Towards a Real Deployment of Network Services
Orchestration and Configuration Convergence
Framework for 5G Network Slices

Ibrahim Afolabi, Miloud Bagaa, Walid Boumezer and Tarik Taleb

Abstract—A seamless interworking between network function
virtualization (NFV) and software defined networking (SDN)
to orchestrate network services for the 5G systems is very
fundamental for network slice creation. The orchestration of
large scale network slices across multiple administrative as well
as technological domains with heterogeneous resources and a
distributed form of slice management can benefit from harnessing
existing NFV orchestration (NFVO) solutions. In this regard, this
paper presents a network service orchestration and configuration
convergence framework that is capable of providing large scale
network slicing solution for 5G network operators. Using this
framework, SG network operators can orchestrate and configure
network slices directly from their infrastructure and that of
credible registered slice providers who have resources for the
orchestration of only a subset of the overall network slice. The
framework is equipped with mechanisms that allow a distributed
form of slice configuration and management.

Index Terms—S5G, network slicing, end-to-end slices, NFYV,
SDN, network softwarization, Network service, and MANO.

1. INTRODUCTION

HE 5G communication system aims to expand both the

concept and scope of network connectivity services to
cover wide varieties of use cases. These use cases will push
the limits of communication technologies and bring onboard
more stakeholders than the case of the 4G technology. By
supporting vertical applications with varying and sometime
opposing service requirements [1], the 5G system will provide
a plethora of network services that will bring about interactions
between 5G vertical application developers/industry, the 5G
communication system providers and the 5G telecommunica-
tion infrastructure providers [2]. These vertical applications
will be orchestrated and deployed over 5G network slices [3]
as 5G-ready applications.

Network slicing, enabled through network function soft-
warization [5], is no longer new in the mobile telecommunica-
tions world. The network slicing concept which was first intro-
duced by the NGMN alliance [9] has witnessed a widespread
exploration by well-meaning standardization bodies such as
the 3rd Generation Partnership Project (3GPP) [8], the Interna-
tional Telecommunication Union Telecommunication standard
sector (ITU-T) [10] and the European Telecommunications

Ibrahim Afolabi, Miloud Bagaa, Walid Boumezer and Tarik Taleb are with
the Department of Communications and Networking, School of Electrical En-
gineering, Aalto University, Finland (e-mails: {firstname.lastname}@aalto.fi).
Tarik Taleb is also with the Faculty of Information Technology and Electrical
Engineering, Oulu University, and with the Department of Computer and
Information Security, Sejong University, Seoul 05006, South Korea.

Standards Institute (ETSI) [11]. Fundamentally driven by
advancements in both the ETSI NFV Management and Orches-
tration (MANO) framework and the Software Defined Net-
working (SDN) technology, network slicing is today realizable
over programmable shared virtualized resources running over
commodity hardware server infrastructure[5].

Hitherto, network slices are orchestrated and deployed
as connected virtual network functions (VNFs) running as
services over shared abstracted resources used mainly for
computation, storage and networking while ensuring certain
level of isolation. These VNFs are hosted mostly on virtual
machines or nowadays on containers with certain amount of
dedicated virtual compute, storage and network links. For
example, a mobile network slice will be composed of sub-
slices of the radio access network, the core network and
perhaps the transport network [4]. Therefore, such a slice
should consist of PNF (physical network function)/VNF of
the next generation Node B (gNB) and VNFs of the core
network e.g., the Access and Mobility Management Function
(AMF), Session Management Function (SMF), User Plane
Function (UPF), and Unified Data Repository (UDR) [7], in
order to deliver a complete mobile network functionality while
satisfying certain predefined requirements [1].

The orchestration of mobile network slices could already be
realized thanks to existing NFVO frameworks such as OSM,
OpenBaton, 5G-Norma, and 5G-EX. Virtually all of them are
implemented following well known standards such as those of
ETSI and 3GPP. Moreover, these NFVO platforms have vary-
ing levels of maturity based on their supported slicing enabling
technologies and functions. While each of the existing NFVO
studies has different identified weaknesses as well as strengths
as discussed in [13] in terms of supported functions, their
collective strengths could be leveraged to complement for their
weaknesses. One of the identified weaknesses across most, if
not all, of the existing frameworks is the lack of an abstraction
support for converging the orchestration and configuration of
network services in a seamless manner. This makes them rigid
for a specified domain or technology and may have a negative
impact on the network elasticity. In contrast to these solutions,
we have suggested a service abstraction that is recognized as
an essential component in any orchestration framework that
offers a multi-domain slice orchestration support, similar to
the service conductor concept described in [13]. In this work,
we have implemented an orchestration and configuration con-
vergence (OCC) framework that provides the functionalities
needed to decompose, coordinate and carefully interpret multi-

Distributed Orchestration Abstration Layer

Q
o o @) N
O] m < o <
7777777777 Orchestration and Configuration Convergence Abstraction Layer
o b 2 - Jrmeoeiomenoeees
- O
"""""""""""""""""""""" OFéHéé't'riﬁb'ﬁ'L'a'yé'r"""""""""""""
NFVO-A NFVO-B NFVO-C

[] VNFtype A <> VNFtypeB

() VNFtypeC

[] VNF type D

Fig. 1. High-level Architecture of the Framework.

domain slice requests into domain-specific units that will be
orchestrated and managed by an administrative domain, and
the corresponding resources composition across the different
identified domains.

In this light, this paper presents a network service orchestra-
tion and configuration convergence framework that provides an
end-to-end network slicing solution for 5G network operators.
The solution leverages existing network service orchestrators
to provision multi-domain network slices by enabling an
orchestration convergence platform in which network services
could be orchestrated across variant heterogeneous network
components including diverse VIM and edge resources and
RAN controllers. As much as the framework provides mech-
anisms and APIs to independently interact with different
instances of the supported orchestrators in a distributed man-
ner, it also provides RESTful API modules to configure and
manage the various VNF instances separately through third
party solutions.

The rest of this paper is organized as follows. Section II
discusses the related work explaining the background of this
work. Section III presents an overview of the network services
orchestration convergence and configuration framework. In
Section IV, we present the interactions between the building
blocks of the orchestration convergence and configuration
framework. Section V reveals the different back-end server
processes that make the system components work in cohesion
and as an integrated platform. Also, this section presents a
multi-domain slice orchestration and dynamic configuration
use case. In Section VI, we present some performance evalua-
tion of the proposed framework. Finally, we draw concluding
remarks in Section VIIL.

II. RELATED WORK AND BACKGROUND

With arrays of promises for vertical industries, the network
slicing concept has witnessed a wide spread and tremendous
exploration in different levels of studies among the next
generation systems market players. Leveraging both the NFV
and SDN technologies, a wide range of suggestions is available
on how to enable network slice orchestration and management
by considering different types of architectures including most
notably the ETSI MANO architecture and also benefit from
the recommendations of the 3GPP standards. For example, the
3GPP SAS working group in [16] introduces the concept of
network slice as a service (NSaaS) between different players
i.e., a communication service provider (CSP) and a commu-
nication service customer (CSC), and also presents service
requirements that should be taken into account when providing
such services, considering different technological domains,
e.g., 5G RAN and 5G CN respectively, while maintaining a
high-level approach in defining different aspects of network
slice management, namely, Preparation, Commissioning, Op-
eration and Decommissioning.

Moreover, the work in [17] provides definitions and details
of management services and functions for network slices,
wherein the 3GPP recognizes the NFV-MANO orchestrator
for enabling the deployment of network slice subnet instances
(NSSI) and providing standard management interfaces to sup-
port its utilization. Although, the ETSI MANO paradigm was
conceived as an orchestration architecture for orchestrating
network services using VNFs, it was however, not specially
designed for enabling end-to-end network slice orchestra-
tion [6]. In addition, the application of the architecture is
mostly suitable for orchestrating single domain network slices.
However, the need to support multi-domain slicing has been
identified and significant progress has been recorded. In fact,
the work in [15] provides detailed information on the different
use cases for the need to practically enable multi site slicing
which are mainly motivated by customer needs and innovative
business ideas.

Nonetheless, with the monumental amount of research and
implementation efforts that have been dedicated towards de-
veloping the ETSI MANO concept from both the academia
and open source communities, the development of the Open
Source MANO (OSM!), does not come as a surprise. OSM is
perhaps one of the most notable open source network services
orchestration solutions available today. Another prominent
open source orchestration platform that provides an extensive
implementation of the ETSI MANO concept is the Openbaton
project. In addition, other open source network service or-
chestration and automation platforms which are not expressly
in compliance with the ETSI NFV reference architecture are
the ONAP? (formerly known as OPEN-O) and Central Office
Re-architected as a Datacenter (CORD?) projects. While the
ONAP project is not entirely compliant with ETSI, its main
MANO components such as the VNFM and VIM can be
mapped to the ETSI NFV reference model.

1 https://osm.etsi.org/
Zhttps://www.onap.org/
3https://opencord.org/

The CORD architecture, on the other hand, is very SDN-
centric in its implementation, very much following the ap-
proach of OpenFlow by adopting the ONOS framework.
With a dedicated NFVO component, called XOS, most of
the architectural elements of the CORD could be technically
aligned with the ETSI-defined reference model. Perhaps, this
is only by coincidence, the objectives of the CORD projects
extend beyond the NFV network service provisioning. Similar
to the CORD project, the ONAP project also readily provides
fundamental support for SDN-based networking.

III. OVERVIEW OF THE NETWORK SERVICES ORCHESTRATION
CONVERGENCE AND CONFIGURATION FRAMEWORK

A. Overview of the High-level Architecture

The envisioned network service deployment convergence
and configuration framework is aimed at providing two essen-
tial functionalities. As the name suggests, it aims to 1) serve
as a convergence platform for the orchestration of network
services and 2) to provide a robust approach for the configu-
ration of these services. The framework is designed in such a
way to support multiple orchestration platforms by providing
the necessary mechanisms to manage and interact with them
seamlessly. As a result, the described framework herein is
very suitable for the orchestration of network slices with
varying level of service characteristics and sizes, especially,
those that span across multiple domains or sites as the case
maybe. Taking advantage of an orchestration and configuration
convergence framework such as this, different slicing orches-
tration scenarios can be actualized from a single unifying
platform considering the complexities that may be involved in
instantiating the different subnet/sub-slices of a network slice.
This framework is designed primarily as a generic platform
for enabling the orchestration and configuration of network
services including multi-domain 5G network slices, and the
actual composition of the slices is already discussed in details
in [4].

To this end, our proposed architecture takes into consid-
eration four main layers as shown in Fig. 1: Distributed
Orchestration Abstraction Layer (DOAL), Orchestration and
Configuration Convergence Abstraction Layer (OCCAL), Or-
chestration Layer (OL) and Resources Layer (RL).

« DOAL: is the layer responsible for processing multi-
cloud domain service orchestration request. It provides an
abstraction interface for the submission, preprocessing,
sorting, decomposition, recomposition and aggregation
of VNFs that constitute sub-network service, which is
intended to be orchestrated from either one or a set of
NFVOs. Basically, a sunny day scenario is one in which
the DOAL receives an orchestration request of a network
service that spans across multiple administrative as well
as technological domains and regions in a standard known
format (e.g., TOSCA, YAML, and JSON). The DOAL
validates and authenticates the received request, and then
parses and aggregates all of the essential information con-
tained in the request. The network service request would
include both the instantiation and configuration of a
combination of different types of VNFs that are available

from the different registered NFVOs. The DOAL handles
the received request and then processes it by sorting and
mapping the different sub-tasks of the requests to the
corresponding NFVOs and powers them using resources
from the VIMs attached to each of the NFVOs. The
DOAL tightly coordinates with the OCCAL in enabling
the orchestration of the received request while reflect-
ing the complex characterization of the service request,
traffic steering profile and convoluted links between the
respective VNFs after simplifying and decomposing the
complex request. After the variant VNFs have been sorted
and recomposed in the DOAL, the VNFs belonging to the
same NFVOs are then passed down to the OCCAL for
fulfilling the orchestration request.

OCCAL: is directly responsible for registering and man-
aging multiple NFVOs. This layer provides the necessary
APIs needed to effectively communicate with the regis-
tered NFVOs and their respective VIM(s) on its south-
bound interfaces. Similarly, on its north-bound interface,
it offers RESTful interface through which orchestration as
well as configuration instructions are handed down from
the DOAL layer siting above it. This layer directly inter-
acts with the DOAL in ensuring effective orchestration of
the services that constitute the requested slice creation.
After the DOAL layer preprocesses an orchestration re-
quest, the sorted, decomposed and aggregated requests are
mapped directly to the variant registered NFVOs that are
responsible for instantiating and configuring the different
VNFs forwarded from the OCCAL as a preprocessed
orchestration and configuration instruction. At this stage
in the OCCAL, the convoluted combination of network
slice request that was received by the DOAL is now sim-
plified, decomposed and recomposed into multiple sub-
network service orchestration and configuration requests,
whereby, each sub-network request is then mapped to a
clearly identified NFVO. Each of the intended NFVOs is
guaranteed to have within its management the specified
VNF and NS descriptors that are indicated in the received
orchestration instruction based on timely updates that are
published to the DOAL layer. In this way, the DOAL is
always aware of any changes that might have taken place
in the orchestration layer in terms of supported services
or available resources through the OCCAL, which further
allows the OCCAL to support service recomposition and
suggestion. The service recomposition and suggestion
may be necessary in a situation whereby certain resources
become unavailable shortly after a request has just been
accepted based on the previous resource update.

OL.: is directly involved with the instantiation and config-
uration of the individual sub-network service that is sorted
and forwarded from the OCCAL layer siting above it.
This layer directly communicates in parallel with each of
the identified registered NFVOs. In this way, the system
is able to provide fine management and adequate control
of the individual sub-network service instances. As pre-
sented in Fig 1, the OL primarily provides RESTful API
for processing orchestration and configuration requests
that are received from OCCAL and also in a transparent

Fig. 2. Implementation architecture of the framework.

way, for controlling the resources of the VIMs that are
registered to each of the NFVOs. It should be noted that
the links between the NFVOs and the VIMs are meant
to reflect a one-to-many relationship, which implies that
one NFVO could control resources from multiple VIMs
but has been left so for the sake of simplicity in the
presentation of Fig. 1. This layer manages and effectively
controls the instantiation and resources provisioning for
the network services, which are requested from OCCAL.

« RL: is an abstraction of all the resources that are under
the control of each of the VIMs that is connected to it.
The resources are either virtual or physical resources such
as the compute, storage and networking resources that are
used in the orchestration of VNFs.

IV. IMPLEMENTATION ARCHITECTURE LEVERAGING EXISTING
ENABLING TECHNOLOGIES

This section presents the details of the implementation and
deployment of the unified platform based on the high-level
architecture presented in Fig. 1 and described in Section
III. In Subsection IV-A, we shall discuss the details of our
implementation, which follows the approach introduced in
the high-level architecture as described above. Here, we will
present our deployment architecture, describing each of its
interacting components and classifying them into enabling
blocks in relation to each layer of the high-level architecture
as shown in Fig. 1.

A. Interactions between the building blocks of the framework

In this sub-section, the details of the implementation of
this framework are presented and the interactions between
its building blocks are discussed. As shown in Fig. 2, the
architecture is composed of three essential and integral parts,
the Unified Deployment and Configuration Management Block
(UDCMB), Orchestration Convergence Block (OCB) and Vir-
tual/Physical Resources Block (V/PRB). Each of these build-
ing blocks can be mapped directly to each of the layers
described in Fig. 1 in the following way: UDCMB to DOAL

Unified Deployment and Configuration Management Block

1 1 1 | ! :
1 0y] I
I (I ﬁw‘ Vo H I
I [Repository 1 1 // Lo VNE VNF | |!
I' | vNFD & NSD Deployment b = | 1openstack -
1 > Task Scheduler 1 ! CO= ! X .
. manager Workers | [T 10PN BATON Lo VNF :
1 N -
1 v . 1 : 53y Open Source : : :
| <> : T W# MANO |1 !
Node | 1
- o |
: Shared : o I Tl Hamazen !
1 Storage : 1 1 . I I !
1 . 1 1 Juju (. !
1 (Node,) > 1 ' charms - !
: Configuration Message Broker Task Queue : | o !
I manager Cluster Cluster I ! Lo .
1 m W& Celery . " . s J :
1 Orchestration | i
1 | 1
1 1 !
1 ! |

Virtual/Physical

Convergence
9 Resources Block

Block

+ OCCAL, OCB to OL and finally, V/PRB to RL. The main
features and components of each of the building blocks of
this implementation framework, which is a major contribution
of this paper, are described in the remaining part of this
subsection.

1) Unified Deployment and Configuration Management
Block (UDCMB): is a major building block of the implemen-
tation architecture shown in Fig. 2. This important building
block is an encapsulation of the essential software modules,
namely, the Server API, VNFD & NSD Repository, Deploy-
ment manager, Shared Storage, Configuration manager,
Task Scheduler, Message Broker Cluster, and Task Queue
Cluster that are developed in order to enable a unification
platform for the orchestration and management of network
slices above and beyond a single administrative domain. Using
these important software modules, the UDCMB provides an
integrated unified front for the orchestration and configuration
of variant network services with support for a number of well-
known existing MANO-compliant orchestration platforms.

Server API: The Server API module is implemented fol-
lowing the OpenAPI specification, originally known as Swag-
ger API* Specification. It is a RESTful API compliant software
tool that is used for producing machine-readable interface
files that can be utilized to describe, produce, consume and
visualize web services, especially from the front-end. The
OpenAPlI is used in order for the Server API to follow industry
standard practice for RESTful design. Since this modules
follows the RESTful implementation, it then implies that any
RESTful compliant client can interact with the system seam-
lessly through the different API endpoints that are exposed to
the end users. Using these API endpoints, different users can
request and consume services from the UDCMB. Thanks to
the use of Swagger, the developed framework is orthogonal
with any existing system, and allows interoperability with
other components developed to extend its functionalities.

VNFD & NSD Repository: This software module serves
as a storage repository for the uploading and retrieving of

“https://swagger.io/specification/

REST API Web Application TaskSet Creator Task Scheduler Worker Process
J Process
taskSet
—> idle ——>{ TaskSet Creation .
. Yes
idle <] eeds othe
ubTask
. Create Tasks with
Client request provided input Yes Ta.sk. No'
Submission| waitforan
Dispatch i sub-tasks
Check for @ No
task
new tasks
Task Submit the task by Ngworker process = |
Submission saving it to the
database

Task

Common Database

Status

updates

Tasks table

Fig. 3. Back-end task submission and execution architecture.

Virtual Network Function Descriptors (VNFD) and Network
Service Descriptors (NSD) that are used in the deployment
and orchestration of VNFs and network services. Using this
repository, the UDCMB is able to easily retrieve the corre-
sponding VNFDs and NSDs needed to orchestrate a VNF or
NS on the appropriate indicated orchestration platform if such
VNFD/NSD is not already available on the orchestrator.

Deployment manager: The deployment manager is an
essential software module that handles the main tasks of
VNF/NS orchestration requests and reply from and to the
respective supported orchestrators. This manager effectively
unifies the underpinning orchestration platforms by presenting
them all as one. It interacts directly with the OCB (Orchestra-
tion Convergence Block). The deployment manager interprets
requests from network service users and resolves any form of
conflicts that might arise from the NS’s orchestration requests,
especially, those involving the orchestration of VNFs from
multiple cloud platforms that are managed by different orches-
trators. Consider a VNF deployment scenario where VNFs X
and Y are orchestrated from clouds A and B, respectively.
While cloud A is managed by orchestrator «, cloud B is
managed by another orchestrator g, for reasons best known
to the network operators. The deployment manager is able
to account for the independent orchestration of these VNFs
between the two orchestrators.

Shared Storage: The shared storage is centrally position
between the Deployment and Configuration managers in order
to provide a common storage functionality, which allows
software modules to submit both deployment and configuration
task requests received from the Server API. In this way, their
implementation can be kept simple, modular and focused on
one functionality as can be deduced from their respective

names. In addition, this database allows the system to easily
keep track of task execution state.

Configuration manager: The configuration manager sim-
ply manages the configuration of the instances of network
functions that together make up a network service. The VNF
instances that belong to a network service are configured to
exhibit certain expected behaviour using this software module.
This software module acts as a generic VNF configuration tool
that is capable of carrying out dayl and day2 configurations,
similar to the VNF Configuration and Abstraction (VCA) in
the OSM orchestrator’s configuration component, Juju charm®.
In our implementation, we have deployed the Ansible® con-
figuration automation software tool. Moreover, VNF configu-
ration can be also accomplished using Juju charms. However,
it should be noted that the communication between OSM and
its Juju component is not always established properly.

Task scheduler: The task scheduler entity is needed in
order to simplify the functionality of the deployment and
configuration managers by decoupling the actual managerial
roles from the deployment and configuration tasks and sub-
tasks. In this way, the task scheduler sees the list of all
submitted tasks in the configuration and deployment tables
found in the shared storage, simply as tasks that have to be
executed and it does so through an identified message broker
node.

Message Broker Cluster: The message broker plays a
vital role in the entire system. It is in fact the integration
fabric as per [14] occupying a central and essential role in
enabling the seamless interworking and communication of
messages between other building blocks of the framework.

5https://jaas.ai/
6https://Www.ansible.com/

Implemented using the advanced message queuing protocol,
the message broker is deployed as the central gel gluing the
entire modules together and enables them to work coherently.
In our implementation, we have deployed the lightweight
RabbitMQ’ message-broker to manage the task queues emitted
by the Task Queue module.

Task Queue Cluster: The task queue is responsible for
managing the execution of different set of tasks and coordi-
nating among them. It is a module implemented using the
Celery® distributed task queue framework that controls the
asynchronous tasks execution in real-time. It creates tasks
execution units and executes them concurrently on work-
ing servers using the multiprocessing approach. Using this
approach, the UDCMB is able to manage deployment and
configuration of network services smoothly and coherently in a
distributed fashion. More details about the task queue module
will be presented in subsequent sections.

2) Orchestration Convergence Block (OCB): is the abstrac-
tion module responsible for registering and directly interacting
with the different supported NFV orchestration systems. This
software module implements all the necessary RESTful API
endpoints needed to seamlessly connect to the registered
orchestrators. They are also aware of the respective cloud
domains they are associated with. This block enables our
framework to operate as a genuine multi-domain network
service orchestrator with the capability to orchestrate network
services across multiple administrative as well as technological
domains with plugins for concurrently operating variant exist-
ing MANO orchestrators [13], while also coordinating and
managing their respective resources.

Supported MANO orchestrators: Thanks to the use of
the industrial standard OpenAPI framework, we are able to
create RESTful API endpoints that allow for the registration
and operation of multiple MANO orchestrators, yet with a
clear distinction of their individual orchestration operations.
At the moment, our framework supports the deployment of
open source solutions such as the OSM and OpenBaton’
orchestrators. We are presently widening the scope to provide
support for a more mobile network operator tailored solution
such as the CORD project.

3) Virtual/Physical Resources Block (V/PRB): is a
layer/block that represents the cloud infrastructure and its
corresponding resources. Precisely, they are the virtualized
Infrastructure Managers (VIMs) that are directly associated
with the orchestration convergence module. One or more
VIMs could be associated with one or more orchestrators and
as such give the orchestrators the possibility to instantiate
VNFs on multiple VIMs independently. This block exposes
the resources of the orchestrators under the control of the
OCB to the framework. In this way, the framework is aware
and able to adequately provision the necessary resources
needed to power a network slice already at the point of
making the requests. This singular opportunity makes it
viable for an orchestrator to orchestrate VNFs across multiple
cloud domains.

7https://www.rabbitmq.com/
8http://www.celeryproject.org/
%https://openbaton.github.io/index.html

V. BACK-END SERVER PROCESSES AND USE CASE SCENARIO

In this section, we introduce the intricacies of the back-end
processes that form the foundation and supporting structure
for the implementation of our orchestration framework. Each
of the discussed software modules is cohesively connected and
consistently functioning as a whole, thanks to the sophisticated
Django RESTful framework that we have deployed in the
back-end. Together with the adoption of a task and queue
management paradigm, the framework is able to perform
asynchronous tasks execution procedure flawlessly. It is a
common knowledge that the orchestration of a multi-domain
network slice usually involves the execution of a set of tasks
(instantiation and configuration of VNFs) carried out both in
series and in parallel depending on the slice requirements.
Monitoring the status of the task execution process is of
high importance, considering the fact that success for one
may imply success for others and vice versa. Therefore,
while the instantiation of the VNFs may be independent, their
configuration may be dependent on one another.

A. Intricacies of the Asynchronous Tasks Execution in the
Server Back-end

To maximize the utilization of the system, it was essential
to incorporate a task management abstraction mechanism in
the UDCMB block as depicted in Fig. 2. The UDCMB has
been designed in a way that allows for:

« Separation of concern: The UDCMB is composed of
loosely coupled sub-blocks that allow, for instance, the
introduction of high availability and replication for most
sub-components; a feature which improves the overall
resiliency and fault tolerance. Each sub-block handles
a subset of the overall functionalities; for instance, the
API servers solely handle interactions with the platform’s
users and then relate their actions to the right sub-blocks,
namely the Deployment and Configuration Managers.
Whereas the managers are responsible for the interpre-
tation of the said actions to schedulable tasks

« Parallel execution: The schedulable tasks are executed

in parallel by a pool of workers and when required, the

message broker component is also used as a semaphore
for concurrent access to certain resources.

Better feedback: The task execution mechanism allows

for better feedback about the status of user actions, for

instance, how long they take, whether they are success-
fully executed or not, and detailed logs for the whole
process can be provided.

« Fault tolerance: The task execution process is able to
reschedule recoverable failed tasks and failures related
to the workers themselves.

The basic unit of scheduling is called a task, which could be
for instance deployment or configuration of an NSI, configura-
tion of a single VNFI, deletions, updates and so on. A grouping
of one or more related tasks is called a task-set which is created
by the Deployment and Configuration managers by interpret-
ing user actions. Certain resource-consuming tasks/task-sets
can generate other sub-tasks. The basic workflow is depicted
in Fig. 3 and follows these steps:

UNFof MNO A fNE Slice of MNO A /MNO A/
VNFof MNO B flll§ Slice of MNO B /MNo B/

® ? -
G UNE @ 7 UNE

Fig. 4. Multi-domain mobile network slice orchestration use case.

« The platform subscriber consumes a server API (REST
API Web Application in Fig. 3) endpoint such as: upload-
ing an NSD or VNFD, instantiating an NS, configuring
an NSI, or configuring a specific VNFI

« Depending on the type of the user-triggered action, ei-
ther the Deployment or Configuration manager (TaskSet
Creator in Fig. 3) would create the necessary tasks
definition (task-set) and populate a shared storage with
the necessary metadata for the execution of the tasks.

« A task scheduler that polls the shared storage detects new
tasks and submits them for execution on an appropriate
worker based on some predetermined criteria such as
worker load and task-set dependencies.

« A schedulable task is submitted for execution through a
message broker

« Task execution is finally handled by worker. Depending
on the type of the task, execution could include interac-
tion with the OCB and/or V/PRB.

B. Use casel: Multi-domain mobile network slice orchestra-
tion and dynamic configuration

The orchestration of network slices ordinarily involves
the instantiation and configuration of multiple VNFs (i.e.,
consisting of mainly core network functions) as well as
the reservation of network resources of PNFs, such as the
functions of the RAN and its configuration within a single
administrative domain with a defined set of characteristics.
Already such an orchestration operation would span across
multiple technological domains. When the functionality is
extended further to cover a range of different cloud adminis-
trative domains involving multiple orchestration systems, the
term multi-domain orchestration is introduced. In other words,
multi-domain mobile network slice orchestration involves the
process of instantiating and configuring VNFs/PNFs of the
mobile network across multiple technological as well as ad-
ministrative domains [13].

Let’s consider two mobile network operators (MNO)s,
namely MNO A and B, who are in a mutual network service
provisioning agreement for their respective customers in cities
A and B, as depicted in Fig. 4. The envisioned scenario is such
that MNO A has a better coverage in cities A and B than MNO
B. However, due to the planned hosting of a major event, such

as a soccer tournament in cities A and B, MNO B is aware
of the fact that a potential number of its subscribers will be
visiting cities A and B from other cities and will need a better
coverage in both cities during the period of the event. MNO
B can serve its customers in city X with its network capacity,
but has a poor coverage in city Y. As a result, there are a
handful of options available to MNO B to provision coverage
for its subscribers during the soccer event. To temporarily cater
for the needs of the additional subscribers of MNO A that
will be also visiting cities A and B from other cities during
the event, MNO A intends to deploy network slices. So, the
options are: (1) for MNO A to orchestrate network slices for
both its subscribers and MNO B’s subscribers during the event,
whereby, all the resources (VNFs and PNFs) of the slices
belong to MNO A, (2) for MNO A to orchestrate network
slices for both its subscribers and MNO B’s subscribers during
the event, whereby, only sub-slices are orchestrated from MNO
A’s infrastructure.

With the above scenario, it turns out that both options could
be deployed separately in the two cities for MNO B. Since
MNO B has extra capacity to serve more customers in city X,
then, MNO B’s slice for city X could be orchestrated partly
from MNO B’s and MNO A’s VNFs and PNFs respectively,
possibly from multiple cloud domains. This is while MNO
A will orchestrate the slices for the event in city Y entirely
from its own network infrastructure. Hence, at least three
orchestrators should be managed on the platform: two from
MNO A (for both cities A and B) and one from MNO B (only
for city X). Therefore, MNO A could deploy our framework
to manage and coordinate the orchestration activities of each
of their individual orchestrators. Basically, MNO A begins by
registering the two orchestrators on our orchestration conver-
gence platform. Then, it initiates the orchestration of slices for
both cities A and B to serve its own subscribers. Afterwards,
MNO A simultaneously orchestrates the slice for MNO B in
city X that will be composed of resources from both MNO B
and A. Finally, MNO A orchestrates another slice for MNO
B in city Y entirely from its own resources based on their
agreement. All of these orchestration procedures could be done
in parallel considering the fact that the event would often start
and end at the same time.

C. Use case2: Dynamic orchestration, configuration and auto-
scaling of a streaming service

Streaming services are usually a part of content delivery
networks (CDN), which are primarily responsible for deliv-
ering video contents to end users or viewers. Being able to
orchestrate video streaming servers across multiple administra-
tive domains and then provide suitable and customized mobile
network slices that will enable the viewers to connect to them
and watch the videos in a seamless and glitch-free manner is
not a straighforward solution. Such type of a network slice,
known as enhanced mobile broadband (eMBB) slice, is not
only characterized by large size of bandwidth but also reduced
amount of delay to prevent lag in the streaming.

It turns out that not only could our platform orchestrate
this kind of use case scenario, but could be also used to

dynamically configure each of the VNFs that constitute both
the streaming service as well as the underlying mobile net-
work slice needed to view the video streams. In addition,
it provides functionalities for the scaling of the streaming
service. This implies that in the event that the number of
views of the video streams increases to an extent whereby
the number of streaming servers can no longer provide a
smooth streaming experience for the viewers, the orchestration
convergence framework can dynamically scale the streaming
service, thereby, increasing the number of streaming servers
with a load balancer. The scaling is achieved in such a
seamless fashion that the viewers of the video that is being
streamed would not notice any changes, any service disruption.

Deploying our framework would afford the network
provider the opportunity to orchestrate both the mobile net-
work service and streaming service slices in parallel and from
dedicated independent NFVOs. This possibility would not only
increase the speed at which the services can be deployed
but would also enable an efficient use of the underpinning
resources. In addition, this concept could serve as a real life
technology deployment towards enabling the orchestration of
a real user plane function (UPF) of the 5G core network.
This scenario could be used to drive the enhancement of the
orchestration of services closer to the network edge, in which
case, a data plane function such as an application function (AF,
e.g., a video streamer) could be orchestrated and placed within
the network. This network enhancement would go along way
in improving the quality of experience of the end users.

VI. DEPLOYMENT AND EVALUATION

500
450
400

350 . *
= 300
@ 250
= 200

150

100

50

g 09 9o 0 0 0 o 0o 0 0 0o 0o % 0 0 0 o o ©

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

of Iterations

—<Average Instantiation Time Average Configuration Time ¢ Instantiation ® Configuration

(a) Ave. time (sec) of instantiation and configuration of a complete OAI EPC.

300

° o
250 ¢ - °
® e °
= 200 o d e s *
2 150 ° o v & 0 0 *
F 100 f—ta o . s 4+ o —— -
* o o ¢ ¢ ¢

50

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

of Iterations

—<Average Instantiation Time Average Configuration Time & Instantiation ® Configuration

(b) Ave. time (sec) of instantiation and configuration of a video streaming
service including a load balancer.

Fig. 5. Experiment results in time series.

In this section, we present the end-to-end performance
evaluation of the framework. In this end-to-end evaluation of

the system, our tests have been based mainly on the use case
scenarios we have discussed in the previous section. Basically,
we have carried out the test with a major focus on how the
system performs in terms of the instantiation and configuration
of network services. With that in mind, we orchestrated differ-
ent sizes of mobile network slices and configured them. Each
mobile network slice size was orchestrated multiple times and
the average time taken to instantiate and configure each was
calculated. The sizes of the network slices are determined
by the different combinations of the constituent VNFs of the
network slice. During our system evaluation experiments, we
have considered the instantiation and configuration of two
different services, namely the mobile network service and the
video streaming service, respectively.

1200

1000
800
600

OAIEPC NS OAIEPCV2 NS OAIEPCV3 NS OAIEPC V4 NS
Service sizes

Time (s)

W Network Service Instantiation Task m Network Service Configuration Task

(a) Ave. time (sec) of instantiation and configuration of different compositions
of a complete OAI EPC network service.

600

500

Streaming NS- 1 Server (No
1B)

Streaming NS- 3 Servers Streaming NS - 4 Servers Streaming NS- 5 Servers

Service sizes

m Network Service Instantiation Task m Network Service Configuration Task

(b) Ave. time (sec) of instantiation and configuration of different compositions
of a video streaming service including a load balancer.

Fig. 6. Experiment results of each step.

For the network service orchestration, we have considered
the Open Air Interface mobile network 4G solution, which
consists mainly of the Mobility Management Entity (MME),
Serving-Packet Data Network Gateway (S-PGW) and the
Home Subscriber Server (HSS). The streaming service on the
other hand is made up of Nginx software solution, configured
both as a streaming server and a load balancer. The sizes of
both services considered are determined by the number of each
of the VNFs that constitute each service that is orchestrated.
For both services, we have made comparison of four different
sizes of the same service. So, for example, in the case of the
streaming service, we have orchestrated increasing number of
streaming servers with a load balancer and compared how long

it took to complete both the instantiation and configuration of
each service size.

As presented in Fig. 5(a), it took an average of about 375sec
to instantiate a complete OAI 4G mobile network service and
an approximate average of 12sec to configure the service. Both
the instantiation and configuration procedures were repeated a
total of 21 times. This experiment reveals that the time taken
in the service instantiation phase for the orchestration of a
mobile network service is longer than the time taken in the
configuration phase. Conversely, in the case of the streaming
service orchestration as shown in Fig. 5(b), the average time
taken during the instantiation phase is an approximate 100sec,
while the configuration phase took an average of almost double
the time for a streaming service consisting of 3 servers (a load
balancer and 2 streamers). Obviously, more time is lost in
the configuration phase for the orchestration of a streaming
service, which is totally different from a mobile network
service.

Similarly, as presented in Fig. 6(a), for mobile network ser-
vice orchestration, the instantiation phase clearly takes signifi-
cantly more time than the configuration time with respect to an
increase in their different sizes. For example, for orchestrating
the OAIEPC V4 NS, which consists of seven VNFs instances,
it takes a little above 1000sec to instantiate them. Whereas, to
configure all seven VNFs, it takes as little as 27sec. Moreover,
as presented in Fig. 6(b), for orchestrating the streaming NS-5
Servers, it takes around 100sec to instantiate them but about
500sec to configure all of them.

These test results have revealed that while it is generally ex-
pected that the instantiation of network services will consume
more time than its configuration, especially, for those orches-
trated from uncached VNF images [4], this expectation can not
be made general across all types of VNFs and their resulting
network services. This implies that while the instantiation of
some types of network services may take longer time, others
may not necessarily exhibit the same behaviour depending
on their VNF composition and image types. Similarly, in the
case of network service configuration, while some services
may take longer duration to be fully configured, others may
take less depending on size and number of VNFs involved
in the configuration phase. The configuration duration is often
determined by the number of I/O writing that has to be effected
and the number of VNFs whose files have to be updated
during the configuration phase. So, in the case of the streaming
service, the configuration time varied quite noticeably than in
the case of the OAI EPC network service, since the number of
files and parameters that are updated are much more compared
to that of the OAI EPC network service.

VII. ConcLusIoN

In this work, we have presented our implementation of
a convergence platform that is capable of harnessing the
resources and functionalities of different existing orchestration
systems, especially those which are ETSI MANO compli-
ant. Using this framework, potential network operators could
benefit from the comprehensiveness of its functionalities in
orchestrating multi-domain network slices from a mixture

of network resources belonging to multiple administrative
domains. This framework is robust and implemented in such a
way that the configuration and instantiation tasks are executed
using different dedicated processes and the status of each task
could be tracked for a fine-grained monitoring and control.
Finally, we present an evaluation of the system in terms of
the average time taken to complete both network service
instantiation and configuration. The evaluation results have
provided meaningful insights that could help us understand
better the instantiation and configuration behaviour of different
services during their respective orchestration. Based on the
results, it is understood that network services should be treated
individually in terms of the time it takes to instantiate and
configure each service.

ACKNOWLEDGMENT

This work is partially supported by the European Union’s
Horizon 2020 research and innovation program under the
MATILDA project with grant agreement No. 761898. The
work is also funded by the Academy of Finland Project CSN
- under Grant Agreement 311654 and the 6Genesis project
under Grant No. 318927, respectively.

REFERENCES

[11 5G; Service requirements for next generation new services and markets,
(3GPP TS 22.261 version 15.5.0 Release 15), July 2018.

[2] MATILDA; Deliverable D1.1, MATILDA Framework and reference archi-
tecture, Dec. 2017.

[3] 1. Afolabi, A. Ksentini, M. Bagaa, T. Taleb, M. Corici, and A. Nakao,
Towards 5G Network Slicing over Multiple-Domains, in IEICE Trans. on
Communications, Vol. E100.B, No. 11, Nov. 2017.

[4] 1. Afolabi, T. Taleb, P. A. Frangoudis, M. Bagaa and A. Ksentini,
“Network Slicing-Based Customization of 5G Mobile Services,” in IEEE
Network, vol. 33, no. 5, pp. 134-141, Sept.-Oct. 2019.

[5] 1. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, Network
Slicing Softwarization: A Survey on Principles, Enabling Technologies
& Solutions, in IEEE Communications Surveys Tutorials, 3rd Quarter,
Vol. 20, No. 3, Mar. 2018, pp. 2429-2453.

[6] Network Functions Virtualization (NFV); Management and Orchestration,
(ETSI GS NFV-MAN version 1.1.1), Dec. 2014.

[71 5G; System Architecture for the 5G System, (3GPP TS 23.501 version
15.2.0 Release 15), June, 2018.

[8] Study on management and orchestration of network slicing for next
generation network, 3GPP Technical Specification TR 28.801, Sep. 2017.

[9] NGMN Alliance: “Description of Network Slicing Concept”, January
2016.

[10] Network slice ITU-T Y.3100

[11] Network Functions Virtualisation (NFV) Release 3; Evolution and
Ecosystem; Report on Network Slicing Support with ETSI NFV Archi-
tecture Framework, Dec., 2017.

[12] D. Luong, H. Thieu, A. Outtagarts and B. Mongazon-Cazavet, “Tele-
com microservices orchestration,” 2017 IEEE Conference on Network
Softwarization (NetSoft), Bologna, 2017, pp. 1-2.

[13] T. Taleb, I. Afolabi, K. Samdanis and F. Z. Yousaf, ”On Multi-Domain
Network Slicing Orchestration Architecture and Federated Resource
Control,” in IEEE Network, vol. 33, no. 5, pp. 242-252, Sept.-Oct. 2019.

[14] Zero-touch network and Service Management(ZSM); Reference Archi-
tecture, (ETSI GS ZSM 002 version 1.1.1 Release 15), Aug, 2019.

[15] Network Functions Virtualisation (NFV) Release 3; Management and
Orchestration; Report on Management and Connectivity for Multi-Site
Services, (ETSI GR NFV-IFA 022 version 3.1.1 Release 15), April, 2018.

[16] Management and orchestration; Concepts, use cases and requirements,
(3GPP TS 28.530 version 16.1.0 Release 16), Dec, 2019.

[17] Management and orchestration; Architecture framework, (3GPP TS
28.533 version 15.4.0 Release 15), Mar, 2020.

Ibrahim Afolabi obtained his Bachelors degree
from VAMK University of Applied Sciences, Vaasa,
Finland, in 2013 and his Masters degree from the
School of Electrical Engineering, Aalto University,
Finland in 2017. He is presently pursuing his doc-
toral degree at the same university where he obtained
his Masters degree from and his research interests in-
clude Network Slicing, cloud computing, , machine
learning, MEC, network softwerization, NFV, SDN,
and dynamic network resource allocation.

Miloud Bagaa received the bachelors, masters, and
Ph.D. degrees from the University of Science and
Technology Houari Boumediene Algiers, Algeria, in
2005, 2008, and 2014, respectively. He is currently
a Senior Researcher with the Communications and
Networking Department, Aalto University. His re-
search interests include wireless sensor networks,
the Internet of Things, 5G wireless communication,
security, and networking modeling.

Walid Boumezer received the B.Sc. degree in
Telecommunications and Networks Engineering in
2016 and the M.Sc. degree in Information Systems
Security in 2018 from The University of Science
and Technology Houari Boumediene (USTHB) in
Algiers, Algeria. He is currently persuing a D.Sc.
degree in Communications and Networking with the
school of Electrical Engineering, Aalto University,
Finland. His research interests include Network Soft-
warization, Content Distribution Networks, Cloud
Computing, Machine learning and Network Slicing.

Tarik Taleb received the B.E. degree (with distinc-
tion) in information engineering in 2001, and the
M.Sc. and Ph.D. degrees in information sciences
from Tohoku University, Sendai, Japan, in 2003,
and 2005, respectively. He is currently a Professor
with the School of Electrical Engineering, Aalto
University, Espoo, Finland. He is the founder and
the Director of the MOSA!C Lab. He is the Guest
Editor-in-Chief for the IEEE JSAC series on network
Softwarization and enablers.

