14(c) demonstrate
that the call ratio has a negative impact on paging and total over-
head, respectively. This is also predictable as highly active UEs
(i.e., with high call ratios) cause high number of paging mes-
sages when they go in the idle mode and their locations are
searched the network. Moreover, from Fig. 14(a), we observe
that F-PAGING exhibits better performance than FOTA and F-
TAU in terms of paging overhead regardless the call ratio. This
is intuitively due to the fact that F-PAGING is designed to opti-
mize the paging overhead without tacking into account the TAU
overhead.

Fig. 13(c) and Fig. 14(c) illustrate the tradeoff achieved by
FOTA between the two conflicting objectives, i.e; reduction of
both TAU and paging overhead. They show the total overhead
incurred in the three solutions and that is for different values of
the UE speed and call ratio, respectively. We observe from these
figures that: (i) F-PAGING exhibits better performance in terms
of total (i.e., paging and TAU) overhead when the speed of UEs
is below 50 km/h or when the call ratio exceeds 50 calls/h;
(i i) F-TAU exhibits better performance when the average speed
of UEs exceeds 50 km/h or when the call ratio does not exceed
50 calls/h; and (i i i) FOTA has performance similar to that
of F-PAGING when the speed of UEs is below 50 km/h or
when the call ratio exceeds 50 calls/h. It is also observed that
FOTA performs similarly to F-TAU when the call ratio does
not exceed 50 calls/h or the speed of UEs exceeds 50 km/h.
Indeed, the performance of FOTA is always between F-TAU
and F-PAGING, depending on the UEs’ speed and their activity
levels (i.e., call rate). For highly mobile UEs, FOTA performs
similar to F-TAU (optimal) and better than F-PAGING, whilst
for highly active UEs, FOTA performs similar to F-PAGING
(optimal) and better than F-TAU. FOTA always finds an opti-
mal tradeoff between TAU and paging overhead by maintaing
the total overhead near to the optimal value regardless the UEs’
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Fig. 13. Performance of the proposed solutions as a function of speed of UEs.

Fig. 14. Performance of the proposed solutions as a function of the call ratio.

behavior. This demonstrates that it successfully achieves the
key objective of its design.

It is worth noting that we observe some differences between
the simulation and the numerical results. In contrast to the simu-
lations, varying the average of traffic arrival rate λ has an impact

on TAU overhead and varying the average sojourn time (
1

μ
) in

each TA has an impact on the paging overhead. This is because
in the analysis, the behavior of the network is shown as a ratio
between λ and μ. Any increase in any of one of them has a
negative impact on the other.

VIII. CONCLUSION

One key vision of the upcoming 5G is to support poten-
tial numbers of users connecting to the mobile networks. An
important challenge is to cope with the amount of signaling to
be generated by these mobile users, particularly signaling mes-
sages due to mobility (i.e., TAU) and for connection setup (i.e.,
paging). Particularly, the mentioned overhead could be exacer-
bated if small cells are deployed (as envisioned in the upcoming
5G) . To overcome this issue, we have devised the ETAM frame-
work, which aims at mitigating the effect of TAU and paging
signaling messages on the network. ETAM has two parts, one
is executed online and another is executed offline. In the online
part, we proposed two strategies to assign TALs to UEs, whereas
in the offline part three solutions are proposed. Analysis and
simulation results have proven the efficiency of each solution
in achieving its key design objectives.
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